
www.allitebooks.com

http://www.allitebooks.org

JavaScript Step by Step,
Second Edition

Steve Suehring

www.allitebooks.com

http://www.allitebooks.org

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2010 Steve Suehring

Complying with all applicable copyright laws is the responsibility of the user. All rights reserved. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without express written permission of O’Reilly Media, Inc.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 M 5 4 3 2 1 0

Microsoft Press titles may be purchased for educational, business or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com. Visit our website at microsoftpress.oreilly.com. Send
comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, FrontPage, Internet Explorer, PowerPoint, SharePoint, Webdings, Windows,
and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious, and no association with any real company, organization, prod-
uct, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the author, O’Reilly Media, Inc., Microsoft Corporation, nor their
respective resellers or distributors, will be held liable for any damages caused or alleged to be caused either directly
or indirectly by such information.

Acquisitions and Development Editor: Russell Jones
Production Editor: Holly Bauer
Production Services: Online Training Solutions, Inc.
Technical Reviewer: Michael Bazarewsky
Indexing: Potomac Indexing, LLC
Cover: Karen Montgomery
Illustrator: Robert Romano

978-0-735-64552-3

www.allitebooks.com

http://www.allitebooks.org

To Chris

—Steve Suehring

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

	 	 v

Contents at a Glance

Part I	 JavaWhat? The Where, Why, and How of JavaScript
1	 JavaScript Is More Than You Might Think . 3
2	 Developing in JavaScript . . 19
3	 JavaScript Syntax and Statements . 49
4	 Working with Variables and Data Types . . 61
5	 Using Operators and Expressions . 99

Part II	 Applying JavaScript
6	 Controlling Flow with Conditionals and Loops 119
7	 Working with Functions . 147
8	 Objects in JavaScript . 163
9	 The Browser Object Model . . 181

Part III	 Integrating JavaScript into Design
10	 The Document Object Model . 203
11	 JavaScript Events and the Browser . 223
12	 Creating and Consuming Cookies . 239
13	 Working with Images in JavaScript . 253
14	 Using JavaScript with Web Forms . 275
15	 JavaScript and CSS . 297
16	 JavaScript Error Handling . 313

Part IV	AJAX and Server-Side Integration
17	 JavaScript and XML . 331
18	 JavaScript Applications . 341
19	 A Touch of AJAX . 345
20	 A Bit Deeper into AJAX . . 367

www.allitebooks.com

http://www.allitebooks.org

vi	 Contents at a Glance

Part V	 jQuery
21	 An Introduction to JavaScript Libraries and Frameworks 383
22	 An Introduction to jQuery . 387
23	 jQuery Effects and Plug-Ins . 415

www.allitebooks.com

http://www.allitebooks.org

	 	 vii

Table of Contents
Acknowledgements . xvii

Introducing JavaScript Step by Step, Second Edition . xix

Getting Help . xxii

Part I	 JavaWhat? The Where, Why, and How of JavaScript
1	 JavaScript Is More Than You Might Think . 3

A Brief History of JavaScript . 3
Enter Internet Explorer 3.0 . 4
And Then Came ECMAScript . 4
So Many Standards... . 5
The DOM . 5

What’s in a JavaScript Program? . . 6
JavaScript Placement on Your Webpage . . 7
What JavaScript Can Do . . 10
What JavaScript Can’t Do . 10

JavaScript Can’t Be Forced on a Client . 10
JavaScript Can’t Guarantee Data Security . 11
JavaScript Can’t Cross Domains . 11
JavaScript Doesn’t Do Servers . 12

Tips for Using JavaScript . 12
Where JavaScript Fits . 14
Which Browsers Should the Site Support? . 15

What’s New in ECMAScript Version 5? . 16
New Array Methods . 16
New Controls on Object Properties . . 16
New JSON Object . 16
Changes to the Date Object . 17

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

www.allitebooks.com

http://www.allitebooks.org

viii	 Table of Contents

A New Strict Mode . 17
Browser Support . 17

Exercises . 17

2	 Developing in JavaScript . . 19
JavaScript Development Options . 19
Configuring Your Environment . 20
Writing JavaScript with Visual Studio 2010 . . 20

Your First Web (and JavaScript) Project with Visual Studio 2010 24
Using External JavaScript Files with Visual Studio 2010 28

Writing JavaScript with Eclipse . 33
Your First Web (and JavaScript) Project with Eclipse 33
Using External JavaScript Files with Eclipse . 38

Writing JavaScript Without an IDE . 41
Your First Web (and JavaScript) Project with Notepad 41
Using External JavaScript Files Without an IDE . 44

Debugging JavaScript . 46
Exercises . 47

3	 JavaScript Syntax and Statements . 49
A Bit of Housekeeping . 49

Case Sensitivity . 49
White Space . 50
Comments . 51
Semicolons . 51
Line Breaks . 53
Placing JavaScript Correctly . 53

JavaScript Statements . . 54
What’s in a Statement? . 54
The Two Types of JavaScript Statements . 55

Reserved Words in JavaScript . 55
A Quick Look at Functions . . 56
JavaScript’s New Strict Mode . 59
Exercises . 60

www.allitebooks.com

http://www.allitebooks.org

	 Table of Contents	 ix

4	 Working with Variables and Data Types . . 61
Data Types in JavaScript . . 61

Working with Numbers . 62
Working with Strings . 66
Booleans . 71
Null . 71
Undefined . 71
Objects . 72
Arrays . 73

Defining and Using Variables . 73
Declaring Variables . . 74
Variable Types . 74
Variable Scope . . 75
The Date Object . 82

Using the RegExp Object . 91
The Syntax of Regular Expressions . . 92
References and Garbage Collection . 96

Learning About Type Conversions . 97
Number Conversions . 97
String Conversions . 98
Boolean Conversions . 98

Exercises . 98

5	 Using Operators and Expressions . 99
Meet the Operators . 99
Additive Operators . 99
Multiplicative Operators . 100
Bitwise Operators . 101
Equality Operators . 102
Relational Operators . . 104

The in Operator . . 105
The instanceof Operator . 105

Unary Operators . 106
Incrementing and Decrementing . . 106
Converting to a Number with the Plus Sign . 107
Creating a Negative Number with the Minus Sign 107
Negating with bitwise not and logical not . 107

www.allitebooks.com

http://www.allitebooks.org

x	 Table of Contents

Using the delete Operator . 108
Returning Variable Types with the typeof Operator 111
The void Operator . . 112

Assignment Operators . 113
The Comma Operator . 114
Exercises . 115

Part II	 Applying JavaScript
6	 Controlling Flow with Conditionals and Loops 119

If (and How) . 119
Syntax for if Statements . 119
The prompt() Function in Internet Explorer . 121
Compound Conditions . . 124

Using else if and else Statements . . 126
Working with Ternary Conditionals . 131
Testing with switch . 132
Looping with while . 134

The while Statement . . 134
The do...while Statement . 135

Using for Loops . 137
The for Loop . 137
The for...in Loop . . 140
The for each...in Loop . 141

Validating Forms with Conditionals . 143
Exercises . 145

7	 Working with Functions . 147
What’s in a Function? . 147

Function Arguments . . 148
Variable Scoping Revisited . 150
Return Values . . 151
More on Calling Functions . 152
Anonymous/Unnamed Functions (Function Literals) 154
Closures . 155

Methods . 155
A Look at Dialog Functions . 156
Exercises . 161

	 Table of Contents	 xi

8	 Objects in JavaScript . 163
Object-Oriented Development . . 163

Objects . 163
Properties . . 164
Methods . 164
Classes . . 164

Creating Objects . 167
Adding Properties to Objects . 168
Adding Methods to Objects . 171

Finding Out More About Arrays . . 171
The length Property . 172
Array Methods . . 172

Taking Advantage of Built-in Objects . 178
The Global Object . . 178

Exercises . 180

9	 The Browser Object Model . . 181
Introducing the Browser . 181

The Browser Hierarchy . 181
Events . 182

A Sense of Self . 183
Getting Information About the Screen . 185
Using the navigator Object . 187
The location Object . . 191
The history Object . . 198
Exercises . 199

Part III	 Integrating JavaScript into Design
10	 The Document Object Model . 203

The Document Object Model Defined . 203
DOM Level 0: The Legacy DOM . . 204
DOM Levels 1 and 2 . 204
The DOM as a Tree . 205
Working with Nodes . 206

Retrieving Elements . 206
Retrieving Elements by ID . 206
Retrieving by Tag Name . 210

xii	 Table of Contents

HTML Collections . 212
Working with Siblings . 212

Working with Attributes . . 213
Viewing Attributes . 213
Setting Attributes . 216

Creating Elements . 217
Adding Text . 217
Adding an Element and Setting an ID . . 219

Deleting Elements . 219
Exercises . 221

11	 JavaScript Events and the Browser . 223
Understanding Window Events . 223

The Event Models . 223
A Generic Event Handler . 227

Detecting Visitor Information . 228
A Brief Look at the userAgent Property . 229
Feature Testing . 230
Keeping JavaScript Away from Older Browsers . 231
Other navigator Properties and Methods . 232

Opening, Closing, and Resizing Windows . 233
Window Opening Best Practices . 234
Opening Tabs: No JavaScript Necessary? . 235
Resizing and Moving Windows . 236

Timers . 236
Exercises . 238

12	 Creating and Consuming Cookies . 239
Understanding Cookies . 239
Creating Cookies with JavaScript . 240

Looking at a Simple Cookie . 241
Setting a Cookie’s Expiration Date . . 241
Setting the Cookie Path . . 245
Setting the Cookie Domain . . 246
Working with Secure Cookies . . 247

Reading Cookies with JavaScript . 248
Removing Cookies . 250
Exercises . 251

 Table of Contents xiii

13	 Working with Images in JavaScript . 253
Working with Image Rollovers . 253

A Simple Rollover . 253
Modern Rollovers . 255

Preloading Images . 262
Working with Slideshows . 263

Creating a Slideshow . 263
Moving Backward . 266

Working with Image Maps . 270
Exercises . 274

14	 Using JavaScript with Web Forms . 275
JavaScript and Web Forms . 275
Obtaining Form Data . 278
Working with Form Information . 279

Working with Select Boxes . 279
Working with Check Boxes . 284
Working with Radio Buttons . 287

Prevalidating Form Data . 289
Hacking JavaScript Validation . 289
Validating a Text Field . 293

Exercises . 295

15	 JavaScript and CSS . 297
What Is CSS? . 297

Using Properties and Selectors . 298
Applying CSS . 299

The Relationship Between JavaScript and CSS . 300
Setting Element Styles by ID . 300
Setting Element Styles by Type . 304
Setting CSS Classes with JavaScript . 306
Retrieving Element Styles with JavaScript . 307
Modifying Style Sheets with JavaScript . 308

Exercises . 311

xiv	 Table of Contents

16	 JavaScript Error Handling . 313
Introducing Two Ways to Handle Errors . 313
Using try/catch . . 313

And Finally... . 321
Using the onerror Event . 322

Attaching onerror to the window Object . 322
Ignoring Errors . 324
Attaching onerror to the image Object . . 325

Exercises . 327

Part IV	AJAX and Server-Side Integration
17	 JavaScript and XML . 331

Using XML with JavaScript . . 331
Looking at an Example XML Document . 331
Loading an XML Document with JavaScript . . 332

Working with XML Data from Excel 2007 . . 339
A Preview of Things to Come . 340
Exercises . 340

18	 JavaScript Applications . 341
Components of JavaScript Applications . 341

The Big Three: Display, Behavior, Data . 341
JavaScript and Web Interfaces . 342

19	 A Touch of AJAX . 345
Introduction to AJAX . 345
The XMLHttpRequest Object . . 346

Instantiating the XMLHttpRequest Object . 346
Sending an AJAX Request . 348
Processing an AJAX Response . 350
Processing XML Responses . 354
Working with JSON . 355
Processing Headers . 356
Using the POST Method . 357

Case Study: Live Searching and Updating . 359
Exercises . 365

	 Table of Contents	 xv

20	 A Bit Deeper into AJAX . . 367
Creating an HTML Table with XML and CSS . 367
Styling the Table with CSS . 371

Changing Style Attributes with JavaScript . 371
Creating a Dynamic Drop-Down Box . 374
Accepting Input from the User and AJAX . . 379
Exercises . 380

Part V	 jQuery
21	 An Introduction to JavaScript Libraries and Frameworks 383

Understanding Programming Libraries . 383
Defining Your Own JavaScript Library . 383
Looking at Popular JavaScript Libraries and Frameworks 385

jQuery . 385
Yahoo! User Interface . 385
MooTools . 386
Other Libraries . . 386

Exercises . 386

22	 An Introduction to jQuery . 387
jQuery Primer . 387
Using jQuery . 387

The Two jQuery Downloads . 387
Including jQuery . 388
Basic jQuery Syntax . 388
Connecting jQuery to the Load Event . . 389

Using Selectors . 391
Selecting Elements by ID . 391
Selecting Elements by Class . 391
Selecting Elements by Type . 392
Selecting Elements by Hierarchy . 392
Selecting Elements by Position . . 393
Selecting Elements by Attribute . . 396
Selecting Form Elements . 397
More Selectors . 397

Functions . 397
Traversing the DOM . 398
Working with Attributes . 403

xvi	 Table of Contents

Changing Text and HTML . 403
Inserting Elements . 404
Callback Functions . 404

Events . 405
Binding and Unbinding . 405
Mouse Events and Hover . . 407
Many More Event Handlers . 408

AJAX and jQuery . 409
AJAX Errors and Timeouts . . 412
Sending Data to the Server . . 412
Other Important Options . 413

More jQuery . . 413
Exercises . 414

23	 jQuery Effects and Plug-Ins . 415
Core Features for Enhancing Usability . 415

Native Effects . . 415
jQuery UI . 420

Using jQuery UI . . 420
Drag and Drop . 421
Accordion . 423
More jQuery UI . 427

Exercises . 428

Appendix . 429

Index . 459

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

	 	 xvii

Acknowledgements
Every time I write a book, I get mired in a futile attempt to thank everyone who has helped
make it possible. I originally thought that I should thank everyone and their respective fami-
lies in case I never wrote a book again. But now that I’ve written several books, some of them
twice, there seems to be less urgency to thank everyone. It’s not that people need to be
thanked less or that I did this all myself—far from it. But inevitably I always forget to thank
someone, and though they may not be offended (who cares, it’s just a technology book), I
still feel bad.

And yet as I sit here and write these acknowledgements, I still want to thank some people.
As always, this is in no particular order and the list is incomplete. Obviously, thank you to
Rebecca and Jakob and my family, who support the 16 to 20 hour days involved in getting a
book written in a short time. Thanks to Russell Jones at O’Reilly for his editing and encour-
agement throughout, and thanks to Neil Salkind at Studio B as well. Thanks to Chris Tuescher,
John Hein, Jeremy Guthrie, and Jim Leu, Andy Berkvam, Dan Noah, Justin Hoerter, and Mark
Little. All those individuals told me that when I thank them in a book they feel compelled to
buy a copy. (If it worked like that for everyone, I’d go get the phone book.) While I’m fishing
for people to thank, I should thank Jason, Kelly, John, and Jeff as well as the web team and all
my coworkers.

Thanks to brother Bob for helping me choose music to write by. Thanks as well to Jim Oliva
and John Eckendorf. More than one Saturday morning was spent listening to the radio while
writing, and it made working on a Saturday morning less painful. Thank you to Tim and Rob
at Partners, Pat Dunn, and Dave Marie as well. Thank you to Jeff Currier for putting a door on
my office.

Thank you also to the readers who sent feedback for the first edition of the book. That
helped in shaping some of the areas to highlight in this second edition.

After rereading these acknowledgements, I realize I should have just thanked everyone using
first names. That would give plausible deniability: “Yes, when I thanked John, I really meant
you and not the other one.” I think there was someone else that I promised to thank, too, but
I can’t recall who, but thank you, too.

	 	 xix

Introducing JavaScript Step by Step,
Second Edition

Much has changed since the first edition of JavaScript Step by Step was written in 2007. The
underlying JavaScript specification received a major update; Microsoft released Windows
Internet Explorer 8—and now 9 (which is about to be released as I write this); JavaScript
development frameworks have matured and are now ubiquitous; and browsers other than
Internet Explorer and Firefox, such as Safari, Chrome, and mobile browsers, became much
more popular.

This second edition of JavaScript Step by Step builds on the foundation laid down by the first
edition. The underlying architecture of the JavaScript language is largely the same, but its use
has become pervasive, increasing hugely even in just the last three years. With that in mind,
the layout and coverage of the book have also remained largely the same, with two notable
exceptions: this edition places a much greater emphasis on JavaScript event handling, and it
includes an entirely new section covering JavaScript libraries. Specifically, the book focuses
on jQuery, which can help simplify JavaScript development, especially on large projects.

Throughout the book, you’ll find highlights and additions for the new features in the latest
version of JavaScript. Also, the examples used in the book received greater scrutiny, in mul-
tiple browsers, to reflect the reality of today s web landscape. Reader feedback from the first
edition is reflected in the content and was the impetus for adding jQuery and emphasizing
event handling.

The introduction to the first edition is still relevant and applicable, and so I’ve included it
here.

JavaScript is an integral language for web application development, regardless of whether
you’re adding interactivity to a web page or creating an entire application. Today’s web
wouldn’t be the same without JavaScript.

JavaScript is a standards-based language with a formal specification; however, as any web
developer will tell you, almost every web browser interprets that specification differently,
which makes web developers’ jobs more difficult. Fortunately, most web browsers are con-
verging in their support and interpretation of JavaScript’s core functions.

This book provides an introductory look at JavaScript, including some of its core functions
as well as newer features and paradigms, such as Asynchronous JavaScript and XML (AJAX).
Today’s web users rely on many different platforms and many different browsers to view
web content. This fact was central to development of every aspect of the book, so you’ll see
screenshots in multiple browsers and an emphasis on standards-based, rather than propri-
etary, JavaScript development.

www.allitebooks.com

http://www.allitebooks.org

xx	 Introduction

The first part of the book examines JavaScript and helps you get started developing JavaScript
applications. You don’t need any specific tools for JavaScript development, so you see how
to create JavaScript files in Microsoft Visual Studio, in Eclipse, and even in Notepad (or any
text editor). Next, the book examines JavaScript’s core language and functions, followed by
an exploration of the relationship between JavaScript and the web browser. Finally, you see
AJAX demonstrated and see how to build dynamic search forms.

The final part of the book highlights JavaScript frameworks and libraries, giving specific focus
to jQuery and jQuery UI.

Who Should Read This Book?
This book is for beginning JavaScript programmers—people who are interested in learning
the basics of modern JavaScript programming: the language syntax, how it works in brows-
ers, what the common cross-browser problems are, and how to take advantage of AJAX
and third-party libraries such as jQuery to add interactivity to your web pages.

Features and Conventions of This Book
This book takes you step by step through the process of learning the JavaScript program-
ming language. Starting at the beginning of the book and following each of the examples
and exercises provides the maximum benefit to help you to gain knowledge about the
JavaScript programming language.

If you already have some familiarity with JavaScript, you might be tempted to skip the first
chapter of this book. However, Chapter 1, “JavaScript Is More than You Might Think,” details
some of the background history of JavaScript as well as some of the underlying premise for
this book, both of which might be helpful in framing the discussion for the remainder of
the book. Chapter 2, “Developing in JavaScript,” shows you how to get started with program-
ming in JavaScript. If you’re already familiar with web development, you might already have
a web development program, and therefore you might be tempted to skip Chapter 2 as
well. Nevertheless, you should become familiar with the pattern used in Chapter 2 to create
JavaScript programs.

The book contains a Table of Contents that will help you to locate a specific section quickly.
Each chapter contains a detailed list of the material that it covers.

In addition, you can download the source code for many of the examples shown throughout
the book.

	 Introduction	 xxi

Convention Meaning
L sts Step-by-step exerc ses are denoted by procedura sts w th steps beg nn ng w th 1

See A so These paragraphs po nt you to other sources of nformat on about a spec fic top c

T p/Note/
Important

T ps and notes feature add t ona b ts of nformat on that m ght be he pfu for a
g ven subject

Inline Code In ne code—that s, code that appears w th n a paragraph— s shown n italic font
Code Blocks Code b ocks are shown n a d fferent font to h gh ght the code

What’s in the Companion Content
The downloadable companion content included with this book contains all the important
source code from the examples and exercises shown throughout the book. The download
consists of projects and files laid out on a per-chapter basis—one directory for each chapter.
Each chapter directory contains the step-by-step exercises used within that chapter.

Because JavaScript is usually dependent on a surrounding web page, the source code for
the step-by-step exercises has been split within the directories. This enables you to copy
and paste much of the repetitive HTML and concentrate on entering the JavaScript into the
example.

Each chapter directory also contains a CompletedCode subdirectory that contains the entire
example. You can open the files in the CompletedCode folder to see the examples as laid out
in the chapter.

Downloading the Companion Content
Most of the chapters in this book include exercises that let you interactively try out new
material you learn in the main text. All the sample projects and files are available for down-
load from the book’s catalog page on the website for Microsoft’s publishing partner, O’Reilly
Media, at:

http://oreilly.com/catalog/9780735645523/

Click the Companion Content link on that page. Locate and download the file
9780735645523-files.zip. Unzip that file into a folder on your local drive.

xxii	 Introduction

Minimum System Requirements
The code will work on many platforms, including Microsoft Windows, Linux, and Mac.

n	 Processor  A Pentium 133 megahertz (MHz) or greater. (Any computer capable of
running a web browser with JavaScript support.)

n	 Memory  64 megabytes (MB) of RAM or any amount that can run a computer capable
of using a web browser with JavaScript support.

n	 Hard disk  2 MB free hard disk space.

n	 Operating System  Windows 98SE or later, most distributions of Linux, and versions of
Mac OS X.

n	 Display Monitor  with 640x480 or higher screen resolution and 16-bit or higher color
depth.

n	 Software  Any web browser capable of running JavaScript. Internet Explorer 6 or later,
Mozilla Firefox 2.0 or later, Safari 2 or later, Opera 9, and Konqueror 3.5.2 or later are
recommended.

Getting Help
Every effort has been made to ensure the accuracy of this book and the companion content.
If you run into problems, please contact the appropriate source, listed in the following sections,
for help and assistance.

Getting Help with This Book and the Companion Content
If you have questions or concerns about the content of this book or its companion content,
please first search the online Microsoft Press Knowledge Base, which provides support infor-
mation for known errors in or corrections to this book, at the following website:

www.microsoft.com/mspress/support/search.asp

If you do not find your answer in the online Knowledge Base, send your comments or ques-
tions to Microsoft Learning Technical Support at:

mspinput@microsoft.com

	 	 1

Part I

JavaWhat? The Where, Why,
and How of JavaScript

Chapter 1: JavaScript Is More Than You Might Think

Chapter 2: Developing in JavaScript

Chapter 3: JavaScript Syntax and Statements

Chapter 4: Working with Variables and Data Types

Chapter 5: Using Operators and Expressions

	 	 3

Chapter 1

JavaScript Is More Than You
Might Think

After reading this chapter, you’ll be able to:

n Understand the history of JavaScript .

n Recognize the parts of a JavaScript program .

n Use the javascript pseudo-protocol .

n Understand where JavaScript fits within a webpage .

n Understand what JavaScript can and cannot do .

n Understand some of the changes in the latest standard related to JavaScript .

A	Brief	History	of	JavaScript
JavaScript isn’t Java . There! With that clarification out of the way, you can move on to big-
ger, more important learning, like how to make cool drop-down menus . In all seriousness,
JavaScript is one implementation of a specification known as ECMAScript . You’ll learn more
about ECMAScript later in this chapter .

Where did JavaScript come from? You might not know the rich and storied history of
JavaScript—and you may not really care much about it, either . If that’s the case, you might
be tempted to jump ahead to the next chapter and begin coding JavaScript . Doing so, of
course, would be a mistake—you’d miss all the wonderful information that follows in this
chapter . And understanding a bit about the history of JavaScript is important to understand-
ing how the language is implemented in various environments today .

JavaScript was originally developed by Brendan Eich at Netscape sometime in 1995–1996 .
Back then, the language was called LiveScript . That was a great name for a new language—
and the story could have ended there . However, in an unfortunate decision, the folks in mar-
keting had their way, and the language was renamed to JavaScript . Confusion soon ensued .
You see, Java was the exciting new language at the time, and someone decided to try to
capitalize on Java’s popularity by using its name . As a result, JavaScript found itself associ-
ated with the Java language . This was a disadvantage for JavaScript, because Java, though
popular in the sense that it was frequently used, was also unpopular because it had earned
a fairly bad reputation—developers used Java in websites to present data or to add useless
enhancements (such as annoying scrolling text) . The user experience suffered because Java

4	 Part I  JavaWhat? The Where, Why, and How of JavaScript

required a plug-in to load into the web browser, slowing down the browsing process and
causing grief for visitors as well as accessibility problems. Only in recent years has JavaScript
begun to separate from this negative Java association.

JavaScript is not a compiled language, which makes it look and feel like a language that lacks
power. But programmers new to JavaScript soon came to realize its strengths and usefulness
for both simulating and creating interactivity on the World Wide Web. Up until that realization,
programmers developed many websites using only simple Hypertext Markup Language
(HTML) and graphics that often lacked both visual appeal and the ability to interact with the
site’s content.

Early JavaScript concentrated on client-side form validation and working with images on
webpages to provide rudimentary, though helpful, interactivity and feedback to the visitor.
When a visitor to a website filled in a form, JavaScript instantly validated the contents of the
web form rather than make a roundtrip to the server. Especially in the days before broadband
was pervasive, preventing the roundtrip to the server was a great way to help applications
seem a little quicker and more responsive—and it still is.

Enter Internet Explorer 3.0
With the release of Microsoft Internet Explorer 3.0 in 1996, Microsoft included support for
core JavaScript, known in Internet Explorer as JScript, as well as support for another script-
ing language called Microsoft Visual Basic, Scripting Edition, or VBScript. Although JavaScript
and JScript were similar, their implementations weren’t exactly the same. Therefore, methods
were developed to detect which browser the website visitor was using and respond with
appropriate scripting. This process is known as browser detection, and is discussed in Chapter
11, “JavaScript Events and the Browser.” Browser detection is still used, though it is consid-
ered undesirable for most applications.

And Then Came ECMAScript
In mid 1997, Microsoft and Netscape worked with the European Computer Manufacturers
Association (ECMA) to release the first version of a language specification known as ECMAScript,
more formally known as ECMA-262. Since that time, all browsers from Microsoft have imple-
mented versions of the ECMAScript standard. Other popular browsers, such as Firefox, Safari,
and Opera, have also implemented the ECMAScript standard.

ECMA-262 version 3 was released in 1999. The good news is that browsers such as Microsoft
Internet Explorer 4.0 and Netscape 4.5 supported the version 3 standard, and that every major
browser since then has supported the version of JavaScript formalized in the ECMA-262 ver-
sion 3 standard. The bad news is that each browser applies this standard in a slightly different
way, so incompatibilities still plague developers who use JavaScript.

	 Chapter 1  JavaScript Is More Than You Might Think	 5

The latest version of ECMAScript, as formalized in the standard known as ECMA-262, was
released in late 2009 and is known as ECMA-262 version 5. Version 4 of the specification
was skipped for a variety of reasons and to avoid confusion among competing proposals for
the standard. ECMA-262 version 5 is becoming more widely supported as of this writing and
will likely (I’m hopeful) be in versions of popular browsers such as Internet Explorer, Firefox,
Opera, and Safari by the time you read this book.

It’s important to note that as a developer who is incorporating JavaScript into web applica-
tions, you need to account for the differences among the versions of ECMA-262, as well as
the many interpretations of JavaScript. Accounting for these differences might mean imple-
menting a script in slightly different ways, and testing, testing, and testing again in various
browsers and on various platforms. On today’s Internet, users have little tolerance for poorly
designed applications that work in only one browser.

Important  It s mperat ve that you test your webs tes n mu t p e browsers— nc ud ng web
app cat ons that you don’t th nk w be used n a browser other than Internet Exp orer Even f
you’re sure that your app cat on w be used on y n Internet Exp orer or that’s a you offic a y
support, you st shou d test n other browsers Th s s mportant not on y for secur ty, but because
t shows that you’re a thorough deve oper who understands today’s Internet techno og es

So Many Standards...
If you think the standards of JavaScript programming are loosely defined, you’re right. Each
browser supports JavaScript slightly differently, making your job—and my job—that much
more difficult. Trying to write about all these nuances is more challenging than writing about
a language that is implemented by a single, specific entity, like a certain version of Microsoft
Visual Basic or Perl. Your job (and mine) is to keep track of these differences and account for
them as necessary, and to try to find common ground among them as much as possible.

The DOM
Another evolving standard relevant to the JavaScript programmer is the Document Object
Model (DOM) standard developed by the World Wide Web Consortium (W3C). The W3C
defines the DOM as “a platform- and language-neutral interface that allows programs and
scripts to dynamically access and update the content, structure, and style of documents.”
What this means for you is that you can work with a specification to which web browsers
adhere to develop a webpage in a dynamic manner. The DOM creates a tree structure for
HTML and Extensible Markup Language (XML) documents and enables scripting of those
objects. JavaScript interacts heavily with the DOM for many important functions.

6	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Like JavaScript, the DOM is interpreted differently by every browser, making life for a JavaScript
programmer more interesting. Internet Explorer 4.0 and previous versions of Netscape included
support for an early DOM, known as Level 0. If you use the Level 0 DOM, you can be pretty
sure that you’ll find support for the DOM in those browsers and in all the browsers that came
after.

Microsoft Internet Explorer 5.0 and 5.5 included some support for Level 1 DOM, whereas
Windows Internet Explorer 6.0 and later versions include some support for the Level 2 DOM.
The latest versions of Firefox, Safari, and Opera support the Level 2 DOM. Safari provides a
representation of the Webkit rendering engine. The Webkit rendering engine is used as the
basis for the browser on devices such as the iPhone and iPad as well as on Android-based
devices.

If there’s one lesson that you should take away while learning about JavaScript standards
and the related DOM standards, it’s that you need to pay particular attention to the code
that you write (no surprise there) and the syntax used to implement that code. If you don’t,
JavaScript can fail miserably and prevent your page from rendering in a given browser.
Chapter 10, “The Document Object Model,” covers the DOM in much greater detail.

Tip  The W3C has an app cat on that can test your web browser for ts support of the var ous
DOM eve s Th s app cat on can be found at http://www.w3.org/2003/02/06-dom-support.html

What’s in a JavaScript Program?
A JavaScript program consists of statements formed from tokens, operators, and identifiers
placed together in an order that is meaningful to a JavaScript interpreter, which is contained
in most web browsers. That sentence is a mouthful, but these statements are really not all
that complicated to anyone who has programmed in just about any other language. A state-
ment might be:

var smallNumber = 4;

In that statement, a token, or reserved word—var—is followed by other tokens, such as an
identifier (smallNumber), an operator (), and a literal (4). (You learn more about these ele-
ments throughout the rest of the book.) The purpose of this statement is to set the variable
named smallNumber equal to the integer 4.

Like any programming language, statements get put together in an order that makes a pro-
gram perform one or more functions. JavaScript defines functions in its own way, which you
read much more about in Chapter 7, “Working with Functions.” JavaScript defines several
built-in functions that you can use in your programs.

	 Chapter 1  JavaScript Is More Than You Might Think	 7

Using the javascript pseudo-protocol and a function

	 1.	 Open a web browser such as Internet Explorer or Firefox.

	 2.	 In the address bar, type the following code and press Enter:

javascript:alert("Hello World");

After you press Enter, you see a dialog box similar to this one:

Congratulations! You just programmed your first (albeit not very useful) bit of JavaScript
code. With just this little bit of code, however, are two important items that you are likely
to use in your JavaScript programming endeavors: the javascript pseudo-protocol identifier
in a browser, and more importantly, the alert function. You examine these items in more de-
tail in later chapters; for now, it suffices that you learned something you’ll use in the future!

JavaScript is also event-driven, meaning that it can respond to certain events or “things that
happen,” such as a mouse click or text change within a form field. Connecting JavaScript to
an event is central to many common uses of JavaScript. In Chapter 11, you see how to respond
to events by using JavaScript.

JavaScript Placement on Your Webpage
If you’re new to HTML, all you need to know about it for now is that it delineates elements in
a webpage using a pair of matching tags enclosed in brackets. The closing tag begins with a
slash character (/). Elements can be nested within each other. JavaScript fits within <script>
tags inside the <head> </head> and/or <body> </body> tags of a webpage, as in this
example:

<html>

<head>

<title>A Web Page Title</title>

<script type="text/javascript">

// JavaScript Goes Here

</script>

</head>

<body>

<script type="text/javascript">

// JavaScript can go here too

www.allitebooks.com

http://www.allitebooks.org

8	 Part I  JavaWhat? The Where, Why, and How of JavaScript

</script>

</body>

</html>

JavaScript placed within the <body> tags executes as it is encountered by the browser, which
is helpful when you need to write to the document by using a JavaScript function, as follows
(the function calls are shown in boldface type):

<head>

<title>A Web Page Title</title>

<script type="text/javascript">

// JavaScript Goes Here

</script>

</head>

<body>

<script type="text/javascript">

document.write("hello");

document.write(" world");

</script>

</body>

</html>

Because of the way browsers load JavaScript, the current best practice for placing JavaScript
in your HTML is to position the <script> tags at the end of the <body> element rather than
in the <head> element. Doing so helps to ensure that the content of the page is loaded if the
browser blocks input while the JavaScript files are being loaded.

When you’re using JavaScript on an Extensible Hypertext Markup Language (XHTML) page,
the less-than sign (<) and the ampersand character (&) are interpreted as XML, which can
cause problems for JavaScript. To get around this, use the following syntax in an XHTML
page:

<script type="text/javascript">

<![CDATA[

 // JavaScript Goes Here

]]>

</script>

Browsers that aren’t XHTML-compliant don’t interpret the CDATA section correctly. You can
work around that problem by placing the CDATA section inside a JavaScript comment—a line
or set of lines prefaced by two forward slashes (//), as shown here:

<script type="text/javascript">

//<![CDATA[

 // JavaScript Goes Here

//]]>

</script>

Yes, the code really is that ugly. However, there’s an easy fix for this: use external JavaScript
files. In Chapter 2, “Developing in JavaScript,” you learn exactly how to accomplish this simple
task.

	 Chapter 1  JavaScript Is More Than You Might Think	 9

Document Types
If you’ve been programming for the web for any length of time, you’re probably famil-
iar with Document Type declarations, or DOCTYPE declarations, as they’re sometimes
called. One of the most important tasks you can do when designing your webpages is
to include an accurate and syntactically correct DOCTYPE declaration section at the top
of the page. The DOCTYPE declaration, frequently abbreviated as DTD, lets the browser
(or other parsing program) know the rules that will be followed when parsing the elements
of the document.

An example of a DOCTYPE declaration for HTML 4.01 looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

If you’re using Microsoft Visual Studio 2005 or a later version to create a web project,
each page is automatically given a DOCTYPE declaration for the XHTML 1.0 standard,
like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR

/xhtml1/DTD/xhtml1-transitional.dtd">

HTML version 5 uses a much simpler DOCTYPE:

<!DOCTYPE html>

If you fail to declare a DOCTYPE, the browser interprets the page using a mode known
as Quirks Mode. Falling back to Quirks Mode means that the document might end
up looking different from your intention, especially when viewed through several
browsers.

If you do declare a DOCTYPE, making sure that the resulting HTML, cascading style
sheet (also known as CSS), and JavaScript also adhere to web standards is important
so that the document can be viewed as intended by the widest possible audience, no
matter which interface or browser is used. HTML and CSS validation is discussed more
in this book in Chapter 15, “JavaScript and CSS.” The W3C makes available an online
validator at http://validator.w3.org/, which you can use to validate any publicly available
webpage.

Tip  Use the Markup Va dator regu ar y unt you’re comfortab e w th cod ng to standards, and
a ways check for va d ty before re eas ng your web project to the pub c

10	 Part I  JavaWhat? The Where, Why, and How of JavaScript

What JavaScript Can Do
JavaScript is largely a complementary language, meaning that it’s uncommon for an entire
application to be written solely in JavaScript without the aid of other languages like HTML
and without presentation in a web browser. Some Adobe products support JavaScript, but
JavaScript is primarily used for web-related programming.

JavaScript is also the J in the acronym AJAX (Asynchronous JavaScript and XML), the darling
of the Web 2.0 phenomenon. Beyond that, though, JavaScript is an everyday language pro-
viding the interactivity expected, maybe even demanded, by today’s web visitors.

JavaScript can perform many tasks on the client side of the application. For example, it can
add the needed interactivity to a website by creating drop-down menus, transforming the
text on a page, adding dynamic elements to a page, and helping with form entry.

Before learning about what JavaScript can do—the focus of this book—you need to under-
stand what JavaScript can’t do, but note that neither discussion is comprehensive.

What JavaScript Can’t Do
Many of the operations JavaScript can’t perform are the result of JavaScript’s usage being
somewhat limited to a web browser environment. This section examines some of the tasks
JavaScript can’t perform and some that JavaScript shouldn’t.

JavaScript Can’t Be Forced on a Client
JavaScript relies on another interface or host program for its functionality. This host program
is usually the client’s web browser, also known as a user agent. Because JavaScript is a client-
side language, it can do only what the client allows it to do.

Some people are still using older browsers that don’t support JavaScript at all. Others won’t
be able to support many of JavaScript’s fancy features because of accessibility programs, text
readers, and other add-on software that assists the browsing experience. And some people
might just choose to disable JavaScript because they can, because of security concerns
(whether perceived or real), or because of the poor reputation JavaScript has as a result of
certain annoyances like pop-up ads.

Regardless of the reason, you need to perform some extra work to ensure that the website
you’re designing is available to those individuals who don’t have JavaScript. I can hear your
protests already: “But this feature is really [insert your own superlative here: cool, sweet, essential,
nice, fantastic].” Regardless of how nice your feature may be, the chances are you will benefit
from better interoperability and more site visitors. In the “Tips for Using JavaScript” section
later in this chapter, I offer some pointers you can follow for using JavaScript appropriately
on your website.

 Chapter 1 JavaScript Is More Than You Might Think 11

It may be helpful to think of this issue another way . When you build a web application that
gets served from Microsoft Internet Information Services (IIS) 6 .0, you can assume that the
application will usually work when served from an IIS 6 .0 server anywhere . Likewise, when
you build an application for Apache 2, you can be pretty sure that it will work on other
Apache 2 installations . The same assumption cannot be made for JavaScript, however . When
you write an application that works fine on your desktop, you can’t guarantee it will work on
somebody else’s . You can’t control how your application will work once it gets sent to the
client .

JavaScript Can’t Guarantee Data Security
Because JavaScript is run wholly on the client, the developer must learn to let go . As you
might expect, letting go of control over your program has serious implications . Once the
program is on the client’s computer, the client can do many nasty things to the data before
sending it back to the server . As with any other web programming, you should never trust
any data coming back from the client . Even if you’ve used JavaScript functions to validate the
contents of forms, you still must validate this input again when it gets to the server . A client
with JavaScript disabled might send back garbage data through a web form . If you believe,
innocently enough, that your client-side JavaScript function has already checked the data to
ensure that it is valid, you may find that invalid data gets back to the server, causing unfore-
seen and possibly dangerous consequences .

Important Remember that JavaScr pt can be d sab ed on your v s tor’s computer You cannot
re y on cute tr cks to be successfu , such as us ng JavaScr pt to d sab e r ght-c cks or to prevent
v s tors from v ew ng the page source, and you shou dn’t use them as secur ty measures

JavaScript Can’t Cross Domains
The JavaScript developer also must be aware of the Same-Origin Policy, which dictates that
scripts running from within one domain do not have access to the properties from another
Internet domain, nor can they affect the scripts and data from another domain . For example,
JavaScript can be used to open a new browser window, but the contents of that window are
somewhat restricted to the calling script . When a page from my website (braingia.org) con-
tains JavaScript, that page can’t access any JavaScript executed from a different domain, such
as microsoft.com . This is the essence of the Same-Origin Policy: JavaScript has to be executed
in or originate from the same location .

The Same-Origin Policy is frequently a restriction to contend with in the context of frames
and AJAX’s XMLHttpRequest object, where multiple JavaScript requests might be sent to
different web servers . With the introduction of Windows Internet Explorer 8, Microsoft in-
troduced support for the XDomainRequest object, which allows limited access to data from

12	 Part I  JavaWhat? The Where, Why, and How of JavaScript

other domains. I discuss some workarounds and more complete approaches to cross-domain
requests in Chapter 19, “A Touch of AJAX.” For now, be aware that JavaScript is limited to
performing tasks in your own browser window.

JavaScript Doesn’t Do Servers
When developing server-side code such as Visual Basic .NET or PHP (PHP is a recursive acro-
nym that stands for PHP: Hypertext Preprocessor), you can be fairly certain that the server
will implement certain functions, such as talking to a database or giving access to modules
necessary for the web application. JavaScript doesn’t have access to server-side variables. For
example, JavaScript cannot access databases that are located on the server. JavaScript code is
limited to what can be done inside the platform on which the script is running, which is typi-
cally the browser.

Another shift you need to make in your thinking, if you’re familiar with server-side program-
ming, is that with JavaScript, you have to test the code on many different clients to know
what a particular client is capable of. When you’re programming server-side, if the server
doesn’t implement a given function, you know it right away because the server-side script
fails when you test it. Naughty administrators aside, the back-end server code implementa-
tion shouldn’t change on a whim, and thus, you more easily know what you can and cannot
code. But you can’t anticipate JavaScript code that is intended to run on clients, because
these clients are completely out of your control.

Tips for Using JavaScript
Several factors go into good web design, and really, who arbitrates what is and is not consid-
ered good anyway? One visitor to a site might call the site an ugly hodgepodge of colors and
text created as if those elements were put in a sack and shaken until they fell out onto the
page; the next visitor might love the design and color scheme.

Because you’re reading this book, I assume that you’re looking for some help with using
JavaScript to enhance your website. I also assume that you want to use this programming
language to help people use your site and to make your site look, feel, and work better.

The design of a website is not and will never be an entirely objective process. The goal of one
website might be informational, which would dictate one design approach, whereas the goal
of another website might be to connect to an application, thus requiring specialized design
and functionality. That said, many popular and seemingly well-designed sites have certain
aspects in common. I try to break down those aspects here, although I ask you to remember
that I didn’t create a comprehensive list and the items reflect one person’s opinions.

A well-designed website does the following:

	 Chapter 1  JavaScript Is More Than You Might Think	 13

n	 Emphasizes function over form  When a user visits a website, he or she usually wants
to obtain information or perform a task. The more difficult your site is to browse, the
more likely the user is to move to another site with better browsing.

Animations and blinking bits come and go, but what remain are sites that have basic
information presented in a professional, easily accessible manner. Using the latest
cool animation software or web technology makes me think of the days of the HTML
<blink> tag. The <blink> tag, for those who never saw it in action, caused the text
within it to disappear and reappear on the screen. Nearly all web developers seem to
hate the <blink> tag and what it does to a webpage. Those same developers would be
wise to keep in mind that today’s exciting feature or special effect on a webpage will
be tomorrow’s <blink>. Successful websites stick to the basics and use these types of
bits only when the content requires them.

Use elements like a site map, alt tags, and simple navigation tools, and don’t require
special software or plug-ins for viewing the site’s main content. Too often, I visit a web-
site, only to be stopped because I need a plug-in or the latest version of this or that
player (which I don’t have) to browse it.

Although site maps, alt tags, and simple navigation may seem quaint, they are indis-
pensable items for accessibility. Text readers and other such technologies that enable
sites to be read aloud or browsed by individuals with disabilities use these assistive
features and frequently have problems with complex JavaScript.

n	 Follows standards  Web standards exist to be followed, so ignore them at your own
peril. Using a correct DOCTYPE declaration and well-formed HTML helps ensure that
your site will display correctly to your visitors. Validation using the W3C’s Markup
Validator tool is highly recommended. If your site is broken, fix it!

n	 Renders correctly in multiple browsers  Even when Internet Explorer had 90 percent
market share, it was never a good idea for programmers to ignore other browsers.
Doing so usually meant that accessibility was also ignored, so people with text read-
ers or other add-ons couldn’t use the site. People using operating systems other than
Microsoft Windows might also be out of luck visiting those sites.

Though Internet Explorer is still the leader among web visitors, there’s a great chance
that at least 3 or 4 of every 10 visitors might be using a different browser. Of course,
this variance depends largely on the subject matter. The more technical the audience,
the more you need to accommodate browsers other than Internet Explorer. Therefore,
if your site appeals to a technical audience, you might need your site to work in Firefox,
Safari, or even Lynx.

Regardless of the website’s subject matter, you never want to turn away visitors because
of their browser choice. Imagine the shopkeeper who turned away 3 of every 10 poten-
tial customers just because of their shoes. That shop wouldn’t be in business too long—
or at the very least, it wouldn’t be as successful.

14	 Part I  JavaWhat? The Where, Why, and How of JavaScript

If you strive to follow web standards, chances are that you’re already doing most of
what you need to do to support multiple browsers. Avoiding the use of proprietary
plug-ins for your website is another way to ensure that your site renders correctly. You
need to look only as far as the Apple iPad to see a device that is popular but whose use
is restricted because it doesn’t natively support Flash or Java. For this reason, creating
sites that follow standards and avoid proprietary plug-ins ensures that your site is view-
able by the widest possible audience.

n	 Uses appropriate technologies at appropriate times  Speaking of plug-ins, a well-
designed website doesn’t overuse or misuse technology. On a video site, playing videos
is appropriate. Likewise, on a music site, playing background music is appropriate. On
other sites, these features might not be so appropriate. If you feel as though your site
needs to play background music, go back to the drawing board and examine why you
want a website in the first place! I still shudder when I think of an attorney’s website
that I once visited. The site started playing the firm’s jingle in the background, without
my intervention. Friends don’t let friends use background music on their sites, unless
your friend is from the band Rush and you are working on the band’s website.

Where JavaScript Fits
Today’s web is still evolving. One of the more popular movements over the past year is known
as unobtrusive scripting. The unobtrusive scripting paradigm is part of the larger movement
called behavioral separation. Behavioral separation calls for structure to be separated from
style, and both of these to be separated from behavior. In this model, HTML or XHTML pro-
vides the structure whereas the CSS provides the style and JavaScript provides the behavior.
The JavaScript is unobtrusive; it doesn’t get in the way. If JavaScript isn’t available in the
browser, the website still works because the visitor can use the website in some other way.

When applied properly, unobtrusive scripting means that JavaScript is not assumed to be
available and that JavaScript will fail in a graceful manner. Graceful degradation helps the
page function without JavaScript or uses proper approaches to make JavaScript available
when it’s required for the site. One such approach is covered in Chapter 11.

I’m a proponent of unobtrusive scripting, because it means that standards are followed and
the resulting site adheres to the four recommendations I shared in the previous section.
Unfortunately, this isn’t always the case. You could separate the HTML, CSS, and JavaScript
and still end up using proprietary tags, but when you program in an unobtrusive manner,
you tend to pay closer attention to detail and care much more about the end result being
compliant with standards.

Throughout this book, I strive to show you not only the basics of JavaScript, but also the best
way to use JavaScript effectively and, as much as possible, unobtrusively.

	 Chapter 1  JavaScript Is More Than You Might Think	 15

A Note on JScript and JavaScript and This Book
This book covers JavaScript as defined by the ECMA standard, in versions all the way
through the latest version 5. In some sections, I highlight information related to JScript
and JScript .NET. For an additional reference on only JScript, I recommend the follow-
ing site:

JScript (Windows Script Technologies) http://msdn.microsoft.com/en-us/library
/hbxc2t98.aspx

Which Browsers Should the Site Support?
Downward compatibility has been an issue for the web developer for a long time. Choosing
which browser versions to support becomes a trade-off between using the latest function-
ality available in the newest browsers and the compatible functionality required for older
browsers. There is no hard and fast rule for which browsers you should support on your web-
site,
so the answer is: it depends.

Your decision depends on what you’d like to do with your site and whether you value visits
by people using older hardware and software more than you value the added functionality
available in later browser versions. Some browsers are just too old to support because they
can’t render CSS correctly, much less JavaScript. A key to supporting multiple browser ver-
sions is to test within them.

Obtaining an MSDN account from Microsoft will give you access to legacy products, includ-
ing older versions of Internet Explorer, so that you can see how your site reacts to a visit
from Internet Explorer 4.0. Additional resources are the Application Compatibility Virtual
PC Images, available for free from Microsoft. These allow you to use a time-limited version of
Microsoft Windows containing browsers such as Internet Explorer 6.0 and Windows Internet
Explorer 7. For more information, see: http://www.microsoft.com/downloads
/details.aspx?FamilyId 21EABB90-958F-4B64-B5F1-73D0A413C8EF&displaylang en.

Many web designs and JavaScript functions don’t require newer versions of web browsers.
As already explained, however, verifying that your site renders correctly in various browsers
is always a good idea. See http://browsers.evolt.org/ for links to archives of many historical ver-
sions of web browsers. Even if you can’t conduct extensive testing in multiple browsers, you
can design the site so that it fails in a graceful manner. You want the site to render appropri-
ately regardless of the browser being used.

16	 Part I  JavaWhat? The Where, Why, and How of JavaScript

What’s New in ECMAScript Version 5?
Several enhancements were made to the ECMAScript 262 standard when version 5 was intro-
duced in 2009. This section looks at some of the enhancements and changes. Most of these
changes are not downward-compatible with older versions of web browsers. However, as new
versions of web browsers are released, the changes introduced with ECMAScript 262 version 5
will begin to show up and become available for use in cross-browser web applications.

New Array Methods
ECMA-262 version 5 introduced several new methods for use with arrays. These include a
foreach method to iterate through the elements of an array, as well as a map method, a
filter method, and other methods that determine the index and reduce the size of an array.
Chapter 8, “Objects in JavaScript,” examines arrays and includes some discussion of these
new methods.

New Controls on Object Properties
Object properties, discussed in Chapter 8, have increased flexibility. ECMA-262 version 5
introduced get and set functions, which are called when a property is retrieved or assigned
a value, respectively. You can control access to properties through the writable, configurable,
and enumerable attributes. For example, a property might have a value that you can configure
to be nonenumerable, meaning that the property wouldn’t be returned on object iteration.
Consider this code:

{

 value: “testvalue",

 enumerable: false

}

The value won’t be returned if passed through a for loop. Don’t be discouraged if this syntax
doesn’t quite make sense yet. The chapters that follow examine the creation and iteration of
objects in detail.

New JSON Object
JavaScript Object Notation (JSON) is an approach to exchanging data, frequently between
a client application such as a web browser that is running JavaScript, and a server. JSON is
much less cumbersome than XML for data exchange, especially within JavaScript applications,
and is therefore often used as an alternative data format for AJAX applications.

ECMA-262 version 5 added a native JSON object to the language specification. This book
discusses JSON primarily in Part IV, "AJAX and Server-Side Integration."

	 Chapter 1  JavaScript Is More Than You Might Think	 17

Changes to the Date Object
ECMA-262 version 5 added new methods to the Date object that parse and produce dates in
ISO format. The toISOString() method generates output in ISO-8601 format, as shown here:

2011-03-12T18:51:50.000Z

A New Strict Mode
ECMA-262 version 5 introduces a new mode for code execution, called strict mode. In strict
mode, the JavaScript engine uses a more rigid set of syntax checks that can help catch issues
within the code, such as a coding error or an undeclared variable.

Browser Support
ECMA-262 version 5 and introduces numerous changes and enhancements, affecting how
developers program with JavaScript. Unfortunately, these changes won’t be supported in leg-
acy browsers and—in the short term—will have limited support in Internet Explorer. You can
find a compatibility table containing many popular browsers and their support for some of
the features included in ECMA-262 version 5 at http://kangax.github.com/es5-compat-table/.

To work around the lack of support for ECMA-262 version 5 in legacy browsers, you need
either to write code that takes into them into account, or use a JavaScript library such as jQuery.
This book covers various JavaScript libraries in Chapter 21, “An Introduction to JavaScript
Libraries and Frameworks.”

Exercises
	 1.	 True or False: JavaScript is defined by a standards body and is supported on all web

browsers.

	 2.	 True or False: When a visitor whose machine has JavaScript disabled comes to your
website, you should block her or his access to the site because there’s no valid reason
to have JavaScript disabled.

	 3.	 Create a JavaScript definition block that would typically appear on an HTML page
within the <head> or <body> block.

	 4.	 True or False: It’s important to declare the version of JavaScript being used within the
DOCTYPE definition block.

	 5.	 True or False: JavaScript can appear in both the <head> block and within the <body>
text of an HTML page.

www.allitebooks.com

http://www.allitebooks.org

	 	 19

Chapter 2

Developing in JavaScript
After reading this chapter, you’ll be able to:

n	 Understand the options available for developing in JavaScript.

n	 Configure your computer for JavaScript development.

n	 Use Microsoft Visual Studio 2010 to create and deploy a JavaScript application.

n	 Use Eclipse to create and deploy a JavaScript application.

n	 Use Notepad (or another editor) to create a JavaScript application.

n	 Understand options for debugging JavaScript.

JavaScript Development Options
Because JavaScript isn’t a compiled language, you don’t need any special tools or develop-
ment environments to write and deploy JavaScript applications. Likewise, you don’t need
special server software to run the applications. Therefore, your options for creating JavaScript
programs are virtually limitless.

You can write JavaScript code in any text editor; in whatever program you use to write your
Hypertext Markup Language (HTML) and cascading style sheet (CSS) files; or in powerful
integrated development environments (IDEs) such as Visual Studio. You might even use all
three approaches. You might initially develop a web application with Visual Studio but then
find it convenient to use a simple text editor such as Notepad to touch up a bit of JavaScript.
Ultimately, use whatever tool you’re most comfortable with.

This book primarily discusses how to develop in JavaScript using Visual Studio, but at times I
may just recommend (and show) the use of a text editor, such as Notepad or Vim (which you
can obtain here: http://www.vim.org). At other times, you’ll be able to type JavaScript code
into the Location or address bar of your web browser by using the javascript: pseudo-protocol
identifier, as you saw in Chapter 1, “JavaScript Is More Than You Might Think.”

After you’ve been developing JavaScript for a while, you’ll notice that you do some of the
same things on every webpage. In such cases, you can simply copy and paste the repeated
code into the webpage that you’re developing. Better still, you can create an external file
containing common functions that you can then use throughout the sites you develop.
Chapter 10, “The Document Object Model” has more information about functions, although
you’ll see functions used throughout the first 10 chapters.

20 Part I JavaWhat? The Where, Why, and How of JavaScript

Configuring	Your	Environment
This section looks at JavaScript development using a few different tools . You should be able
to use whatever tool you feel most comfortable with for your JavaScript and website devel-
opment, so don’t consider this to be an exhaustive or prejudicial list of tools .

One useful JavaScript development tool is Visual Studio 2010 . A simple web server—the
ASP .NET Development Server—comes with the installation of Visual Studio 2010, which
makes deploying and testing the applications in this book a little easier . This does not mean,
however, that you should go out and purchase Visual Studio 2010 just for JavaScript devel-
opment . If you choose to use Eclipse, the second tool discussed in this chapter, you can still
test the JavaScript code that you write . Likewise, you can test the JavaScript code even if you
don’t use an IDE at all .

Another option for web development is Microsoft Visual Web Developer 2010 Express . This
tool, available at http://www.microsoft.com/express/Web/, provides the Visual Studio interface
as well with several tools and add-ons in a free package made just for web development .

You don’t absolutely need a web server for most JavaScript development . The notable ex-
ception to this is when you’re developing using Asynchronous JavaScript and XML (AJAX) .
AJAX cannot use the file:// protocol, which in addition to the Same-Origin Policy covered in
Chapter 1, prevents AJAX from working unless you use a web server . The bottom line is: if
AJAX development is in your future, you need a web server .

AJAX notwithstanding, development does become a little easier if you have a web server
handy . Any web server will work, because all you really want to do is serve HTML and
JavaScript, and maybe a little CSS for fun . I’ve had great luck with Apache, available from
http://httpd.apache.org . Apache runs on many platforms, including on the Microsoft
Windows platform, and continues to be the most popular web server on the Internet .

Configuring Apache or any web server is beyond the scope of this book, and again, having a web
server is not required . The Apache website has some good tutorials for installing Apache on
Windows, and if you’re using just about any version of Linux, Apache will likely be installed
already, or is easily installed . Many of the examples used in the book will work whether you’re
using a web server or just viewing the example locally . However, a web server is necessary to
take advantage of examples that use AJAX .

Writing	JavaScript	with	Visual	Studio	2010
Visual Studio 2010 lets developers quickly deploy web applications with JavaScript enhance-
ments . When you first start Visual Studio 2010, you see options to select a certain style for
your Visual Studio environment . The various styles result in differing Visual Studio 2010
views, each of which is designed to be most helpful for a particular development purpose
or language . You can see an example of this dialog box in Figure 2-1 .

	 Chapter 2  Developing in JavaScript	 21

Figure 2-1  Choos ng the deve opment env ronment sty e.

If you’re using the General Development Settings collection, your Visual Studio environment
is similar to that shown in Figure 2-2.

Figure 2-2  The Genera Deve opment Sett ngs co ect on prov des an env ronment common to many
programm ng tasks.

22	 Part I  JavaWhat? The Where, Why, and How of JavaScript

You can change Visual Studio 2010 so that it uses the Web Development Settings collection
by selecting Import And Export Settings from the Tools menu, which opens the Import And
Export Settings Wizard. Select Reset All Settings, as shown in Figure 2-3, and then click Next.

Note  Chang ng the deve opment env ronment sett ngs sn’t requ red, but th s book assumes
that you se ected Web Deve opment Sett ngs n V sua Stud o 2010

Figure 2-3  Prepar ng to change the sett ngs n V sua Stud o 2010 to Web Deve opment Sett ngs.

The Save Current Settings page of the wizard, shown in Figure 2-4, appears. If you have set-
tings that you want to save, select Yes, Save My Current Settings. Otherwise, select No, Just
Reset Settings, Overwriting My Current Settings. Click Next to continue.

The Choose A Default Collection Of Settings page of the wizard, shown in Figure 2-5, appears.
Select Web Development settings, and then click Finish.

After a short time, you receive a Reset Complete message. Click Close to reset your environ-
ment to the Web Development settings.

	 Chapter 2  Developing in JavaScript	 23

With the Web Development settings, you have quick access to common tasks related to web-
site development, not only with ASP.NET, but also with JavaScript, HTML, and CSS—the core
languages of the web. For more information about settings in Visual Studio 2010, see http://
msdn.microsoft.com/en-us/library/zbhkx167.aspx.

FIGURE 2-4  By sav ng the current sett ngs, you can keep any custom configurat on that you may have
spec fied for your env ronment.

Figure 2-5  Se ect ng Web Deve opment Sett ngs n V sua Stud o 2010.

24	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Your First Web (and JavaScript) Project with
Visual Studio 2010
Now you can create a web project and write a little JavaScript. If you’re not using Visual
Studio, skip ahead in this chapter to the section “Writing JavaScript with Eclipse” or the
section “Writing JavaScript Without an IDE” for information about working in other develop-
ment environments. I won’t forget about you, I promise!

Note  You can down oad the code found n these examp es and throughout the book See th s
book’s Introduct on for d rect ons about down oad ng the compan on content

Creating a web project with JavaScript in Visual Studio 2010

	 1.	 Within Visual Studio, using the Web Development Settings, select New Web Site from
the File menu. This opens the New Web Site dialog box.

	 2.	 Select ASP.NET Web Site (the language selection—Visual Basic or Visual C#—is not
important), as shown here. Change the name to Chapter2, with a path appropriate to
your configuration. When the information is correct, click OK. Visual Studio creates a
new project.

	 Chapter 2  Developing in JavaScript	 25

	 3.	 Visual Studio 2010 creates a new Default.aspx file for you and opens it in the editor.
Close this Default.aspx file and create a new file by right-clicking the location within
Solution Explorer (Solution Explorer is a pane usually found in the upper-right corner of
the Visual Studio environment) and then selecting Add New Item. (You may also select
New File from on the File menu.) The Add New Item dialog box opens, as shown in the
following screen. Select HTML Page, change the name to myfirstpage.htm, and then
click Add. Visual Studio opens the new file and automatically enters the DOCTYPE and
other starting pieces of an HTML page for you.

	 4.	 In the myfirstpage.htm page, place your cursor between the <title> and </title> tags
and change the title to My First Page. Your environment should look like the one
shown here.

26	 Part I  JavaWhat? The Where, Why, and How of JavaScript

	 5.	 Between the <head> tag, after the closing </title> tag, add the following code:
<script type="text/javascript">

 function yetAnotherAlert(textToAlert) {

 alert(textToAlert);

 }

 yetAnotherAlert("This is Chapter 2");

</script>

	 6.	 Select Save All from the File menu. The finished script and page should resemble the
screen here.

	 Chapter 2  Developing in JavaScript	 27

To view the page, select Start Without Debugging from the Debug menu. This starts the ASP
.NET Development Server (if it’s not already started) and takes you to the page in your default
browser. You should receive a page with an alert, similar to Figure 2-6. Click OK, and then
close the browser.

The script works as follows. First, the script tag is opened and declared to be JavaScript, as
shown by this code:

<script type="text/javascript">

Figure 2-6  Runn ng a JavaScr pt program courtesy of the ASP.NET Deve opment Server.

www.allitebooks.com

http://www.allitebooks.org

28	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Note  You can dec are your scr pt s JavaScr pt n other ways, but the approach you see here s
the most w de y supported

Next, the script declares a function, yetAnotherAlert, which accepts one argument, textToAlert,
as follows:

function yetAnotherAlert(textToAlert) {

The function has one task: to pop an alert into the browser window with whatever text has
been supplied as the function argument, which the next line accomplishes:

 alert(textToAlert);

The end of the function is delineated by a closing brace (}). The next line of the script calls
the function you just declared with a quoted string argument:

yetAnotherAlert("This is Chapter 2");

With this script, you’re ready to develop JavaScript in Visual Studio 2010. But before you cel-
ebrate, consider sticking with me and learning about how to use external files to store your
JavaScript code.

Using External JavaScript Files with Visual Studio 2010
JavaScript doesn’t need to be contained wholly within the HTML files of your website.
Instead, you can take advantage of the src attribute of the <script> tag. Attributes within
tags help to further define, or provide more specifics, about the element. For example, a
<form> element may have an action attribute that defines what action should happen when
the form is submitted. Using the src attribute of the <script> tag, you can define the location
of an external JavaScript file. The web browser then reads the JavaScript contained within the
specified file when it loads the webpage. Using external JavaScript files means that you can
maintain common JavaScript code in one place, as opposed to maintaining it within each
individual page—which will save you a lot of work.

At this point, you should have a working webpage (built using Visual Studio) that displays
an alert, thanks to some nifty JavaScript. The webpage you developed in the previous sec-
tion contains the JavaScript code within the <head> tag portion of the page. In this section,
I show you how to place JavaScript into an external file and then reference that code from
within your HTML page.

	 Chapter 2  Developing in JavaScript	 29

Creating an external file for JavaScript using Visual Studio 2010

	 1.	 If the myfirstpage.htm file isn’t open, open it by going into Visual Studio and selecting
Open Project from the File menu. Select the project in which you saved the myfirstpage
.htm file (available in the companion content) and open the file. Your environment
should look something like the environment in step 6 in the previous example.

	 2.	 Create a new file to hold the JavaScript code by selecting New File from the File menu.
The Add New Item dialog box appears. In the list of templates, select JScript File and
change the name to myscript.js, as shown in the following screen, and then click Add.
Note that your list may differ depending on your Visual Studio installation. You can find
this source file, titled myscript.js, in the Chapter 2 sample code.

	 3.	 A new empty JavaScript (JScript) file opens and is added to your web project. You
should see a tab for the new myscript.js file and another for the myfirstpage.htm file,
as shown in the next screen. If the myfirstpage.htm file isn’t opened in a tab, open it
by double-clicking it in the Solution Explorer.

30 Part I JavaWhat? The Where, Why, and How of JavaScript

Note The co oqu a extens on for JavaScr pt and JScr pt s js, but you are not requ red
to use t I chose to use a JScr pt type of fi e n the preced ng step 2 because th s fi e type
automat ca y se ects the correct fi e extens on You cou d just as eas y have se ected Text
Document from the Add New Item d a og box, and then named the fi e w th a js extens on

	 4.	 Click the myfirstpage .htm tab to make it active, and highlight the JavaScript code . Be
sure to leave the actual JavaScript tags <script> and </script> intact and do not high-
light them . (You don’t need these tags right now, but you’ll revisit this topic shortly .)
You can also find this page, titled myfirstpage .htm, in the Chapter 2 sample code in the
companion content .

	 5.	 Copy the highlighted code to the Clipboard by selecting Copy from the Edit menu .

	 6.	 Click the myscript .js tab, move the cursor below the first line, and select Paste from the
Edit menu . The copied code is pasted at the cursor’s location . Change the text of the
yetAnotherAlert function call parameter so that it reads as follows: “This is the Second
Example .” The code is shown here:

function yetAnotherAlert(textToAlert) {

 alert(textToAlert);

}

yetAnotherAlert("This is the Second Example.");

	 Chapter 2  Developing in JavaScript	 31

	 7.	 Save the myscript.js file by selecting Save from the File menu. The file should look like
this:

	 8.	 With the JavaScript code contained in its own file named myscript.js (you did save
that file, right?), you can just delete the code from the myfirstpage.htm file, leaving
the script tags, as follows:

<script type="text/javascript">

</script>

	 9.	 Now add the src attribute to the opening <script> tag:

 <script type="text/javascript" src="myscript.js">

	 10.	 If desired, you can make the code look prettier by deleting the extra carriage return
and placing the code on one line, like so:

32	 Part I  JavaWhat? The Where, Why, and How of JavaScript

<script type="text/javascript" src="myscript.js"></script>

The entire contents of myfirstpage.htm should now be the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>My First Page</title>

 <script type="text/javascript" src="myscript.js"></script>

</head>

<body>

</body>

</html>

	 11.	 Save myfirstpage.htm.

	 12.	 View the page in a web browser by selecting Start Without Debugging from the Debug
menu. The page will be served through the web server, and your browser window, if
not already open, will open to the page. The result should be an alert with the text
“This is the Second Example.” An example of this is shown here:

	 13.	 Click OK to close the alert dialog box. Now view the source to see the difference. In
your web browser, select Source from the View menu. Note that the <script> tag now
contains a reference to the external JavaScript file.

You’ve developed JavaScript with Visual Studio 2010. From here, you can skip ahead to the
section on debugging or keep reading to learn about JavaScript development using other
tools.

	 Chapter 2  Developing in JavaScript	 33

Writing JavaScript with Eclipse
Another popular IDE among web developers (and developers who use other languages) is
Eclipse. Developers using Eclipse can install different frameworks to assist in specific de-
velopment tasks. For example, web developers might use the Web Tools Platform or PHP
(PHP Hypertext Preprocessor) development tools to create an environment that simplifies
many common tasks for them. Discussion of the many potential Eclipse projects is beyond
the scope of this book, but I discuss how to use the base Eclipse installation to develop
JavaScript.

If you want to develop JavaScript with Eclipse, take a moment to download the software,
and if necessary, the Java runtime environment. Details and download locations are available
from the Eclipse website (http://www.eclipse.org). In this section of the book, I assume that
you’ve never used Eclipse and are learning it for the first time. However, this section does not
include a tutorial on installing Eclipse. I recommend you read the documentation included
with Eclipse and available on the Eclipse website for the most up-to-date information.

Your First Web (and JavaScript) Project with Eclipse
It’s now time to create a webpage with JavaScript using Eclipse. If you’re not using Eclipse,
this section isn’t for you, and you can skip it. Later in the chapter, I show you how to develop
without using any IDE, as well as some tips for debugging JavaScript.

Note  Th s sect on rev ews how to the use the Ec pse IDE for JavaScr pt web deve opers Your
Ec pse env ronment m ght ook a tt e d fferent from the screenshots nc uded n th s sect on
The first t me you open Ec pse, you are asked to se ect a workspace Choose the defau t

Creating a web project with JavaScript in Eclipse

	 1.	 Create a new project by selecting New, and then JavaScript, from the File menu. The
New JavaScript Project dialog box appears. Type Chapter2 in the Project name box
and click Finish.

34	 Part I  JavaWhat? The Where, Why, and How of JavaScript

	 2.	 The Chapter2 folder opens in Project Explorer without files listed, as depicted here.

	 Chapter 2  Developing in JavaScript	 35

	 3.	 Right-click the Chapter2 folder, click New, and then click File. The New File dialog box
opens. In the File Name text box, type myfirstpage.htm, as shown in the next screen,
and click Finish. You can find this file, titled eclipse myfirstpage.htm, in the Chapter 2
sample code. If you’d like to use this file, rename it to myfirstpage.htm for the remain-
der of this exercise.

	 4.	 After you click Finish, Eclipse opens the page in its own web browser. However, you
want to edit the page, not view it, so right-click myfirstpage.htm in Project Explorer
and click Open. The page opens in an editor directly in Eclipse, as shown here:

36	 Part I  JavaWhat? The Where, Why, and How of JavaScript

	 5.	 At last it’s time to write some code! In the editor, type this code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>My First Page</title>

 <script type="text/javascript">

function yetAnotherAlert(textToAlert) {

 alert(textToAlert);

}

yetAnotherAlert("This is Chapter 2");

</script>

</head>

<body>

</body>

</html>

Note  For the purposes of th s examp e, you can sk p the DOCTYPE dec arat on f you
don’t want to type t, and just beg n w th an <html> tag on top For rea -wor d deve opment
outs de the context of th s book, you wou d defin te y want to have a DOCTYPE dec ared
See Chapter 1 for more nformat on about why th s s mportant

	 6.	 Select Save from the File menu. The finished script and page should resemble the one
shown here:

	 Chapter 2  Developing in JavaScript	 37

To view the page, right-click the file in Project Explorer, select Open With, and then click Web
Browser. You will see the file locally through the Eclipse browser, and you should receive a
page with an alert, similar to the one shown in Figure 2-7.

Alternatively, you can view the file through a different web browser on your computer, such
as your system’s default web browser. To do this, browse to the file (for example, my copy of
the file is located in the C:\Users\Steve\workspace\Chapter2\folder), and then double-click
the file.

Note  If you’re us ng W ndows Internet Exp orer, you m ght rece ve an a ert about v ew ng
b ocked content, depend ng on the secur ty eve set for your browser The support art c e at
http://windows.microsoft.com/en-US/windows7/Internet-Explorer-Information-bar-frequently-
asked-questions has more nformat on about th s feature and how to d sab e t

Figure 2-7  V ew ng the fi e as deve oped n Ec pse.

In this example, you created a basic webpage with some embedded JavaScript. The JavaScript
portion of the page contains just a few elements. First, the script tag is opened and declared
to be JavaScript, as shown in this code:

<script type="text/javascript">

Note  You can dec are that your scr pt s JavaScr pt n other ways, but the approach you see here
s the most w de y supported

Next, the script declares a function, yetAnotherAlert, which accepts one argument,
textToAlert:

www.allitebooks.com

http://www.allitebooks.org

38	 Part I  JavaWhat? The Where, Why, and How of JavaScript

function yetAnotherAlert(textToAlert) {

The function has one task: to pop up an alert into the browser window with whatever text
has been supplied as the function argument, which the next line accomplishes:

 alert(textToAlert);

The function is delineated by a closing brace:

}

The script then calls the function you just declared with a quoted string argument, as follows:

yetAnotherAlert("This is Chapter 2");

In this brief example, you saw how to code JavaScript using Eclipse. The next section shows
how to place the JavaScript in an external file, a common approach to using JavaScript.

Using External JavaScript Files with Eclipse
By the time you read this, you should have a working webpage (created with Eclipse) that
displays an alert. The webpage you developed in the previous section contains the JavaScript
code within the <head> tag portion of the page. In this section, I describe how to place
JavaScript into an external file and then refer to that code from within your HTML page.

Creating an external file for JavaScript using Eclipse

	 1.	 If the myfirstpage.htm code isn’t already open in Eclipse, open it. (You can find this file
in the companion content.) Select the project in which you saved the myfirstpage.htm
file, and open the file itself in an editor by right-clicking the file, selecting Open With,
and then clicking Text Editor.

	 2.	 Create a new file to hold the JavaScript code by selecting New and then File from the
File menu. The New File dialog box opens. Type myscript.js in the File Name text box,
as shown here, and click Finish.

	 Chapter 2  Developing in JavaScript	 39

	 3.	 Eclipse adds a new empty JavaScript file to your project. If this file doesn’t open auto-
matically, right-click the myscript.js file in Project Explorer, select Open With, and then
click Text Editor. You should now see tabs for both the new myscript.js file and the
myfirstpage.htm file. You might also see the My First Page webpage.

Note  A though you are not requ red to use the co oqu a extens on for JavaScr pt, wh ch s
.js, do ng so m ght he p you more eas y dent fy fi es ater

	 4.	 Click the myfirstpage.htm tab to make it active, and highlight the JavaScript code you
wrote earlier. Be sure to leave the actual JavaScript tags <script> and </script> intact
and do not highlight them. (You don’t need those right now, but you’ll revisit the topic
shortly.)

	 5.	 Copy the highlighted code to the Clipboard by selecting Copy from the Edit menu.

	 6.	 Click the myscript.js tab, and paste the code by selecting Paste from the Edit menu.
Change the text of the function call to “This is the Second Example.” The code looks like
this:

40	 Part I  JavaWhat? The Where, Why, and How of JavaScript

function yetAnotherAlert(textToAlert) {

 alert(textToAlert);

}

yetAnotherAlert("This is the Second Example.");

	 7.	 Save the myscript.js file by selecting Save from the File menu. The file should look simi-
lar to the screen shown here:

	 8.	 With the JavaScript code contained in its own file named myscript.js (you did save it,
right?), you can safely delete the code from the myfirstpage.htm file. Just delete the
code, leaving the script tags, like so:

<script type="text/javascript">

</script>

	 9.	 Add the src attribute to the opening <script> tag:

 <script type="text/javascript" src="myscript.js">

	 10.	 If desired, to make the code look prettier, delete the extra carriage return to place the
code on one line, like this:

<script type="text/javascript" src="myscript.js"></script>

The entire contents of myfirstpage.htm should now be the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>My First Page</title>

 <script type="text/javascript" src="myscript.js"></script>

</head>

<body>

</body>

</html>

	 Chapter 2  Developing in JavaScript	 41

	 11.	 Save myfirstpage.htm.

	 12.	 View the page in a web browser by right-clicking myfirstpage.htm in Project Explorer,
pointing to Open With, and then clicking Web Browser. The page is served locally, and
a browser window opens to the page. The result should be an alert with the text “This is
the Second Example.” It looks like this:

This basic primer about JavaScript development with Eclipse is complete. There’s much more
to it, though, and I recommend visiting the Eclipse website for more information about devel-
opment with the Eclipse platform.

Writing JavaScript Without an IDE
You can just as easily forgo the IDEs in favor of a simpler approach to JavaScript develop-
ment. Any text editor like Notepad or Vim will work fine for JavaScript development. I
recommend against using word processors such as Microsoft Office Word for JavaScript
development though, because they can leave artifacts within the resulting file, which in
turn can wreak havoc on the resulting website.

Your First Web (and JavaScript) Project with Notepad
This section shows an example of JavaScript development with Notepad.

Creating a webpage with JavaScript in Notepad

	 1.	 In Microsoft Windows 7 (and Microsoft Windows XP and Microsoft Windows Vista),
you can open Notepad by clicking the Start button and then clicking All Programs,
Accessories, and then Notepad. In the document, enter the following code:

42	 Part I  JavaWhat? The Where, Why, and How of JavaScript

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>My First Page</title>

 <script type="text/javascript">

function yetAnotherAlert(textToAlert) {

 alert(textToAlert);

}

yetAnotherAlert("This is Chapter 2");

</script>

</head>

<body>

</body>

</html>

Note  For the purposes of th s examp e, you cou d sk p the DOCTYPE dec arat on f you
don’t want to type t, and just beg n w th an <html> tag on top For rea -wor d deve opment
outs de the context of th s book, you wou d defin te y want to have a DOCTYPE dec ared
See Chapter 1 for more nformat on about why th s s mportant

	 2.	 Select Save from the File menu. You are presented with a Save As dialog box. By default,
unfortunately, Notepad adds a .txt extension to the document name unless you use
double quotation marks. Therefore, be sure to place double quotation marks around
the filename—for example, “myfirstpage.htm”. If you omit the quotation marks, Notepad
will add the .txt extension and save the file as “myfirstpage.htm.txt” instead. The follow-
ing image shows an example of using double quotation marks around the filename. Be
sure to note where you save this document.

 Chapter 2 Developing in JavaScript 43

	 3.	 To view the page, use the web browser of your choice to browse to the location where
you saved the file . (If, as in the screen shown in the previous step, you saved the file to
the Desktop, browse there .) The next image shows the file rendered in Firefox .

Note If you are us ng Internet Exp orer, you m ght rece ve an a ert about v ew ng b ocked
content, depend ng on the secur ty eve set for your browser The support art c e at http:
//windows.microsoft.com/en-US/windows7/Internet-Explorer-Information-bar-frequently-
asked-questions has more nformat on about th s feature and how to d sab e t

44	 Part I  JavaWhat? The Where, Why, and How of JavaScript

So far in this example, you created a basic webpage with some embedded JavaScript. The
JavaScript portion of the page contains just a few elements. First, the script tag is opened
and declared to be JavaScript, as shown by this code:

<script type="text/javascript">

Note  You can dec are that your scr pt s JavaScr pt n other ways, but the approach you see here
s the most w de y supported

Next, the script declares a function, yetAnotherAlert, which accepts one argument, textToAlert:

function yetAnotherAlert(textToAlert) {

The function has one task: to pop up an alert in the browser window with whatever text has
been supplied as the function argument, which the next line accomplishes:

 alert(textToAlert);

The function is delineated by a closing brace (}). The script then calls the function you just
declared with a quoted string argument:

yetAnotherAlert("This is Chapter 2");

In this brief example, you’ve seen how to code JavaScript without an IDE. The next section
shows how to place the JavaScript in an external file, a quite common approach to JavaScript
usage.

Using External JavaScript Files Without an IDE
By the time you read this, you should have a working webpage (created in Notepad) that dis-
plays an alert() dialog box. The webpage you developed in the previous section contains the
JavaScript code within the <head> tag portion of the page. This section shows how to place
JavaScript into an external file and then refer to that code from within your HTML page.

Creating an external file for JavaScript using Notepad

	 1.	 If the myfirstpage.htm code isn’t open, open it. If you’re using Notepad, you might
need to right-click the file and select Open With, and then select Notepad.

	 2.	 Highlight the JavaScript code. Be sure to leave the actual JavaScript tags <script> and
</script> intact and do not highlight them. Copy the code to the Clipboard by high-
lighting it and selecting Copy from the Edit menu.

	 3.	 Create a new file to hold the JavaScript code by selecting New from the File menu. The
new file opens. Paste the JavaScript code into the file by selecting Paste from the Edit

	 Chapter 2  Developing in JavaScript	 45

menu. Change the text of the parameter to the function call so that it reads “This is the
Second Example.” This code is shown here:

function yetAnotherAlert(textToAlert) {

 alert(textToAlert);

}

yetAnotherAlert("This is the Second Example.");

	 4.	 Save the file by selecting Save from the File menu. Type myscript.js in the File Name
text box, and be sure to include double quotation marks again because the extension
needs to be .js and not .txt.

Note  The co oqu a extens on for JavaScr pt fi es s js, but you don’t have to use t
However, do ng so m ght he p you dent fy fi es more eas y ater

	 5.	 With the JavaScript code contained in its own file named myscript.js (you did save it,
right?), you can safely delete the code from the myfirstpage.htm file. Open myfirst-
page.htm again in Notepad. In myfirstpage.htm, just delete the JavaScript code that
you pasted earlier, leaving the script tags:

<script type="text/javascript">

</script>

Tip  Be sure you’re v ew ng A F es and not just Text Documents when try ng to open fi es
that don’t have a txt extens on, such as the htm or js fi es that you just created To do th s,
se ect A F es from the F es Of Type drop-down st n the Open d a og box

	 6.	 Add the src attribute to the opening <script> tag, as follows:

<script type="text/javascript" src="myscript.js">

	 7.	 If desired, you can make the code look prettier by deleting the extra carriage return
and placing the code on one line, like this:

<script type="text/javascript" src="myscript.js"></script>

The entire contents of myfirstpage.htm are now the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>My First Page</title>

 <script type="text/javascript" src="myscript.js"></script>

</head>

<body>

</body>

</html>

46	 Part I  JavaWhat? The Where, Why, and How of JavaScript

	 8.	 Save myfirstpage.htm.

	 9.	 View the page in a web browser. The result, shown in the following screen, should be
an alert with the text “This is the Second Example.”

This primer on JavaScript development without an IDE is complete. Although this example
used Notepad, several other editors might be more suited to basic development, including
the aforementioned Vim, and Textpad from Helio Software Solutions, both of which are more
powerful than Notepad.

Debugging JavaScript
Debugging JavaScript can be an alarming experience, especially in more complex applica-
tions. Some tools, such as Venkman (http://www.mozilla.org/projects/venkman/), can assist
in JavaScript debugging, but the primary tool for debugging JavaScript is the web browser.
Major web browsers include some JavaScript debugging capabilities. Among the programs
you should consider using is Firebug, a notable add-on to Firefox. Firebug is available at
http://www.getfirebug.com/.

I find Firebug to be virtually indispensable for web development, especially web develop-
ment with JavaScript and AJAX. This software allows you to inspect all the elements of a
webpage, and to see the results of AJAX calls as well as CSS, all in real time, which makes
debugging much easier. Figure 2-8 shows an example of Firebug in action on my website’s
home page.

	 Chapter 2  Developing in JavaScript	 47

Figure 2-8  F rebug s an mportant too n the web deve oper s too k t.

I recommend using Firebug for developing JavaScript and debugging it. When debugging
JavaScript, I find that the alert() function is quite useful. A few well-placed alert() functions
can show you the values contained within variables and what your script is currently doing.
Of course, because alert() causes a dialog box to open, if you place an alert() within a loop
and then mistakenly cause that loop to repeat endlessly without exiting, you’ll find that you
need to exit the web browser uncleanly, maybe using Task Manager.

Exercises
	 1.	 Create a new webpage and call it mysecondpage.htm. Create a script in JavaScript

within the <body> portion of the page and have that script display an alert() dialog box
with your name. Try this script in at least two different web browsers.

	 2.	 Edit the webpage that you created in Exercise 1 and create a function within the
<head> portion of the page and move the alert() dialog box that you currently have
in the <body> script into your new function. Call the new function from the existing
<body> script.

	 3.	 Move the function created in Exercise 2 to an external JavaScript file, and link or call
this file from within your webpage.

www.allitebooks.com

http://www.allitebooks.org

	 	 49

Chapter 3

JavaScript Syntax and Statements
After reading this chapter, you’ll be able to:

n	 Understand the basic rules of using the JavaScript programming language.

n	 Place JavaScript correctly within a webpage.

n	 Recognize a JavaScript statement.

n	 Recognize a reserved word in JavaScript.

A Bit of Housekeeping
The rest of the book looks more closely at specific aspects of JavaScript and how they relate
to specific tasks. However, you must walk before you can run, so before examining JavaScript
in more depth, you should learn some of its lexical structure—that is, the rules of the language,
also known as syntax rules.

Case Sensitivity
JavaScript is case sensitive. You must be aware of this when naming variables and using the
language keywords. A variable named remote is not the same as a variable named Remote or
one named REMOTE. Similarly, the loop control keyword while is perfectly valid, but naming
it WHILE or While will result in an error.

Keywords are lowercase, but variables can be any mix of case that you’d like. As long you are
consistent with the case, you can create any combination you want. For example, all these
examples are perfectly legal variable names in JavaScript:

buttonOne

txt1

a

C

Tip  You’ typ ca y see JavaScr pt coded n owercase except where necessary—for examp e, w th
funct on ca s such as isNaN(), wh ch determ nes whether a va ue s Not a Number (the NaN n
the funct on name) You earn about th s n Chapter 4, “Work ng w th Var ab es and Data Types ”

50	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Chapter 4 provides much more information about variables and their naming conventions.
For now, remember that you must pay attention to the case when you write a variable name
in JavaScript.

White Space
For the most part, JavaScript ignores white space, which is the space between statements
in JavaScript. You can use spaces, indenting, or whatever coding standards you prefer to
make the JavaScript more readable. There are some exceptions to this rule, however. Some
keywords, such as return, can be misinterpreted by the JavaScript interpreter when they’re
included on a line by themselves. You’ll see an example of this problem a little later in this
chapter.

Making programs more readable is a good enough reason to include white space. Consider
the following code sample. It includes minimal white space and indenting.

function cubeme(incomingNum) {

if (incomingNum == 1) {

return "What are you doing?";

} else {

return Math.pow(incomingNum,3);

}

}

var theNum = 2;

var finalNum = cubeme(theNum);

if (isNaN(finalNum)) {

alert("You should know that 1 to any power is 1.");

} else {

alert("When cubed, " + theNum + " is " + finalNum);

}

Now consider the same code with indenting. (You can find this code, named example1.txt, in
the Chapter 3 sample code in the companion content.)

function cubeme(incomingNum) {

 if (incomingNum == 1) {

 return "What are you doing?";

 } else {

 return Math.pow(incomingNum,3);

 }

}

var theNum = 2;

var finalNum = cubeme(theNum);

if (isNaN(finalNum)) {

 alert("You should know that 1 to any power is 1.");

} else {

 alert("When cubed, " + theNum + " is " + finalNum);

}

	 Chapter 3  JavaScript Syntax and Statements	 51

The second code sample performs just like the first, but it’s easier to read and follow—at
least it appears so to me! I find that it takes a short amount of time to actually write code,
but several years to work with it. When I visit the code a year later, I’m much happier when
I’ve made the code more readable and easier to follow.

Comments
Speaking of creating more readable code and maintaining that code over the long term,
comments are your friends. Code that seems blatantly obvious now won’t be nearly so ob-
vious the next time you look at it, especially if a lot of time has passed since you wrote it.
Comments can be placed into JavaScript code in two ways: multiline and single-line.

A multiline comment in JavaScript will look familiar to you if you’ve coded in the C program-
ming language. A multiline comment begins and ends with /* and */ respectively, as this code
example shows:

/* This is a multiline comment in JavaScript

It is just like a C-style comment insofar as it can

span multiple lines before being closed. */

A single-line comment begins with two front slashes (//) and has no end requirement,
because it spans only a single line. An example is shown here:

// Here is a single line comment.

Using multiple single-line comments is perfectly valid, and I use them for short comment
blocks rather than use the multiline comment style previously shown. For example, look at
this block of code:

// Here is another comment block.

// This one uses multiple lines.

// Each line must be preceded with two slashes.

Tip  You may find t qu cker to use the two-s ash method for sma comments that span one
ne or a few nes For arger comments, such as those at the beg nn ng of a program or scr pt,

the mu t ne comment sty e s a better cho ce because t makes add ng or de et ng nformat on
eas er

Semicolons
Semicolons are used to delineate expressions in JavaScript. Technically, semicolons are not
required for most statements and expressions. However, the subtle problems that you can
encounter when you don’t use semicolons add unnecessary errors and hence unnecessary

52	 Part I  JavaWhat? The Where, Why, and How of JavaScript

debugging time. In some instances, the JavaScript interpreter inserts a semicolon when you
may not have wanted one at all. For example, consider this statement:

return

(varName);

In all likelihood, you wanted to write:

return(varName);

But JavaScript, acting on its own, inserts a semicolon after the return statement, making the
code appear like this to the JavaScript interpreter:

return;

(varName);

This code won’t work; the interpreter will misunderstand your intentions. If you used this
code in a function, it would return undefined to the caller, which is unlikely to be what you
want. This is an example where free use of white space is not allowed—you can’t successfully
use line breaks (explained in the next section) to separate the return keyword from the value
that it’s supposed to return.

You’ll find programming in JavaScript much easier if you use semicolons as a rule rather than
try to remember where you might not have to use them.

But you definitely shouldn’t use semicolons in one instance: when using loops and conditionals.
Consider this bit of code:

if (a == 4)

{

 // code goes here

}

In this case, you wouldn’t use a semicolon at the end of the if statement. The reason is that
the statement or block of statements in opening and closing braces that follows a conditional
is part of the conditional statement, in this case, the if statement. A semicolon marks the
end of the if statement, and if improperly placed, dissociates the first part of the if statement
from the rest of it. For example, the following code is wrong (the code within the braces will
execute regardless of whether a equals 4):

if (a == 4);

{

 // code goes here

}

Tip  When open ng a oop or funct on, sk p the sem co ons

	 Chapter 3  JavaScript Syntax and Statements	 53

Line Breaks
Related closely to white space and even to semicolons in JavaScript are line breaks, some-
times called carriage returns. Known in the official ECMA-262 standard as “Line Terminators,”
these characters separate one line of code from the next. Like semicolons, the placement
of line breaks matters. As you saw from the example in the previous section, placing a line
break in the wrong position can result in unforeseen behavior or errors.

Not surprisingly, the most common use of line breaks is to separate individual lines of code
for readability. You can also improve readability of particularly long lines of code by separat-
ing them with line breaks. However, when doing so, be aware of issues like the one illustrated
by the return statement cited earlier, in which an extra line break can have unwanted effects
on the meaning of the code.

Placing JavaScript Correctly
JavaScript can be placed in a couple of locations within a Hypertext Markup Language
(HTML) page: in the <head> </head> section, or between the <body> and </body> tags.
The most common location for JavaScript has traditionally been between the <head> and
</head> tags near the top of the page. However, placing the <script> stanza within the
<body> section is becoming more common. Be sure to declare what type of script you’re
using. Though other script types can be used, because this is a JavaScript book, I’ll declare
the following within the opening <script> tag:

<script type="text/javascript">

One important issue to note when you use JavaScript relates to pages declared as Extensible
Hypertext Markup Language (XHTML). In such pages, the <script> tag must be declared
within a CDATA section; if it is not, XHTML tries to parse the <script> tag as just another XML
tag, and code within the section might not work as you expect. Therefore, JavaScript used
within strict XHTML should be declared as follows:

<script type="text/javascript">

<![CDATA[

 //JavaScript goes here

]]>

</script>

Older browsers may not parse the CDATA section correctly. This problem can be worked
around by placing the CDATA opening and closing lines within JavaScript comments, like this:

54	 Part I  JavaWhat? The Where, Why, and How of JavaScript

<script type="text/javascript">

//<![CDATA[

 //JavaScript goes here

//]]>

</script>

When you place the actual JavaScript code in a separate file (as you learned how to do in
Chapter 2, “Developing in JavaScript”), you don’t need to use this ugly CDATA section at all.
You’ll probably discover that for anything but the smallest scripts, defining your JavaScript in
separate files—usually with the file extension .js—and then linking to those scripts within the
page, is desirable. Chapter 2 showed this in full detail, but here’s a reminder of how you link
to a file using the src attribute of the <script> tag:

<script type="text/javascript" src="myscript.js">

Placing JavaScript in an external file has several advantages, including:

n	 Separation of code from markup  Keeping the JavaScript code in a separate file
makes maintaining the HTML easier, and it preserves the structure of the HTML without
you having to use a CDATA section for XHTML.

n	 Easier maintenance  With JavaScript as a separate file, you can make changes to the
file without touching another file on the site.

n	 Caching  Using a separate file for JavaScript allows web browsers to cache the file,
thus speeding up the webpage load for the user.

JavaScript Statements
Like programs written in other languages, JavaScript programs consist of statements put
together that cause the JavaScript interpreter to perform one or more actions. And like state-
ments in other languages, JavaScript statements can be simple or compound. This section
briefly examines the form of JavaScript statements, with the assumption that you already saw
several examples in the previous chapters and that you’ll see others throughout the book.

What’s in a Statement?
As covered in Chapter 1, “JavaScript Is More Than You Might Think,” a JavaScript statement,
or expression, is a collection of tokens, operators, and identifiers that are put together to cre-
ate something that makes sense to the JavaScript interpreter. A statement usually ends with
a semicolon, except in special cases like loop constructors such as if, while, and for, which are
covered in Chapter 5, “Using Operators and Expressions.”

	 Chapter 3  JavaScript Syntax and Statements	 55

Here are some examples of basic statements in JavaScript:

var x = 4;

var y = x * 4;

alert("Hello");

The Two Types of JavaScript Statements
JavaScript statements come in two basic forms, simple and compound. I won’t spend a lot
of time discussing statements because you don’t really need to know much about them.
However, you should know the difference between simple and compound statements. A
simple statement is just what you’d expect—it’s simple, like so:

x = 4;

A compound statement combines multiple levels of logic. An if/then/else decisional such as
the one given here provides a good example of this:

if (something == 1) {

 // some code here

} else {

 // some other code here

}

Reserved Words in JavaScript
Certain words in JavaScript are reserved, which means you can’t use them as variables, identi-
fiers, or constant names within your program, because doing so will cause the code to have
unexpected results, such as errors. For example, you’ve already seen the reserved word var
in previous examples. Using the word var to do anything but declare a variable may cause an
error or other unexpected behavior, depending on the browser. Consider this statement:

// Don’t do this!

var var = 4;

The code example won’t result in a direct error to a browser, but it also won’t work as you
intended, possibly causing confusion when a variable’s value isn’t what you expect.

The following list includes the words that are currently reserved by the ECMA-262
specification:

56	 Part I  JavaWhat? The Where, Why, and How of JavaScript

break delete if this while
case do in throw with
catch else instanceof try
continue finally new typeof
debugger for return var
default function switch void

Several other words (shown in the following list) are reserved for future use and therefore
shouldn’t be used in your programs:

class enum extends super
const export import

The following list of words are reserved for the future when in strict mode:

implements let private public yield
interface package protected static

A Quick Look at Functions
You’ve already seen examples of functions in previous chapters. JavaScript has several
built-in functions, or functions that are defined by the language itself. I discussed the alert()
function already, but there are several others. Which built-in functions are available depends
on the language version you’re using. Some functions are available only in later versions
of JavaScript, which might not be supported by all browsers. Detecting a browser’s avail-
able functions (and objects) is an important way to determine whether a visitor’s browser is
capable of using the JavaScript that you created for your webpage. This topic is covered in
Chapter 11, “JavaScript Events and the Browser.”

Tip  You can find an exce ent resource for compat b ty on the Qu rksMode webs te
(http://www.quirksmode.org/compatibility.html)

JavaScript is similar to other programming languages in allowing user-defined functions. An
earlier example in this chapter defined a function called cubeme(), which raised a given num-
ber to the power of 3. That code provides a good opportunity to show the use of JavaScript
in both the <head> and <body> portions of a webpage.

 Chapter 3 JavaScript Syntax and Statements 57

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file example1 .htm in
the Chapter 3 sample code .

	 2.	 Within the webpage, add the code in bold type, replacing the TODO comments:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<script type="text/javascript">

function cubeme(incomingNum) {

 if (incomingNum == 1) {

 return "What are you doing?";

 } else {

 return Math.pow(incomingNum,3);

 }

}

</script>

 <title>A Chapter 3 Example</title>

</head>

<body>

<script type="text/javascript">

var theNum = 2;

var finalNum = cubeme(theNum);

if (isNaN(finalNum)) {

 alert("You should know that 1 to any power is 1.");

} else {

 alert("When cubed, " + theNum + " is " + finalNum);

}

</script>

</body>

</html>

	 3.	 Save the page, and then run the code or view the webpage in a browser . You’ll receive
an alert like this:

58	 Part I  JavaWhat? The Where, Why, and How of JavaScript

The code in this example incorporates the code from the earlier example into a full HTML
page, including a DOCTYPE declaration. The code declares a function, cubeme(), within the
<head> of the document, like this:

function cubeme(incomingNum) {

 if (incomingNum == 1) {

 return "What are you doing?";

 } else {

 return Math.pow(incomingNum,3);

 }

}

This code accepts an argument called incomingNum within the function. An if/then decisional
statement is the heart of the function. When the incoming number equals 1, the function re-
turns the text string, “What are you doing?” When, on the other hand, the incoming number
is not equal to 1, the Math.pow method is called, passing the incomingNum variable and the
integer 3 as arguments. The call to Math.pow raises the incoming number to the power of 3,
and this value is then returned to the calling function. This call is shown again in Chapter 4.

All the previous code was placed within the <head> of the document so it can be called by
other code, which is just what we’re going to do. The browser then renders the <body> of
the document, which includes another bit of JavaScript code. This next bit of code sets a vari-
able, theNum, equal to the integer 2:

var theNum = 2;

The code then calls the previously defined cubeme() function using the theNum variable as
an argument. You’ll notice that the variable finalNum is set to receive the output from the
call to the cubeme() function, as follows:

var finalNum = cubeme(theNum);

The final bit of JavaScript on the page is another if/then decisional set. This code checks to
determine whether the returned value, now contained in the finalNum variable, is a number.
It does this by using the isNaN() function. If the value is not a number, an alert is displayed
reflecting the fact that 1 was used as the argument. (Of course, there could be other reasons
this isn’t a number, but bear with me here and follow along with my example.) If the return
value is indeed a number, the number is displayed, as you saw in the alert() dialog box shown
in the preceding step 3.

	 Chapter 3  JavaScript Syntax and Statements	 59

JavaScript’s New Strict Mode
ECMA-262 version 5 introduced a strict variant, commonly referred to as strict mode, which
adds enhanced error checking and security. For example, to help fight against mistyped vari-
able names, variable declarations require the use of the var keyword. Additionally, changes to
the eval() function and other areas help JavaScript programmers to improve their code.

Strict mode is enabled with the following syntax, which is very similar to syntax used in Perl:

"use strict";

Strict mode is locally scoped, meaning that it can be enabled globally, by placing the use
strict line at the beginning of the script; or it can be enabled only within a function, by
placing the line within the function itself, like so:

function doSomething() {

 "use strict";

 // function’s code goes here.

}

One strict mode enhancement that will help catch typographical errors is the prevention of
undeclared variables. All variables in strict mode need to be instantiated prior to use. For
example, consider this code:

"use strict";

x = 4; // Produces a syntax error

The code would create an error condition because the variable x hasn’t been declared with
the var keyword, as it is here:

"use strict";

var x = 4; // This syntax is ok

Of the notable security enhancements that strict mode provides is the change to how the
eval() function is handled. In strict mode, eval() cannot instantiate a new variable or function
that will be used outside of the eval() statement. For example:

"use strict";

eval("var testVar = 2;");

alert(testVar); // Produces a syntax error.

60	 Part I  JavaWhat? The Where, Why, and How of JavaScript

In the code example, a syntax error would be produced because strict mode is enabled and
the testVar variable isn’t available outside of the eval() statement.

Strict mode also prevents the duplication of variable names within an object or function call:

"use strict";

var myObject = {

 testVar: 1,

 testVar: 2

};

The previous code would produce a syntax error in strict mode because testVar is set twice
within the object’s definition.

Like other aspects of ECMA-262 version 5, strict mode may not be available in all browsers
and likely won’t be available for older browsers. For more information about ECMA-262 ver-
sion 5 as well as a full implementation, see http://besen.sourceforge.net/.

Exercises
	 1.	 Which of the following are valid JavaScript statements? (Choose all that apply.)

	 a.	 if (var 4) { // Do something }

	 b.	 var testVar 10;

	 c.	 if (a b) { // Do something }

	 d.	 testVar 10;

	 e.	 var case “Yes”;

	 2.	 True or False: Semicolons are required to terminate every JavaScript statement.

	 3.	 Examine this bit of JavaScript. What is the likely result? (Assume that the JavaScript
declaration has already taken place and that this code resides properly within the
<head> section of the page.)

var orderTotal = 0;

function collectOrder(numOrdered) {

 if (numOrdered > 0) {

 alert("You ordered " + orderTotal);

 orderTotal = numOrdered * 5;

 }

return orderTotal;

}

	 	 61

Chapter 4

Working with Variables and
Data Types

After reading this chapter, you’ll be able to:

n	 Understand the primitive data types used in JavaScript.

n	 Use functions associated with the data types.

n	 Create variables.

n	 Define objects and arrays.

n	 Understand the scope of variables.

n	 Debug JavaScript using Firebug.

Data Types in JavaScript
The data types of a language describe the basic elements that can be used within that lan-
guage. You’re probably already familiar with data types, such as strings or integers, from
other languages. Depending on who you ask, JavaScript defines anywhere from three to six
data types. (The answer depends largely on the definition of a data type.) You work with all
these data types regularly, some more than others.

The six data types in JavaScript discussed in this chapter are as follows:

n	 Numbers

n	 Strings

n	 Booleans

n	 Null

n	 Undefined

n	 Objects

The first three data types—numbers, strings, and Booleans—should be fairly familiar to pro-
grammers in any language. The latter three—null, undefined, and objects—require some
additional explanation. I examine each of the data types in turn and explain objects further in
Chapter 8, “Objects in JavaScript.”

62	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Additionally, JavaScript has several reference data types, including the Array, Date, and
RegExp types. The Date and RegExp types are discussed in this chapter, and the Array type
is discussed in Chapter 8.

Working with Numbers
Numbers in JavaScript are just what you might expect them to be: numbers. What might be a
surprise, however, for programmers who are familiar with data types in other languages like
C, is that integers and floating point numbers do not have special or separate types. All these
are perfectly valid numbers in JavaScript:

4

51.50

-14

0xd

The last example, 0xd, is a hexadecimal number. Both hexadecimal and octal numbers are
valid in JavaScript, and you won’t be surprised to learn that JavaScript allows math to be
performed using those number formats. Try the following exercise.

Performing hexadecimal math with JavaScript

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file example1.htm in
the Chapter04 sample files folder in the companion content.

	 2.	 Within the webpage, replace the TODO comment with the boldface code shown here
(the new code can be found in the example1.txt file in the companion code):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hexadecimal Numbers</title>

<script type="text/javascript">

var h = 0xe;

var i = 0x2;

var j = h * i;

alert(j);

</script>

</head>

<body>

</body>

</html>

	 Chapter 4  Working with Variables and Data Types	 63

	 3.	 View the webpage in a browser. You should see a dialog box similar to this one:

This script defines two variables (you learn about defining variables later in this chapter)
and sets them equal to two hexadecimal numbers, 0xe (14 in base 10 notation) and 0x2,
respectively:

var h = 0xe;

var i = 0x2;

Then a new variable is created and set to the product of the previous two variables, as
follows:

var j = h * i;

The resulting variable is then passed to the alert() function, which displays the dialog box in
the preceding step 3. It’s interesting to note that even though you multiplied two hexadeci-
mal numbers, the output in the alert dialog box is in base 10 format.

Numeric Functions
JavaScript has some built-in functions (and objects too, which you learn about soon) for
working with numeric values. The European Computer Manufacturers Association (ECMA)
standard defines several of them. One more common numeric function is the isNaN() func-
tion. By common, I mean that isNaN() is a function that I use frequently in JavaScript program-
ming. Your usage may vary, but an explanation follows nonetheless.

NaN is an abbreviation for Not a Number, and it represents an illegal number. You use the
isNaN() function to determine whether a number is legal or valid according to the ECMA-
262 specification. For example, a number divided by zero would be an illegal number in
JavaScript. The string value “This is not a number” is obviously also not a number. Though
people may have a different interpretation of what is and isn’t a number, the string “four” is
not a number to the isNaN() function, whereas the string “4” is. The isNaN() function requires
some mental yoga at times because it attempts to prove a negative—that the value in a vari-
able is not a number. Here are a couple of examples that you can try to test whether a number
is illegal.

64	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Testing the isNaN() function

	 1.	 Open your web browser, such as Windows Internet Explorer or Firefox.

	 2.	 In the address bar, type the following (also available the file called isnan.txt in the
companion content):

javascript:alert(isNaN("4"));

You receive an alert with the word False, as shown here:

The function isNaN() returns false from this expression because the integer value 4 is a num-
ber. Remember the meaning of this function is, “Is 4 Not a Number?” Well, 4 is a number, so
the result is false.

Now consider this example:

	 1.	 Open your web browser, such as Internet Explorer or Firefox.

	 2.	 In the address bar, type:

javascript:alert(isNaN("four"));

You receive an alert with the word true, like this:

In this case, because the numeral 4 is represented as a string of nonnumeric characters four,
the function returns true: the string four is not a number. I purposefully used double quota-
tion marks in each code example (that is, “4” and “four”) to show that the quotation marks
don’t matter for this function. Because JavaScript is smart enough to realize that “4” is a
number, JavaScript does the type conversion for you. However, this conversion can sometimes
be a disadvantage, such as when you’re counting on a variable or value to be a certain type.

	 Chapter 4  Working with Variables and Data Types	 65

The isNaN() function is used frequently when validating input to determine whether some-
thing—maybe a form variable—was entered as a number or as text.

Numeric Constants
Other numeric constants are available in JavaScript, some of which are described in
Table 4-1. These constants might or might not be useful to you in your JavaScript pro-
gramming, but they exist if you need them.

Table 4-1  Selected Numeric Constants
Constant Description
Infinity Represents pos t ve nfin ty

Number.MAX VALUE The argest number ab e to be represented n JavaScr pt

Number.MIN VALUE The sma est number ab e to be represented n JavaScr pt

Number.NEGATIVE INFINITY A va ue represent ng negat ve nfin ty

Number.POSITIVE INFINITY A va ue represent ng pos t ve nfin ty

The Math Object
The Math object is a special built-in object used for working with numbers in JavaScript, and
it has several properties that are helpful to the JavaScript programmer, including properties
that return the value of pi, the square root of a number, a pseudo-random number, and an
absolute value. Some properties are value properties, meaning they return a value, whereas
others act like functions and return values based on the arguments sent into them. Consider
this example of the Math.PI value property:

javascript:alert(Math.PI);

The result is shown in Figure 4-1.

Figure 4-1  V ew ng the va ue of the Math.PI property.

66	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Dot Notation
Dot notation is so named because a single period, or dot, is used to access the mem-
bers of an object. The single dot (.) creates an easy visual delineator between elements.
For example, to access a property that you might call the “length of a variable room,”
you would write room.length. The dot operator is used similarly in many programming
languages.

Several other properties of the Math object may be helpful to your program. Some of them
act as functions or methods on the object, several of which are listed in Table 4-2. You can
obtain a complete list of properties for the Math object in the ECMA-262 specification at
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

Table 4-2  Select Properties of the Math Object
Property Definition
Math.random() Returns a pseudo-random number

Math.abs(x) Returns the abso ute va ue of x

Math.pow(x,y) Returns x to the power of y

Math.round(x) Rounds x to the nearest ntegra va ue

Working with Strings
Strings are another basic data type available in JavaScript. They consist of one or more char-
acters surrounded by quotation marks. The following examples are strings:

n	 "Hello world"

n	 "B"

n	 "This is ‘another string’"

The last example in the preceding list requires some explanation. Strings are surrounded by
either single or double quotation marks. Strings enclosed in single quotation marks can con-
tain double quotation marks. Likewise, a string enclosed in double quotation marks, like the
ones you see in the preceding example, can contain single quotation marks. So basically, if
the string is surrounded by one type of quotation mark, you can use the other type within it.
Here are some more examples:

n	 ‘The cow says "moo".’

n	 ‘The talking clock says the time is "Twelve Noon".’

n	 "’Everyone had a good time’ was the official slogan."

	 Chapter 4  Working with Variables and Data Types	 67

Escaping Quotation Marks
If you use the same style of quotation mark both within the string and to enclose the string,
the quotation marks must be escaped so that they won’t be interpreted by the JavaScript en-
gine. A single backslash character (\) escapes the quotation mark, as in these examples:

n	 ‘I\’m using single quotation marks both outside and within this example. They\’re neat.’

n	 "This is a \"great\" example of using \"double quotes\" within a string that’s enclosed with
\"double quotes\" too."

Other Escape Characters
JavaScript enables other characters to be represented with specific escape sequences that
can appear within a string. Table 4-3 shows those escape sequences.

Table 4-3  Escape Sequences in JavaScript
Escape Character Sequence Value
\b Backspace

\t Tab

\n New ne

\v Vert ca tab

\f Form feed

\r Carr age return

\\ L tera backs ash

Here’s an example of some escape sequences in action. (Let me be the first to apologize for
the continued use of the alert() function. I promise to get into more complex ways to display
output soon.)

Using escape sequences

	 1.	 Open your web browser, such as Internet Explorer or Firefox.

	 2.	 In the address bar, type the following (also found in the escapesequences.txt file in
the companion content):

javascript:alert("hello\t\thello\ngoodbye");

The following dialog box appears. (If it does not appear, close and then reopen your
browser.) Note that in some browsers, such as Chrome, the way the tab character is
used in this example is not honored.

68 Part I JavaWhat? The Where, Why, and How of JavaScript

This rather contrived example shows escape sequences in action . In the code, the alert dis-
plays two words “hello” surrounding two tabs, represented by their escape sequence of \t,
followed by a newline character represented by its escaped sequence of \n, finally followed
by the word “goodbye” .

String Methods and Properties
JavaScript defines several properties and methods for working with strings . These properties
and methods are accessed using dot notation (“ .”), explained earlier in this chapter and famil-
iar to many programmers .

Note In the same way I descr be n th s book on y some of the e ements of JavaScr pt, I cover
on y a subset of the str ng propert es and methods ava ab e n the ECMA-262 spec ficat on Refer
to the ECMA spec ficat on for more nformat on

The length property on a string object gives the length of a string, not including the enclos-
ing quotation marks . The length property can be called directly on a string literal, as in this
example:

alert("This is a string.".length);

However, it’s much more common to call the length property on a variable, like this:

var x = "This is a string.";

alert(x.length);

Both examples give the same result, which you can see by following this next example .

	 1.	 Open your web browser, such as Internet Explorer or Firefox .

	 2.	 In the address bar, type the following (also found in the stringlength .txt file in the
companion content):

javascript:alert("This is a string.".length);

	 Chapter 4  Working with Variables and Data Types	 69

The result is a dialog box showing 17, as shown here:

	 3.	 Now try typing this code in the address bar:

javascript:var x = "This is a string."; alert(x.length);

The result is a dialog box showing 17, the same as in the previous example.

The substring method returns the characters from the first argument up to but not including
the second argument, as shown in the following example:

alert(x.substring(0,3));

This next code would return the first through fifth characters of the string x. For example:

var x = "Steve Suehring";

alert(x.substring(0,5));

The result is a message box displaying the string “Steve”.

Odd Indexing
The indexes used for the substring method are a bit odd—or at least I think they are.
The first character is represented by the integer 0. This is fine, because 0 is used numer-
ous other places in programming to represent the first index. However, the last index
of the substring method represents not the last character that you see, but one greater
than the last character.

For example, you might think that with index values of 0 and 5 (as in the preceding ex-
ample), the output would be the first six characters, 0 through 5 inclusive, resulting in
a string of “Steve ” with the additional space on the end. However, this is not the case.
The output is really “Steve”—just the first five characters. So the key is to remember
that the second index value of substring is really one greater than what you want; it’s
not inclusive.

70	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Some commonly used string methods besides substring include slice, substr, concat, toUpper-
Case, toLowerCase, and the pattern matching methods of match, search, and replace. I discuss
each of these briefly.

Methods that change strings include slice, substring, substr, and concat. The slice and substring
methods return string values based on another string. They accept two arguments: the begin-
ning position and an optional end position. Here are some examples:

var myString = "This is a string.";

alert(myString.substring(3)); //Returns "s is a string."

alert(myString.substring(3,9)); //Returns "s is a"

alert(myString.slice(3)); //Returns "s is a string."

alert(myString.substring(3,9)); //Returns "s is a"

The substr method also accepts two arguments: the first is the beginning position to return
and, in contrast to substring/slice, the second argument is the number of characters to return,
not the stopping position. Therefore, the code examples for substring/slice work a little differ-
ently with substr:

var myString = "This is a string.";

alert(myString.substr(3)); //Returns "s is a string." (The same as substring/slice)

alert(myString.substr(3,9)); //Returns "s is a st" (Different from substring/slice)

The concat method concatenates two strings together:

var firstString = "Hello ";

var finalString = firstString.concat("World");

alert(finalString); //Outputs "Hello World"

The toUpperCase and toLowerCase methods, and their brethren toLocaleUpperCase and
toLocaleLowerCase, convert a string to all upper or all lowercase, respectively:

var myString = "this is a String";

alert(myString.toUpperCase()); // "THIS IS A STRING"

alert(myString.toLowerCase()); // "this is a string"

Note  The toLocale methods perform convers ons n a oca e-spec fic manner

As I stated previously, numerous string properties and methods exist. The remainder of the
book features other string properties and methods, and you can always find a complete list
within the ECMA specification at http://www.ecma-international.org/publications/files
/ECMA-ST/Ecma-262.pdf.

	 Chapter 4  Working with Variables and Data Types	 71

Booleans
Booleans are kind of a hidden, or passive, data type in JavaScript. By hidden, or passive, I
mean that you don’t work with Booleans in the same way that you work with strings and
numbers; you can define and use a Boolean variable, but typically you simply use an expres-
sion that evaluates to a Boolean value. Booleans have only two values, true and false, and
in practice you rarely set variables as such. Rather, you use Boolean expressions within tests
such as an if/then/else statement.

Consider this statement:

If (myNumber > 18) {

 //do something

}

A Boolean expression is used within the if statement’s condition to determine whether the
code within the braces will be executed. If the content of the variable myNumber is greater
than the integer 18, the Boolean expression evaluates to true; otherwise, the Boolean evaluates
to false.

Null
Null is another special data type in JavaScript (as it is in most languages). Null is, simply,
nothing. It represents and evaluates to false. When a value is null, it is nothing and contains
nothing. Don’t confuse this nothingness with being empty, however. An empty value or vari-
able is still full of emptiness. Emptiness is different from null, which is just plain nothing. For
example, defining a variable and setting its value to an empty string looks like this:

var myVariable = ‘’;

The variable myVariable is empty, but it is not null.

Undefined
Undefined is a state, sometimes used like a value, to represent a variable that hasn’t yet con-
tained a value. This state is different from null, though both null and undefined can evaluate
the same way. You’ll learn how to distinguish between a null value and an undefined value in
Chapter 5, “Using Operators and Expressions.”

72	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Objects
Like functions, objects are special enough to get their own chapter (Chapter 8, to be exact).
But I still discuss objects here briefly. JavaScript is an object-based language, as opposed
to a full-blown object-oriented language. JavaScript implements some functionality similar to
object-oriented functionality, and for most basic usages of JavaScript, you won’t notice the
difference.

Objects in JavaScript are a collection of properties, each of which contains a primitive value.
These properties—think of them as keys—enable access to values. Each value stored in the
properties can be a value, another object, or even a function. You can define your own ob-
jects with JavaScript, or use the several built-in objects.

Objects are created with curly braces, so the following code creates an empty object called
myObject:

var myObject = {};

Here’s an object with several properties:

var dvdCatalog = {

 "identifier": "1",

 "name": "Coho Vineyard "

};

The preceding code example creates an object called dvdCatalog, which holds two proper-
ties: one called identifier and the other called name. The values contained in each property
are 1 and “Coho Vineyard”, respectively. You could access the name property of the dvdCatalog
object like this:

alert(dvdCatalog.name);

Here’s a more complete example of an object, which can also be found in the sample code in
the file object.txt:

// Create a new object with curly braces

var star = {};

// Create named objects for each of four stars.

star["Polaris"] = new Object;

star["Deneb"] = new Object;

star["Vega"] = new Object;

star["Altair"] = new Object;

Examples later in the book show how to add properties to these objects as well as how to
access properties. There’s much more to objects and Chapter 8 gives that additional detail.

	 Chapter 4  Working with Variables and Data Types	 73

Arrays
You’ve seen in the previous example how to create an object with a name. You can also use
unnamed objects that are accessed by a numbered index value. These are the traditional ar-
rays, familiar to programmers in many languages. You just saw several objects, each named
for a star. The following code creates an array of the same objects. This code can also be
found in the book’s sample code in a file named stararray.txt.

var star = new Array();

star[0] = "Polaris";

star[1] = "Deneb";

star[2] = "Vega";

star[3] = "Altair";

The same code can also be written like this, using the implicit array constructor, represented
by square brackets:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

Arrays can contain nested values, as in this example that combines the star name with the
constellation in which it appears:

var star = [["Polaris", "Ursa Minor"],["Deneb","Cygnus"],["Vega","Lyra"],

["Altair","Aquila"]];

Finally, although less common, you can call the Array() constructor with arguments:

var star = new Array("Polaris", "Deneb", "Vega", "Altair");

Note  Ca ng the Array() constructor w th a s ng e numer c argument sets the ength of the array
rather than the va ue of the first e ement, wh ch s what you m ght expect

The new ECMA-262 version 5 specification added several new methods for iterating and
working with arrays. Arrays, including methods that iterate through them and work with
them, are covered in more detail in Chapter 8.

Defining and Using Variables
Variables should be familiar to programmers in just about any language. Variables store data
that might change during the program’s execution lifetime. You’ve seen several examples of
declaring variables throughout the previous chapters of this book. This section formalizes the
use of variables in JavaScript.

74	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Declaring Variables
Variables are declared in JavaScript with the var keyword. You can find examples in the com-
panion content for this book, in the variablenaming.txt file. The following are all valid variable
declarations:

var x;

var myVar;

var counter1;

Variable names can contain uppercase and lowercase letters as well as numbers, but they
cannot start with a number. Variables cannot contain spaces or other punctuation, with the
exception of the underscore character (). (In practice, though, I haven’t seen very many un-
derscore characters in JavaScript variables.) The following variable names are invalid:

var 1stCounter;

var new variable;

var new.variable;

var var;

Take a look at the preceding example. Whereas the other three variable names are invalid
because characters are used that aren’t valid at all (or aren’t valid in that position, as is the
case with the first example), the last variable name, var, is invalid because it uses a keyword.
For more information about keywords or reserved words in JavaScript, refer to Chapter 2,
“Developing in JavaScript.”

You can declare multiple variables on the same line of code, as follows:

var x, y, zeta;

These can be initialized on the same line, too:

var x = 1, y = "hello", zeta = 14;

Variable Types
Variables in JavaScript are not strongly typed. It’s not necessary to predeclare whether a giv-
en variable will hold an integer, a floating point number, or a string. You can also change the
type of data being held within a variable through simple reassignment. Consider this example,
where the variable x first holds an integer, but then through another assignment, it changes
to hold a string:

var x = 4;

var x = "Now it’s a string.";

	 Chapter 4  Working with Variables and Data Types	 75

Variable Scope
A variable’s scope refers to the locations from which its value can be accessed. Variables are
globally scoped when they are used outside a function. A globally scoped variable can be ac-
cessed throughout your JavaScript program. In the context of a webpage—or a document,
as you might think of it—you can access and use a global variable throughout.

Variables defined within a function are scoped solely within that function. This effectively
means that the values of those variables cannot be accessed outside the function. Function
parameters are scoped locally to the function as well.

Here are some practical examples of scoping, which you can also find in the companion code
in the scope1.txt file:

<script type="text/javascript">

var aNewVariable = "I’m Global.";

function doSomething(incomingBits) {

 alert(aNewVariable);

 alert(incomingBits);

}

doSomething("An argument");

</script>

The code defines two variables: a global variable called aNewVariable; and a variable called
incomingBits, which is local to the doSomething() function. Both variables are passed to respec-
tive alert() functions within the doSomething() function. When the doSomething() function
is called, the contents of both variables are sent successfully and displayed on the screen, as
depicted in Figures 4-2 and 4-3.

Figure 4-2  The var ab e aNewVariable s g oba y scoped.

76	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Figure 4-3  The var ab e incomingBits s oca y scoped to the funct on.

Here’s a more complex example for you to try.

Examining variable scope

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the file scoping.htm in the
Chapter04 sample files folder.

	 2.	 Within the page, replace the TODO comment with the boldface code shown here
(the new code can be found in the scoping.txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Scoping Example</title>

 <script type="text/javascript">

 var aNewVariable = "is global.";

 function doSomething(incomingBits) {

 alert("Global variable within the function: " + aNewVariable);

 alert("Local variable within the function: " + incomingBits);

 }

 </script>

</head>

<body>

<script type="text/javascript">

 doSomething("is a local variable");

 alert("Global var outside the function: " + aNewVariable);

 alert("Local var outside the function: " + incomingBits);

</script>

</body>

</html>

	 Chapter 4  Working with Variables and Data Types	 77

The result is three alerts on the screen.

The first alert is this:

The second alert is this:

The third alert looks like this:

But wait a minute—examine the code. How many calls to the alert() function do you see?
Hint: Two are in the <head> portion and another two are within the <body> portion, for
a total of four calls to the alert() function. So why are there only three alerts on the screen
when four calls are made to the alert() function in the script?

Because this is a section on variable scoping (and I already explained the answer), you
may already have figured it out. But this example demonstrates well how to troubleshoot
JavaScript problems when the result isn’t what you expect.

78	 Part I  JavaWhat? The Where, Why, and How of JavaScript

The next procedure requires the use of the Firebug add-on to the Mozilla Firefox web browser.
As a web developer, I’m going to assume that you have Firefox installed (see Chapter 1,
“JavaScript Is More Than You Might Think,” for reasons why you should). If you don’t yet have
Firefox, download it from http://www.mozilla.com/firefox/.

Installing Firebug

This first procedure walks you through installing Firebug in Firefox. Although Internet
Explorer has a script debugger, and you could also use the Microsoft Script Debugger,
Firebug is much more powerful and flexible.

	 1.	 With Firefox installed, it’s time to get the Firebug add-on. Accomplish this task by going
to http://www.getfirebug.com/. Once at the site, click the install link. (If you’re installing
Firebug for the first time, you may receive a warning that Firefox has prevented the site
from installing software. Later versions of Firefox don’t show this warning.)

	 2.	 When you click the install link, a Software Installation dialog box opens, as shown in the
following screen. Click Install Now.

	 3.	 The Add-Ons dialog box opens (shown in the following screen), and the Firebug add-
on downloads. The installation completes when you restart Firefox, so click Restart
Firefox after the add-on finishes downloading.

 Chapter 4 Working with Variables and Data Types 79

	 4.	 Firefox closes and opens again, showing the installed add-on . Close the Add-On dialog
box, if it opens . Congratulations! Firebug is installed . Notice a small icon in the lower
right corner of the Firefox browser window . Click this icon to open the Firebug console:

	 5.	 Firebug is disabled, but don’t worry—the next procedure walks you through enabling
and using it . Feel free to experiment with Firebug by enabling it for this site only or for
all websites .

With Firebug installed, you can troubleshoot the earlier problem you encountered in the
scoping example of only three of the four expected alerts being displayed .

80	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Troubleshooting with Firebug

	 1.	 Open Firefox and select the scoping.htm example that was created earlier in this chap-
ter. The JavaScript code again executes as before, showing the three alerts. Close all
three alerts. You end up with a blank page loaded in Firefox.

	 2.	 Click the Firebug icon in the lower right corner of the Firefox browser window so that
Firebug opens.

	 3.	 Click the Script tab to open the Script pane and note that it is disabled. You want to
enable the Console pane so that you are informed of errors. The Script pane is activat-
ed when the Console pane is activated, so enable the Console panel. Click the Console
tab, click the arrow/triangle next to the word Console, and click Enabled. You can see
here that the JavaScript debugger is also activated:

	 4.	 With both the Console and Script panes enabled, click the Reload button on the main
Firefox toolbar or select Reload from the View menu. The page reloads, and the
JavaScript executes again. All three alerts are displayed again, but notice now that
Firebug has discovered an error, denoted by the red X and 1 Error indication in the
lower right corner of the status bar, as shown here:

	 Chapter 4  Working with Variables and Data Types	 81

	 5.	 If the Console pane isn’t open, click the Console tab in the Firebug portion of the win-
dow to reveal the error, which is that the variable incomingBits isn’t defined. This
window also shows the line number at which the problem occurred. Note, however,
that because of the way the document is parsed, the line number in your original
source code might not always be accurate. Regardless, you can see that incomingBits
is not defined within the <body> of the webpage because its scope is limited to the
doSomething() function.

This procedure demonstrated not only the use of Firebug but also the effect of local ver-
sus global scoping of variables. Firebug is an integral part of JavaScript (and webpage)
debugging. I invite you to spend some time with Firebug on just about any site to see how
JavaScript, CSS, and HTML all interact.

In this procedure, the fix would be to define the variable incomingBits so that it gets instanti-
ated outside the of the function call. (This new line of code follows and is in the file scop-
ing-fixed.htm in the Chapter04 folder in the companion content.) Because this variable was
defined only as part of the function definition, the variable didn’t exist outside of the func-
tion’s scope.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Scoping Example</title>

 <script type="text/javascript">

 var aNewVariable = "is global.";

 function doSomething(incomingBits) {

 alert("Global variable within the function: " + aNewVariable);

 alert("Local variable within the function: " + incomingBits);

 }

 </script>

</head>

<body>

<script type="text/javascript">

 var incomingBits = " must be defined if necessary.";

82	 Part I  JavaWhat? The Where, Why, and How of JavaScript

 doSomething("is a local variable");

 alert("Global var outside the function: " + aNewVariable);

 alert("Local var outside the function: " + incomingBits);

</script>

</body>

</html>

You can find more information about functions in Chapter 7, "Working with Functions."

The Date Object
The Date object includes many methods that are helpful when working with dates in
JavaScript—too many, in fact, to examine in any depth in a beginner-level book such as
this—but I do show you some examples that you might incorporate in your projects.

One of the unfortunate aspects of the Date object in JavaScript is that the implementation of
its methods varies greatly depending on the browser and the operating system. For example,
consider this code to return a date for the current time, adjusted for the local time zone and
formatted automatically by the toLocaleDateString() method:

var myDate = new Date();

alert(myDate.toLocaleDateString());

When run in Internet Explorer 8 on a computer running Windows 7, the code results in a date
like that shown in Figure 4-4.

Figure 4-4  The toLocaleString() method of the Date object n nternet Exp orer 8.

Figure 4-5 shows what happens when that same code is executed in Firefox 3.6 on Linux.

Figure 4-5  The toLocateString() method of the Date object d sp ays the message d fferent y n F refox
on L nux.

	 Chapter 4  Working with Variables and Data Types	 83

The difference between these two dialog boxes may seem trivial, but if you were expecting
to use the day of the week in your code (Monday, in the examples), you’d be in for a surprise.
And don’t be fooled into thinking that the implementation issues are merely cross-operating
system problems. Differences in the implementation of the Date object and its methods exist
in browsers on products running Microsoft Windows as well.

The getYear() method of the Date object provides another example of differing JavaScript
implementations, this time between two computers running the same version of Windows 7.
Consider this code:

var myDate = new Date();

alert(myDate.getYear());

When called in Internet Explorer 8, this code produces the output as shown in Figure 4-6.

Figure 4-6  The output from the getYear() method n nternet Exp orer 8 shows the fu year.

When called in Firefox 3.6 on a computer running Windows, the code produces the output
shown in Figure 4-7.

Figure 4-7  The output from the getYear() method n F refox shows the year m nus 1900.

The Firefox version returned the current year minus 1900, leaving 110 as the output. Which
one is correct? The Firefox version is the correct output according to the ECMA-262 specifica-
tion. The third and final step listed for the getYear() method specification (Section B.2.4) is
"Return YearFromTime(LocalTime(t)) – 1900."

Fortunately, this difference in implementations has an easy (and recommended) workaround.
The ECMA-262 specification provides the getFullYear() method, which returns the full year—
2010 in the example shown.

84	 Part I  JavaWhat? The Where, Why, and How of JavaScript

The only way to resolve these and other implementation differences in your JavaScript applica-
tion is to perform both cross-browser and cross-platform tests. Doing so adds time to the
application development cycle, but finding and fixing a problem during development is
probably less costly than finding and fixing the problem after users discover it in a produc-
tion environment.

What Date?
Notice the date in Figures 4-4 and 4-5: Saturday, June 16, 2001. You may be question-
ing whether the book was written in 2001. It wasn’t. But using a previous year illustrates
an issue with JavaScript and dates. The date returned by any JavaScript function reflects
the date on the computer that is executing the JavaScript.

It just so happens that I changed the date on my computer to June 16, 2001, to illus-
trate this point. Whenever you use any of the Date object’s methods, remember that
they reflect the time on the visitor’s computer. (Incidentally, June 16, 2001, is my wed-
ding date, and now I have an easy place to find it as a reference in case I forget. Not
that I ever would, of course…)

The Date object can be handed a number of arguments ranging from zero arguments up to
seven arguments. When the Date object constructor is passed a single string argument, the
string is assumed to contain the date. When it is passed a number type of argument, the ar-
gument is assumed to be the date in milliseconds since January 1, 1970, and when it is passed
seven arguments, they’re assumed to be the following:

new Date(year, month, day, hours, minutes, seconds, milliseconds)

Note  On y year and month are requ red arguments; the others are opt ona

Remember the following points when using a Date object:

n	 The year should be given with four digits unless you want to specify a year between
the year 1900 and the year 2000, in which case you’d just send in the two-digit year,
0 through 99, which is then added to 1900. So, 2008 equals the year 2008, but 98 is
turned into 1998.

n	 The month is represented by an integer 0 through 11, with 0 being January and
11 being December.

n	 The day is an integer from 1 to 31.

n	 Hours are represented by 0 through 23, where 23 represents 11 PM.

n	 Minutes and seconds are both integers ranging from 0 to 59.

n	 Milliseconds are an integer from 0 to 999.

	 Chapter 4  Working with Variables and Data Types	 85

Although the following procedure uses some items that won’t be covered until later chapters,
you’re looking at the Date object now, so it’s a good time learn how to write the date and
time to a webpage—a popular operation.

Writing the date and time to a webpage

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the file writingthedate.htm in the
Chapter04 sample files folder in the companion content.

	 2.	 Within the page, add the code in boldface type shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>the date</title>

</head>

<body>

 <p id="dateField"> </p>

 <script type="text/javascript">

 var myDate = new Date();

 var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();

 var dateLoc = document.getElementById("dateField");

 dateLoc.innerHTML = "Hello - Page Rendered on " + dateString;

 </script>

</body>

</html>

	 3.	 When saved and viewed in a web browser, you should receive a page like this (though
the date you see will be different from what’s shown here):

The relevant JavaScript from the preceding steps is repeated here:

var myDate = new Date();

var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();

var dateLoc = document.getElementById("dateField");

dateLoc.innerHTML = "Hello - Page Rendered on " + dateString;

86	 Part I  JavaWhat? The Where, Why, and How of JavaScript

The JavaScript related to the Date object is rather simple. It takes advantage of the toLocale-
DateString() method, which you’ve already seen, and its cousin, toLocaleTimeString(), which
returns the local time. These two methods are concatenated together with a single space and
placed into the dateString variable, like this:

var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();

The remainder of the code writes the contents of the dateString variable to the webpage.
More information about that aspect of JavaScript is described in Chapter 10, “The Document
Object Model.”

Counting down to a certain date in the future

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the file countdown.htm in the
Chapter04 sample files folder, which you can find in the companion content.

	 2.	 Add the following code shown in boldface type to the page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>the date</title>

</head>

<body>

 <p id="dateField"> </p>

 <script type="text/javascript">

 var today = new Date();

 var then = new Date();

 // January 1, 2012

 then.setFullYear(2012,0,1);

 var diff = then.getTime() - today.getTime();

 diff = Math.floor(diff / (1000 * 60 * 60 * 24));

 var dateLoc = document.getElementById("dateField");

 dateLoc.innerHTML = "There are " + diff + " days until 1/1/2012";

 </script>

</body>

</html>

	 3.	 Save the page and view it in a web browser. Depending on the date on your computer,
the number of days represented will be different, but the general appearance of the
page should look like this:

	 Chapter 4  Working with Variables and Data Types	 87

Tip  Be carefu when us ng JavaScr pt dates for anyth ng other than d sp ay ng them Because
the dates are dependent on the v s tor’s t me, don’t re y on them when an accurate t me m ght
be mportant, for examp e, n an order ng process

The exercise you just completed used some additional functions of both the Math and
Date objects, namely floor() and getTime(). While this book does cover a lot of ground, it’s
not a complete JavaScript language reference. For that and even more information, refer
to the ECMA-262 standard at http://www.ecma-international.org/publications/standards
/Ecma-262.htm.

The next procedure shows how to calculate (or better yet, roughly estimate) the time it takes
for a webpage to load in a person’s browser.

Note  The next procedure sn’t accurate because t doesn’t take nto cons derat on the t me re-
qu red for the oad ng and render ng of mages (or other mu t med a tems), wh ch are externa
to the text of the webpage A few more b ts oad after the scr pt s fin shed runn ng I’ve seen a
w dget used on severa webs tes to ca cu ate dates, wh ch you m ght find usefu

Calculating render time

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the file render.htm in the Chapter04
sample files folder, which you can find in the companion content.

	 2.	 Add the following code shown in boldface type to the page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

 <title>the date</title>

 <script type="text/javascript">

 var started = new Date();

 var now = started.getTime();

 </script>

</head>

88	 Part I  JavaWhat? The Where, Why, and How of JavaScript

<body>

 <p id="dateField"> </p>

 <script type="text/javascript">

 var bottom = new Date();

 var diff = (bottom.getTime() - now)/1000;

 var finaltime = diff.toPrecision(5);

 var dateLoc = document.getElementById("dateField");

 dateLoc.innerHTML = "Page rendered in " + finaltime + " seconds.";

 </script>

</body>

</html>

	 3.	 Save the page and view it in a web browser. Depending on the speed of your computer,
web server, and network connection, you might receive a page that indicates only 0
seconds for the page load time, like this:

	 4.	 If your page takes 0.0000 seconds, as mine did, you can introduce a delay into the page
so that you can test it. (I’d never recommend doing this on a live site, however, because
I can’t think of a reason you’d want to slow down the rendering of your page! But intro-
ducing a delay can come in handy for testing purposes.) Using a for loop is a cheap and
easy way to slow down the JavaScript execution:

for (var i = 0; i < 1000000; i++) {

 //delay

)

The value I chose, 1000000, is arbitrary. You may need to choose a larger or smaller
number to cause the desired delay. The final code looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>the date</title>

 <script type="text/javascript">

 var started = new Date();

 var now = started.getTime();

 for (var i = 0; i < 1000000; i++) {

 //delay

	 Chapter 4  Working with Variables and Data Types	 89

 }

 </script>

</head>

<body>

 <p id="dateField"> </p>

 <script type="text/javascript">

 var bottom = new Date();

 var diff = (bottom.getTime() - now)/1000;

 var finaltime = diff.toPrecision(5);

 var dateLoc = document.getElementById("dateField");

 dateLoc.innerHTML = "Page rendered in " + finaltime + " seconds.";

 </script>

</body>

</html>

	 5.	 Save the page and view it again in a web browser. You should see some delay in the
page load, which causes the value to be a positive number:

When using this or similar functions to determine the page load times, to calculate the
most accurate value, place the initial variable near the top of the page or script, and
then place another one near the bottom of the page.

It’s important to note that the now() method of the Date() object can also be used as a
substitute for getTime().

You just learned about a few of the more than 40 methods of the Date object. Many of these
methods have UTC (Coordinated Universal Time) counterparts, meaning that they can get or
set the date and time in UTC rather than local time. Table 4-4 lists the methods that return
dates. With the exception of getTime() and getTimezoneOffset(), all these methods have UTC
counterparts that are called using the format getUTCDate(), getUTCDay(), and so on.

90 Part I JavaWhat? The Where, Why, and How of JavaScript

TABLE	4-4	 The	get	Methods	of	a	Date	Object

getDate() Returns the day of the month

getDay() Returns the day of the week

getFullYear() Returns the four-d g t year and s recommended n most c rcumstances
over the getYear() method

getHours() Returns the hours of a date

getMilliseconds() Returns the m seconds of a date

getMinutes() Returns the m nutes of a date

getMonth() Returns the month of a date

getSeconds() Returns the seconds of a date

getTime() Returns the m seconds s nce January 1, 1970

getTimezoneOffset() Returns the number of m nutes ca cu ated as the d fference between UTC
and oca t me

Many of the get...() methods have siblings prefixed with set, as shown in Table 4-5 . And like
their get brethren, most of the set...() methods have UTC counterparts, except for setTime() .

TABLE	4-5	 The	set	Methods	of	a	Date	Object

setDate() Sets the day of the month of a date

setFullYear() Sets the four-d g t year of a date A so accepts the month and
day-of-month ntegers

setHours() Sets the hour of a date

setMilliseconds() Sets the m seconds of a date

setMinutes() Sets the m nutes of a date

setMonth() Sets the month as an nteger of a date

setSeconds() Sets the seconds of a date

setTime() Sets the t me us ng m seconds s nce January 1, 1970

The Date object also has several methods for converting the date to a string in a different
format . You already reviewed some of these methods such as toLocaleDateString() . Other
similar methods include toLocaleString(), toGMTString(), toLocaleTimeString(), toString(),
toISOString(), toDateString(), toUTCString(), and toTimeString() . Feel free to experiment with
these, noting that toISOString() is a new method in the ECMA-262 version 5 specification and
support for it may not be available in all browsers . (It’s notably missing from most versions
of Internet Explorer .) The following simple code examples will get you started experimenting .
Try typing them in the address bar of your browser:

	 Chapter 4  Working with Variables and Data Types	 91

javascript:var myDate = new Date(); alert(myDate.toLocaleDateString());

javascript:var myDate = new Date(); alert(myDate.toLocaleString());

javascript:var myDate = new Date(); alert(myDate.toGMTString());

javascript:var myDate = new Date(); alert(myDate.toLocaleTimeString());

javascript:var myDate = new Date(); alert(myDate.toString());

javascript:var myDate = new Date(); alert(myDate.toISOString());

javascript:var myDate = new Date(); alert(myDate.toDateString());

javascript:var myDate = new Date(); alert(myDate.toUTCString());

javascript:var myDate = new Date(); alert(myDate.toTimeString());

You can also write these code samples without creating the myDate variable, like so:

javascript: alert(new Date().toUTCString());

Using the RegExp Object
Regular expressions are the syntax you use to match and manipulate strings. If you’ve worked
with a command prompt in Microsoft Windows, or the shell in Linux/Unix, you may have
looked for files by trying to match all files using an asterisk, or star (*) character, as in:

dir *.*

or:

dir *.txt

If you’ve used a wildcard character such as the asterisk, you’ve used an element akin to a
regular expression. In fact, the asterisk is also a character used in regular expressions.

Regular expressions, through use of the RegExp object and regular expression literals in
JavaScript, provide a powerful way to work with strings of text or alphanumerics. The ECMA-
262 implementation of regular expressions is largely borrowed from the Perl 5 regular ex-
pression parser. Here’s a regular expression to match the word JavaScript:

var myRegex /JavaScript/;

The regular expression shown would match the string JavaScript anywhere that it appeared
within another string. For example, the regular expression would match in the sentence “This
is a book about JavaScript,” and it would match in the string “ThisIsAJavaScriptBook,” but it
would not match “This is a book about javascript,” because regular expressions are case sen-
sitive. (You can change this, as you’ll see later in this chapter.)

92	 Part I  JavaWhat? The Where, Why, and How of JavaScript

The Syntax of Regular Expressions
Because of string parsing, regular expressions have a terse—and some would argue cryptic—
syntax. But don’t let terse syntax scare you away from regular expressions, because in that
syntax is power. For example, the following regular expression looks for digits and then per-
forms a substitution to reformat an entire Internet Protocol (IP) address block (in the format
192.168.0/24) by using grouping. What this example does is not really relevant to our discus-
sion beyond showing an example of a more complex regular expression. (It was part of a
Perl script that parses an Asia Pacific Network Information Centre (APNIC) network list on a
firewall, if you must know.)

s/([0-9]+)\.([0-9]+)(\/[0-9]+)/$1\.$2\.0$3/;

The same regular expression can be written in JavaScript using the replace method of the
String object, like so:

 var theIP = "192.168.0/28";

 alert(theIP.replace(/([0-9]+)\.([0-9]+)(\/[0-9]+)/,"$1\.$2\.0$3"));

The syntax of regular expressions includes several characters that have special meaning, in-
cluding characters that anchor the match to the beginning or end of a string, a wildcard,
and grouping characters, among others. Table 4-6 shows several of the special characters

Table 4-6  Common Special Characters in JavaScript Regular Expressions
Character Description
^ Sets an anchor to the beg nn ng of the nput

$ Sets an anchor to the end of the nput

Matches any)character

* Matches the prev ous character zero or more t mes Th nk of th s as a w dcard

+ Matches the prev ous character one or more t mes

? Matches the prev ous character zero or one t me

() P aces the match ns de of the parentheses nto a group, wh ch can be used ater

{n, } Matches the prev ous character at east n t mes

{n,m} Matches the prev ous character at east n but no more than m t mes

[] Defines a character c ass to match any of the characters conta ned n the brackets
Th s character can use a range ke 0–9 to match any number or a–z to match any
etter

[̂] The use of a caret w th n a character c ass negates that character c ass, mean ng that
the characters n that c ass cannot appear n the match

\ Typ ca y used as an escape character, and mean ng that whatever fo ows the backs-
ash s treated as a tera character nstead of as hav ng ts spec a mean ng Can a so
be used to define spec a character sets, wh ch are shown n Tab e 4-7

In addition to the special characters, several sequences exist to match groups of characters or
nonalphanumeric characters. Some of these sequences are shown in Table 4-7.

	 Chapter 4  Working with Variables and Data Types	 93

Table 4-7  Common Character Sequences in JavaScript Regular Expressions
Character Match
\b Word boundary

\B Nonword boundary

\c Contro character when used n conjunct on w th another character For examp e,
\cA s the escape sequence for Contro -A

\d D g t

\D Nond g t

\n New ne

\r Carr age return

\s S ng e wh tespace character such as a space or tab

\S S ng e nonwh tespace character

\t Tab

\w Any a phanumer c character, whether number or etter

\W Any nona phanumer c character

In addition to the characters in Table 4-7, you can use two modifiers, i and g, to specify that
the regular expression should be parsed in a case-insensitive manner and that the regular
expression matching should continue after the first match, sometimes called global or greedy
(thus the g).

The RegExp object has its own methods, including exec and test, the latter of which tests a
regular expression against a string and returns true or false based on whether the regular
expression matches that string. However, when working with regular expressions, using
methods native to the String type, such as match, search, replace, and her from the bank, is
just as common.

The exec() method of the RegExp object is used to parse the regular expression against a
string and return the result. For example, parsing a simple URL and extracting the domain
might look like this:

var myString = "http://www.braingia.org";

var myRegex = /http:\/\/\w+\.(.*)/;

var results = myRegex.exec(myString);

alert(results[1]);

The output from this code is an alert showing the domain portion of the address, as shown in
Figure 4-8.

94	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Figure 4-8  Pars ng a typ ca web URL us ng a regu ar express on.

A breakdown of this code is helpful. First you have the string declaration:

var myString = "http://www.braingia.org";

This is followed by the regular expression declaration and then a call to the exec() method,
which parses the regular expression against the string found in myString and places the results
into a variable called results.

var myRegex = /http:\/\/\w+\.(.*)/;

var results = myRegex.exec(myString);

The regular expression contains several important elements. It begins by looking for the lit-
eral string http:. The two forward slashes follow, but because forward slashes (/) are special
characters in regular expressions, you must escape them using backslashes (\),making the
regular expression http:\/\/ so far.

The next part of the regular expression, \w, looks for any single alphanumeric character. Web
addresses are typically www, so don’t be confused into thinking that the expression is look-
ing for three literal w’s—the host in this example could be called web, host1, myhost, or www,
as shown in the code you’re examining. Because \w matches any single character, and web
hosts typically have three characters (www), the regular expression adds a special character
+ to indicate that the regular expression must find an alphanumeric character at least once
and possibly more than once. So now the code has http:\/\/\w+, which matches the address
http://www right up to .braingia.org portion.

You need to account for the dot character between the host name (www) and the domain
name (braingia.org). You accomplish this by adding a dot character (.), but because the dot
is also a special character, you need to escape it with \.. You now have http:\/\/\w+\., which
matches all the elements of a typical address right up to the domain name.

Finally, you need to capture the domain and use it later, so place the domain inside paren-
theses. Because you don’t care what the domain is or what follows it, you can use two special
characters: the dot, to match any character; and the asterisk, to match any and all of the
previous characters, which is any character in this example. You’re left with the final regular
expression, which is used by the exec() method. The result is placed into the results variable.

	 Chapter 4  Working with Variables and Data Types	 95

If a match is found, the output from the exec() method is an array containing the entire string
and an index for each captured portion of the expression. The second index (1) is sent to an
alert, which produces the output shown in Figure 4-8.

alert(results[1]);

That’s a lot to digest, and I admit this regular expression could be vastly improved with
the addition of other characters to anchor the match, and to account for characters after the
domain as well as nonalphanumerics in the host name portion. However, in the interest of
keeping the example somewhat simpler, the less-strict match is shown.

The String object type contains three methods for both matching and working with strings,
and uses regular expressions to do so. The match, replace, and search methods all use regular
expression pattern matching. Because you’ve learned about regular expressions, it’s time to
introduce these methods.

The match method returns an array with the same information as the Regexp data type’s exec
method. Here’s an example:

var emailAddr = "suehring@braingia.com";

var myRegex = /\.com/;

var checkMatch = emailAddr.match(myRegex);

alert(checkMatch[0]); //Returns .com

This can be used in a conditional to determine whether a given email address contains the
string .com:

var emailAddr = "suehring@braingia.com";

var myRegex = /\.com/;

var checkMatch = emailAddr.match(myRegex);

if (checkMatch !== null) {

 alert(checkMatch[0]); //Returns .com

}

The search method works in much the same way as the match method but only sends back
the index (position) of the first match, as shown here:

var emailAddr = "suehring@braingia.com";

var myRegex = /\.com/;

var searchResult = emailAddr.search(myRegex);

alert(searchResult); //Returns 17

If no match is found, the search method returns -1.

The replace method does just what its name implies—it replaces one string with another
when a match is found. Assume in the email address example that I want to change any .com
email address to .net email address. You can accomplish this by using the replace method,
like so:

96	 Part I  JavaWhat? The Where, Why, and How of JavaScript

var emailAddr = "suehring@braingia.com";

var myRegex = /\.com$/;

var replaceWith = ".net";

var result = emailAddr.replace(myRegex,replaceWith);

alert(result); //Returns suehring@braingia.net

If the pattern doesn’t match, the original string is placed into the result variable; if it does, the
new value is returned.

Note  You can use severa spec a characters to he p w th subst tut ons P ease see the ECMA-262
spec ficat on for more nformat on about these methods

Later chapters show more examples of string methods related to regular expressions. Feel
free to use this chapter as a reference for the special characters used in regular expressions.

References and Garbage Collection
Some types of variables or the values they contain are primitive, whereas others are reference
types. The implications of this might not mean much to you at first glance—you might not
even think you’ll ever care about this. But you’ll change your mind the first time you encoun-
ter odd behavior with a variable that you just copied.

First, some explanation: objects, arrays, and functions operate as reference types, whereas
numbers, Booleans, null, and undefined are known as primitive types. According to the ECMA-
262 specification, other primitive types exist such as Numbers and Strings, but Strings aren’t
relevant to this discussion.

When a number is copied, the behavior is what you’d expect: The original and the copy both
get the same value. If you change the original, however, the copy is unaffected. Here’s an
example:

// Set the value of myNum to 20.

var myNum = 20;

// Create a new variable, anotherNum, and copy the contents of myNum to it.

// Both anotherNum and myNum are now 20.

var anotherNum = myNum;

// Change the value of myNum to 1000.

myNum = 1000;

// Display the contents of both variables.

// Note that the contents of anotherNum haven’t changed.

alert(myNum);

alert(anotherNum);

The alerts display 1000 and 20, respectively. Once the variable anotherNum gets a copy
of myNum’s contents, it holds on to the contents no matter what happens to the variable
myNum after that. The variable does this because numbers are primitive types in JavaScript.

	 Chapter 4  Working with Variables and Data Types	 97

Contrast that example with a variable type that’s a reference type, as in this example:

// Create an array of three numbers in a variable named myNumbers.

var myNumbers = [20, 21, 22];

// Make a copy of myNumbers in a newly created variable named copyNumbers.

var copyNumbers = myNumbers;

// Change the first index value of myNumbers to the integer 1000.

myNumbers[0] = 1000;

// Alert both.

alert(myNumbers);

alert(copyNumbers);

In this case, because arrays are reference types, both alerts display 1000,21,22, even though
only myNumbers was directly changed in the code. The moral of this story is to be aware that
object, array, and function variable types are reference types, so any change to the original
changes all copies.

Loosely related to this discussion of differences between primitive types and reference types
is the subject of garbage collection. Garbage collection refers to the destruction of unused
variables by the JavaScript interpreter to save memory. When a variable is no longer used
within a program, the interpreter frees up the memory for reuse. It also does this for you if
you’re using Java Virtual machine or .NET Common Language Runtime.

This automatic freeing of memory in JavaScript is different from the way in which other lan-
guages such as C++ deal with unused variables. In those languages, the programmer must
perform the garbage collection task manually. This is all you really need to know about gar-
bage collection.

Learning About Type Conversions
Before finishing the discussion on data types and variables, you should know a bit about
type conversions, or converting between data types. JavaScript usually performs implicit type
conversion for you, but in many cases, you can explicitly cast, or convert, a variable from one
type to another.

Number Conversions
You’ve already seen a conversion between two number formats, hexadecimal to base 10,
in the example discussed in the section “Data Types in JavaScript” earlier in this chapter.
However, you can convert numbers to strings as well. JavaScript implicitly converts a number
to a string when the number is used in a string context.

To explicitly convert a number to a string, cast the number as a string, as in this example:

98	 Part I  JavaWhat? The Where, Why, and How of JavaScript

// Convert myNumString as a string with value of 100

var myNumString = String(100);

String Conversions
In the same way that you can convert numbers into strings, you can convert strings into
numbers. You do this by casting the string as a number. (You can find this example in the
companion content, in the stringconversion.txt file.)

var myNumString = "100";

var myNum = Number(myNumString);

Tip  JavaScr pt converts str ngs to numbers automat ca y when those str ngs are used n a numer c
context However, n pract ce, I’ve had h t-or-m ss uck w th th s mp c t convers on, so I usua y
just convert to a number whenever I want to use a number The downs de of do ng th s s that
you have to execute some extra code, but do ng that s better than the uncerta nty nherent n
eav ng t up to a JavaScr pt nterpreter

Boolean Conversions
Booleans are converted to numbers automatically when used in a numeric context. The value
of true becomes 1, and the value of false becomes 0. When used in a string context, true becomes
“true”, and false becomes “false”. The Boolean() function exists if you need to explicitly con-
vert a number or string to a Boolean value.

Exercises
	 1.	 Declare three variables—one number and two strings. The number should be 120, and

the strings should be “5150” and “Two Hundred Thirty”.

	 2.	 Create a new array with three numbers and two strings or words.

	 3.	 Use the alert() function to display the following string, properly escaped: Steve’s response
was “Cool!”.

	 4.	 Use Firebug to examine three of your favorite websites. Look closely for any JavaScript
errors that Firebug reports. Bonus: Use Internet Explorer to view those same three web-
sites and debug the errors using Internet Explorer tools and other related tools.

	 	 99

Chapter 5

Using Operators and Expressions
After reading this chapter, you’ll be able to:

n	 Understand the operators available in JavaScript.

n	 Use JavaScript operators to perform math, equality tests, relational tests,
and assignments.

n	 Use the void operator to open a new window by using a link.

Meet the Operators
The ECMA-262 specification defines assorted operators of various forms. These include:

n	 Additive operators

n	 Multiplicative operators

n	 Bitwise operators

n	 Equality operators

n	 Relational operators

n	 Unary operators	

n	 Assignment operators

Operators can be used on both literal values, such as on the numeral 10, and on variables
and other objects in JavaScript.

Additive Operators
The term additive operators includes both addition and subtraction operators, which seems
like a misnomer, really. But as my fifth-grade math teacher would remind me, subtraction
is just addition with a negative number. As you might guess, the operators for addition and
subtraction are + and –, respectively. Here are some examples of how they are used.

Note  You can find these examp es n the fi e add t veops txt n the compan on content

4 + 5; // This would be 9.

x + y; // Adds x and y together.

5 - 1; // Results in 4.

100	 Part I  JavaWhat? The Where, Why, and How of JavaScript

The addition operator operates in different ways depending on the types of the values be-
ing added. When adding two strings, the addition operator concatenates the left and right
arguments. When the types being added differ, you can get odd results, because JavaScript
must convert one of the types before performing the addition (or any math operation). For
example, you won’t get the expected results when you think you have a numeric variable but
the JavaScript interpreter thinks you have a string. Here are some specific examples:

var aNum = 947;

var aStr= "Rush";

var anotherNum = 53;

var aStrNum = "43";

var result1 = aNum + aStr; // result1 will be the string "947Rush";

var result2 = aNum + anotherNum; // result2 will be the number 1000;

var result3 = aNum + aStrNum; // result3 will be 94743;

As discussed in Chapter 4, “Working with Variables and Data Types,” in many cases, you can
explicitly change or convert one type to another in JavaScript. Take a look at the result3 variable
in the previous example. You probably want result3 to hold the result of the mathematical
expression 947+43. But because the second value, represented by aStrNum, is a string, the
expression concatenates the two values rather than adds them mathematically as numbers.
However, using the ToNumber() function instead converts aStrNum to a number so that you
can use it as expected in a mathematical expression, such as addition. Here’s the relevant
code, corrected to do what you might think it would:

var aNum = 947;

var aStrNum = ToNumber("43");

var result3 = aNum + aStrNum; // result3 will be 990;

Multiplicative Operators
Like additive operators, multiplicative operators behave just as you might expect; they per-
form multiplication and division. The multiplication operator (*) multiplies two numbers,
whereas the division operator (/) divides numbers. Here’s a multiplication example and its
output:

javascript:alert(2 * 2);

	 Chapter 5  Using Operators and Expressions	 101

The multiplicative operators include the modulo operator, which is indicated by the percent
sign (%). The modulo operator yields the remainder of the division of two numbers. For example,
the modulo of 4 divided by 3 is 1, as shown in the next bit of code.

Note  These examp es can be found n the fi e mu t p cat veops txt n the compan on content

javascript:alert(4 % 3);

The result is shown here:

Bitwise Operators
Bitwise operators include AND, OR, XOR, NOT, Shift Left, Shift Right With Sign, and Shift
Right With Zero Fill. Each operator is represented by one or more characters, as shown in
Table 5-1.

Table 5-1  Bitwise Operators
Operator Meaning
& AND

OR

^ XOR

~ NOT

<< Sh ft Left

>> Sh ft R ght W th S gn

>>> Sh ft R ght W th Zero F

In-depth coverage of the bitwise operators is beyond the scope of this book, though I men-
tion them in later chapters. You can find more information about bitwise operators in the
ECMA-262 specification.

102	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Equality Operators
You use equality operators to test whether two expressions are the same or different. These
operators always return Boolean types: either true or false. Table 5-2 lists JavaScript’s equality
operators.

Table 5-2  Equality Operators
Operator Meaning
== Equa

!= Not equa

=== Equa us ng str cter methods

!==	 Not equa us ng str cter methods

As you can see from Table 5-2, you can test for equality and inequality in two different ways.
These approaches differ in their strictness—that is, in the degree of equality they require to
determine whether two values are truly equal. The stricter of the two, represented by a triple
equals sign (), requires not only that the values of a given expression are equal, but also
that the types are identical. The strict test would determine that a string with the value “42”
is not equal to a number with the value of 42, whereas the less strict equality test would find
them to be equal. The example that follows is helpful for understanding this.

Testing the equality operators

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file equality.htm in the
Chapter05 sample files folder in the companion content.

	 2.	 In the webpage, replace the TO DO comment with the boldface code shown here. (This
code can be found in equality.txt.)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Equality</title>

 <script type="text/javascript">

 var x = 42;

 var y = "42";

 if (x == y) {

 alert("x is equal to y with a simple test.");

 } else {

 alert("x is not equal to y");

 }

 </script>

</head>

<body>

</body>

</html>

 Chapter 5 Using Operators and Expressions 103

	 3.	 Point your web browser to the newly created page . The code is fairly straightforward .
It defines two variables, x and y . The variable x is set to the number value 42, and y is
set to the string value of “42” (notice the double quotation marks) . The simple test for
equality is next, using . This type of equality test measures only the values and ignores
whether the variable types are the same . The if block calls the appropriate alert() func-
tion based on the result . You should receive an alert like this:

	 4.	 Change the equality test so that it uses the strict test . To do this, first change the equality
test to use the stricter of the two equality tests (that is,), and then change the alert
to read strict instead of simple . The full code should look like this (the changed lines are
shown in boldface type and are in the file equality2 .txt in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Equality</title>

 <script type="text/javascript">

 var x = 42;

 var y = "42";

 if (x === y) {

 alert("x is equal to y with a strict test.");

 } else {

 alert("x is not equal to y");

 }

 </script>

</head>

<body>

</body>

</html>

	 5.	 Point your web browser to the page again . The test for equality now uses the stricter
test, . The stricter test is like the simpler equality test in that it examines the values,
but it is different in that it also tests variable types . Because variable x is a number and
variable y is a string, the preceding equality test fails . The appropriate alert() function is
called based on the result . This time the alert looks like this:

104	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Relational Operators
Relational operators test expressions to find out whether they are greater than or less than
each other, or whether a given value is in a list or is an instance of a certain type. Table 5-3
lists the relational operators in JavaScript.

Table 5-3  Relational Operators
Operator Meaning
> Greater than

< Less than

>= Greater than or equa to

<= Less than or equa to

n Conta ned w th n an express on or object

nstanceof Is an nstance of an object

You are probably familiar with the first four relational operators in Table 5-3, but here are
some quick examples nonetheless. Take a look at the following code, which you can find in
the companion content in the file relational.txt:

if (3 > 4) {

 // do something

}

The integer 3 is never greater than the integer 4, so this code will never evaluate to true, and
the code inside the if block will never be executed. In a similar way, the following code tests
whether the variable x is less than y:

if (x < y) {

 // do something

}

	 Chapter 5  Using Operators and Expressions	 105

The in Operator
The in operator is most commonly used to evaluate whether a given property is contained
within an object. Be aware that the in operator searches for the existence of a property and
not the value of that property. Therefore, the following code (which you can find in the com-
panion content in the inop.txt file) will work because a property called “star” is in the myObj
object:

var myObj = {

 star: "Algol",

 constellation: "Perseus"

};

if ("star" in myObj) {

	 alert("There is a property called star in this object");

}

The in operator is commonly used to iterate through an object. You see an example of this
usage in Chapter 8, “Objects in JavaScript.”

The instanceof Operator
The instanceof operator tests whether a given expression, usually a variable, is an instance of
the object that is included as part of the statement. Yes, that’s awkward. Rather than fumble
around some more trying to explain it, I’ll just skip ahead to an example, and then it will all
make sense:

var myDate = new Date();

if (myDate instanceof Date) {

	 //do something

}

Because the variable myDate is an instance of the built-in Date object, the instanceof evalu-
ation returns true. The instanceof operator affects user-defined objects as well as on built-in
objects, as shown in the previous example.

106	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Unary Operators
Unary operators have a single operand or work with a single expression in JavaScript. Table
5-4 lists the JavaScript unary operators.

Table 5-4  Unary Operators
Operator Meaning
de ete Removes a property

vo d Returns undefined

typeof Returns a str ng represent ng the data type

++ Increments a number

-- Decrements a number

+ Converts the operand to a number

- Negates the operand

~ B tw se NOT

! Log ca NOT

Because the way you use unary operators isn’t obvious, I explain them a little more in this
chapter.

Incrementing and Decrementing
You use the ++ and -- operators to increment and decrement a number, respectively, as
shown in the following code (you can find this code in the file incrementing.txt in the com-
panion code):

var aNum = 4;

aNum++;

++aNum;

The placement of the operator in relation to the operand to which it is applied determines
the value returned by the code. When appended to the variable (referred to as postfixed),
as in the second line of code in the previous example, the operator returns the value before
it is incremented (or decremented, as the case may be). When prefixed, as in the last line of
code from the previous example, the operator returns the value after it is incremented (or
decremented).

Here are a couple of examples showing the difference between prefixing and postfixing in
code. The first example is postfixing:

var aNum = 4;

var y = aNum++; // y now has the value 4, but aNum then has the value 5

	 Chapter 5  Using Operators and Expressions	 107

The second example is prefixing:

var aNum = 4;

var y = ++aNum; // y now has the value 5, as does aNum

In practice, you use the postfix increment operator more often than the prefix increment op-
erator or the decrement operator because it is a convenient counter within a loop structure.
You learn about looping in JavaScript in Chapter 6, “Controlling Flow with Conditionals and
Loops.”

Converting to a Number with the Plus Sign
The plus sign (+) is supposed to convert a value to a number. In practice, however, I find it to
be somewhat unreliable—or at least not reliable enough to use in production code. When
I need to convert something to a number, I use the ToNumber() function explicitly. You can,
however, use the plus sign as a unary operator to attempt conversion, as follows (also shown
in the converting.txt file in the companion code):

var x = +"43";

This code results in the string “43” being converted to a number by JavaScript and the
numeric value 43 being stored in the variable x.

Creating a Negative Number with the Minus Sign
It may come as no surprise that when you use a minus sign (-) in front of a number, the num-
ber is converted to its negative counterpart, as in this code (also shown in the file creating.txt
in the companion code):

var y = "754";

var negat = -y;

alert(negat);

Negating with bitwise not and logical not
The tilde (~) character is a bitwise not, and the exclamation point (!) is a logical not. These
operators negate their counterparts. In the case of a bitwise not, its bit complement is giv-
en, so a 0 changes to a -1 and a -1 to a 0. A logical not, which is the negation you use most
frequently in JavaScript programming, negates the expression. If the expression is true, the
logical not operator makes it false.

For more information about Bitwise operations, see http://en.wikipedia.org/wiki
/Bitwise operation.

108	 Part I  JavaWhat? The Where, Why, and How of JavaScript

Using the delete Operator
The delete operator takes a property of an object or the index of an array and removes it, or
causes it to become undefined. Here’s a simple example using an array:

var myArray = ("The RCMP", "The Police", "State Patrol");

delete myArray[0]; // myArray now contains only "The Police" and "State Patrol"

The preceding code creates an array called myArray and then promptly deletes the value
at the first index. The delete operator works with objects too, as you can see in this next
example.

Using the delete operator with objects

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the file deleteop1.htm in the
Chapter05 sample files folder in the companion content.

	 2.	 Create the contents for a base page from which you use the delete operator in a later
step. In the page, replace the TO DO comments with the following code shown in bold-
face. (The code can also be found in deleteop1.txt file in the companion content.)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>The Delete Operator</title>

 <script type="text/javascript">

 var star = {};

 star["Polaris"] = new Object;

 star["Mizar"] = new Object;

 star["Aldebaran"] = new Object;

 star["Rigel"] = new Object;

 star["Polaris"].constellation = "Ursa Minor";

 star["Mizar"].constellation = "Ursa Major";

 star["Aldebaran"].constellation = "Taurus";

 star["Rigel"].constellation = "Orion";

 </script>

</head>

<body id="mainbody">

<script type="text/javascript">

 for (starName in star) {

 var para = document.createElement('p');

 para.id = starName;

	 Chapter 5  Using Operators and Expressions	 109

 para.appendChild(document.createTextNode(starName +

 ": " + star[starName].constellation));

 document.getElementsByTagName("body")[0].appendChild(para);

 }

</script>

</body>

</html>

In the <head> portion of the code, you created an empty star object and several addi-
tional star objects, each named star["starname"]. Then you gave the objects a constella-
tion property that has the value of the star’s constellation. Within the <body> portion
of the code, a for loop executes to iterate through each of the stars in the star object.
This code uses the Document Object Model (DOM), which is covered in Chapter 10,
“The Document Object Model.” For now, don’t concern yourself too much with what
the code inside the for loop is doing.

	 3.	 Save the file and view it in your web browser. The output is shown here:

	 4.	 Add the delete operator above the for loop in the code to remove the constellation
from Polaris. The code (available in the file deleteop2.txt in the companion content)
looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>The Delete Operator</title>

 <script type="text/javascript">

 var star = {};

110	 Part I  JavaWhat? The Where, Why, and How of JavaScript

 star["Polaris"] = new Object;

 star["Mizar"] = new Object;

 star["Aldebaran"] = new Object;

 star["Rigel"] = new Object;

 star["Polaris"].constellation = "Ursa Minor";

 star["Mizar"].constellation = "Ursa Major";

 star["Aldebaran"].constellation = "Taurus";

 star["Rigel"].constellation = "Orion";

 </script>

</head>

<body id="mainbody">

<script type="text/javascript">

 delete(star["Polaris"].constellation);

 for (starName in star) {

 var para = document.createElement('p');

 para.id = starName;

 para.appendChild(document.createTextNode(starName +

 ": " + star[starName].constellation));

 document.getElementsByTagName("body")[0].appendChild(para);

 }

</script>

</body>

</html>

Notice the addition of the delete operator in the <script> tag in the document’s body
(shown in boldface type).

	 5.	 Save the file and view it in a web browser. The output looks like this:

	 Chapter 5  Using Operators and Expressions	 111

Using the delete operator causes the constellation for Polaris to become undefined. You
can also delete the entire Polaris object like this:

 delete(star["Polaris"]);

Returning Variable Types with the typeof Operator
As you might expect, the typeof operator returns the variable type of the given operand.
Using typeof, you can determine, for example, whether a given variable was created and is
being used as a string, a number, or a Boolean; or whether that variable is a certain type of
object or function. Consider this code:

var star= {};

if (typeof(star) == "object") {

	 alert("star is an object");

}

The typeof operator returns “number” if a number is evaluated, “string” if a string type is
evaluated, and (as you saw from the example), “object” if an object is evaluated. When you
use properties, JavaScript smartly assumes that you want to know the type of variable that
the property is, rather than the type of object, so it returns that property’s value type. Here’s
an example that borrows a little code from earlier in the chapter.

Using the typeof operator

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the file typeof.htm in the Chapter05
sample files folder in the companion content.

	 2.	 Within the webpage, add the following code shown in boldface (available in the file
typeof.txt in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>The Typeof Example</title>

 <script type="text/javascript">

 var star = {};

 star["Polaris"] = new Object;

 star["Polaris"].constellation = "Ursa Minor";

 alert(typeof star["Polaris"].constellation);

112	 Part I  JavaWhat? The Where, Why, and How of JavaScript

 </script>

</head>

<body>

</body>

</html>

	 3.	 The code within the <script> tags creates a new object for the star Polaris and sets its
constellation property to the string “Ursa Minor”. It then calls an alert dialog box using
the typeof operator to show that the type of the star[“Polaris”].constellation property is
a string.

	 4.	 Save the file and view it in a web browser. You get an alert like this:

Using the typeof operator, you can also see the difference between null and undefined.

The void Operator
If you’ve examined any source code in JavaScript, you’ve likely seen the void operator. The
void operator returns undefined after evaluating its argument. This means that the void op-
erator enables the web developer to call a function without the results being shown in the
browser. Even though this operator and the javascript: pseudo-protocol exist JavaScript code,
avoid using it in any new code. This book’s coverage of the void operator and the javascript:
pseudo-protocol is included so that you understand what the operator is doing when debug-
ging existing JavaScript code.

A common use of the void operator is to submit a form or to open a new window. The fol-
lowing example shows the void operator in use:

void(window.open());

More commonly, you’d place javascript:void code inside a link on a webpage to open a new
window, as follows:

Open a new window by clicking here.

	 Chapter 5  Using Operators and Expressions	 113

Note  The void operator, or more spec fica y, the use of the javascript: pseudo-protoco w th n
an href, s genera y not recommended

Assignment Operators
You already reviewed assignments in this chapter, and you’ve seen them throughout the
book. The primary (or most frequently used) assignment operator is the equal sign (). This
type of operator is known as a simple assignment. JavaScript has many more assignment op-
erators, including those listed in Table 5-5.

Table 5-5: Compound Assignment Operators

Operator Meaning
*= Mu t p es the eft operand by the r ght operand

/= D v des the eft operand by the r ght operand

%= Prov des the d v s on rema nder (modu us) of the eft and r ght operand

+= Adds the r ght operand to the eft operand

-= Subtracts the r ght operand from the eft operand

<<= B tw se eft sh ft

>>= B tw se r ght sh ft

>>>= B tw se uns gned r ght sh ft

&= B tw se AND

^= B tw se XOR

= B tw se OR

Compound assignment operators provide shortcuts that save a few keystrokes and bytes. For
example, you can add or subtract from a number using + and - , respectively, as in this
example:

var myNum = 10;

alert(myNum);

myNum += 30;

alert(myNum);

The first alert, just after the variable has been defined and set equal to 10, is:

114	 Part I  JavaWhat? The Where, Why, and How of JavaScript

The next alert, after using a compound addition assignment, is:

The Importance of Byte Conservation (a.k.a. Minification)
Conserving bytes is an important topic for every JavaScript programmer. Byte conser-
vation refers to programming with shortcuts so that the resulting program in JavaScript
(or any other language, for that matter) consumes less memory and bandwidth. Each
time you can take advantage of features to save bytes, such as compound assignment
statements, the better off the program will be.

Fewer bytes means smaller scripts for users to download. Quantifying how many bytes
you can save, or how much that can assist you, is difficult. Some programmers might
argue that the effect is negligible—and for smaller scripts that’s probably true, espe-
cially because users increasingly have broadband or faster connections. But the posi-
tive effect smart shortcuts can have is very real for larger scripts, especially when those
scripts have to be downloaded using a dial-up or other slow type of connection.

One common approach to saving bytes during downloads is through minification
of JavaScript. Minification refers to the removal of all nonessential elements from a
JavaScript file on a live or production website. The nonessential elements include not
only comments, but also spaces and carriage returns. The resulting minified files are
fairly unreadable unless you reintroduce some spaces and carriage returns.

The Comma Operator
The comma operator separates expressions and executes them in order. Commonly, the com-
ma is used to separate variable declarations, which enables multiple variables to be declared
on one line:

var num1, num2, num3;

Alternatively, values can also be set:

var num1=3, num2=7, num3=10;

	 Chapter 5  Using Operators and Expressions	 115

Exercises
	 1.	 Use the addition operator (+) to send three alert() dialog boxes to the screen (you can

use three separate programs). The first alert should add two numbers. The second
should add a number and a string. The third should add two strings. All should be rep-
resented by variables.

	 2.	 Use the postfix increment operator (++) to increment a number stored in a variable.
Display the value of the variable before, while, and after incrementing. Use the prefix
increment operator to increment the number and display its results before, while, and
after incrementing by using an alert.

	 3.	 Use the typeof operator to check the type of variables you created in Exercise 1.

	 4.	 True or False: Unary operators don’t appear in JavaScript very often.

	 5.	 True or False: It’s always best to save bytes (using JavaScript shortcuts whenever pos-
sible), rather than use returns and indenting, which can slow down page loading.

	 	 117

Part II

Applying JavaScript

Chapter	6:	Controlling	Flow	with	Conditionals	and	Loops

Chapter	7:	Working	with	Functions

Chapter	8:	Objects	in	JavaScript

Chapter	9:	The	Browser	Object	Model

	 	 119

Chapter 6

Controlling Flow with Conditionals
and Loops

After reading this chapter, you’ll be able to:

n	 Understand the different types of conditional statements in JavaScript.

n	 Use the if else conditional statement to control code execution.

n	 Use the switch statement.

n	 Understand the different types of loop control structures in JavaScript.

n	 Use a while loop and a do...while loop to execute code repeatedly.

n	 Use different types of for loops to iterate through ranges of values.

If (and How)
The if statement evaluates an expression and, based on the results, determines which code
executes within a program More complex if statements can control which code executes
based on multiple conditions. If you’ve booked a flight on the Internet, you know about
making decisions. You might want to go on a quick weekend getaway, for example, so when
pricing the ticket, you would say, “If the ticket costs less than $350, I’ll book the flight, oth-
erwise I’ll find a different getaway spot.” Suppose I want to take out the trash. Should I take
the garbage to the curb tonight or wait until the morning? If the weather forecast is windy
overnight, the trash might get blown all over the neighbor’s lawn, but if I wait until morning,
I might miss the garbage truck. (A third option would be to tell my wife that it’s her turn to
take out the garbage, but that’s never worked in the past.)

Although JavaScript won’t help you make these real-life decisions, it can be a great help by
making decisions like these—that is, it can control how a program acts depending on whether
a variable contains a certain value or a form field is filled in correctly. This section reviews the
syntax of the if statement in JavaScript.

Syntax for if Statements
The syntax for the if statement might be familiar to you if you’ve programmed in other lan-
guages, including Perl or PHP. The basic structure of an if statement is this:

120	 Part II  Applying JavaScript

if (some condition) {

 // do something here

}

Note  The if statement s somet mes ca ed the if cond t ona I use these terms nterchangeab y
w th n th s and other chapters to get you comfortab e w th both terms But don’t confuse the if
cond t ona (the ent re if statement) w th the if cond t on, wh ch s the Boo ean express on that
the if statement eva uates

The if statement examines the validity, or truthfulness, of a condition to determine whether
the code within the conditional (inside the braces) is to be executed. The condition is a
Boolean expression that, when evaluated to true, causes the if statement to execute the code
in the conditional. (You can negate an expression in the condition to cause the code to run
if the expression evaluates to false.) Recall the use of Boolean and unary operators from
Chapter 5, “Using Operators and Expressions.” Here’s an example:

if (! some condition) {

 // do something here

}

In this case, the condition starts with the negation operator, which means that the condition
would need to evaluate to false for the code inside the conditional to execute.

The real-world airline cost example from earlier in the chapter might look like this in
pseudocode:

if (flightCost < 350) {

 bookFlight();

}

If the flight costs less than $350, the code within the conditional executes. The garbage
example might look like this:

if (forecast != "windy") {

 takeGarbageOut();

}

Later in this chapter, I show you how to use an else statement to cause other code to execute
when the condition is true.

You use if statement with many of the operators you learned about in Chapter 5, especially
relational operators that test whether one value is greater than or less than another value
and equality operators that test whether two values are equal to each other. Take a look at
these examples:

	 Chapter 6  Controlling Flow with Conditionals and Loops	 121

var x = 4;

var y = 3;

// Equality test

if (x == y) {

 // do something

}

Because the value in the variable x (4), does not equal the value in variable y (3), the code
within the if conditional (inside the braces) doesn’t execute. Here’s an example with a rela-
tional operator:

var x = 4;

var y = 3;

// Relational test

if (x > y) {

 // do something

}

In this case, because the value in variable x (4) is greater than the value in variable y (3), the
code within the braces executes.

The next section shows an example that you can perform yourself. This example takes advan-
tage of the prompt() function to get input from a visitor through a simple interface.

The prompt() Function in Internet Explorer
With the introduction of Windows Internet Explorer 7, the prompt() function is no longer
enabled by default. If you attempt to use the prompt() function with Internet Explorer, you
receive a security warning like the one shown in Figure 6-1, or possibly a page with the word
null, like the warning in Figure 6-2.

Figure 6-1  A secur ty warn ng caused by the prompt() funct on n nternet Exp orer.

Figure 6-2 When us ng the javascript: pseudo protoco w th the prompt() funct on, you can somet mes
rece ve a page w th the word null.

122	 Part II  Applying JavaScript

You can reliably get around this feature by clicking the information bar (shown in Figure 6-1)
and selecting an option to allow scripts, or by changing the security settings. You can change
security settings in Internet Explorer, for example, by selecting Internet Options from the
Tools menu, clicking the Security tab, clicking Custom Level, and enabling the Allow Web
Sites To Prompt For Information Using Scripted Windows option within the Scripting section.

However, you can’t rely on your visitors doing the same with their Internet Explorer settings.
Therefore, the prompt() function is no longer as useful as it was before Internet Explorer 7
was introduced. Some programmers might argue that the prompt() function was annoying
(and I agree that it created problems sometimes), but it did have its advantages, and disabling
it does very little to enhance security. But sometime it’s useful for test purposes, such as in
the following exercise.

Using if to make decisions about program flow

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the ifexample.htm file in
the Chapter06 sample files folder, which you can find in the companion content.

	 2.	 In the page, replace the TO DO comment with the following code shown in boldface
type, (this code is also in the ifexample.txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>An If Example</title>

</head>

<body>

<script type="text/javascript">

var inputNum = prompt("Please enter a number below 100:");

if (inputNum > 99) {

 alert("That number, " + inputNum + ", is not below 100.");

}

</script>

<p>This is an example from Chapter 6.</p>

</body>

</html>

	 3.	 Save the page and view it in a web browser. If you attempt to view the page in Internet
Explorer and receive a security warning, you need to change your security settings as
described previously. You can also use Firefox or another browser instead.

	 Chapter 6  Controlling Flow with Conditionals and Loops	 123

	 4.	 When you view the page, you see a prompt asking for a number below 100. Internet
Explorer typically fills in the text box with undefined in the dialog box. Type a number
and click OK. I typed , as you can see here:

	 5.	 Click OK. You see a page like the one here:

	 6.	 Reload the page in the browser, and this time, when prompted, type a number greater
than 100. You receive an alert like this one:

Aside from the Hypertext Markup Language (HTML) and opening script tags, which you’ve
seen in previous examples, the code works as follows:

124	 Part II  Applying JavaScript

The first line within the body’s <script> tag establishes a variable, inputNum, and then sets it
equal to the result from the prompt() function:

var inputNum = prompt("Please enter a number below 100:");

The next lines of code use an if statement to examine the value in the inputNum variable. If
the value is greater than 99, an alert is shown:

if (inputNum > 99) {

 alert("That number, " + inputNum + ", is not below 100.");

}

This example needs improvements in many areas, and later examples show how to improve
the code, taking advantage of what you’ve already learned and using some new techniques
you learn later on in this chapter.

Compound Conditions
Many times, you need to test for more than one condition within the same if statement.
Consider the previous example. Suppose you wanted to have the visitor enter a number be-
tween 51 and 99 inclusive. You could combine those tests within one if statement like this:

if ((inputNum < 51) || (inputNum > 99)) {

 alert("That number, " + inputNum + ", is not between 50 and 100.");

}

Note  You cou d a so wr te that if statement w thout the extra parentheses around each eva ua-
t on on the first ne; however, I find that add ng them mproves readab ty

You can see the full code from the earlier example, with a compound if statement shown in
boldface, in Listing 6-1. (You can find this code in the companion content as listing6-1.htm.)

Listing 6-1  A compound if statement.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>An If Example</title>

</head>

<body>

<script type="text/javascript">

var inputNum = prompt("Please enter a number between 50 and 100:");

	 Chapter 6  Controlling Flow with Conditionals and Loops	 125

if ((inputNum < 51) || (inputNum > 99)) {

 alert("That number, " + inputNum + ", is not between 50 and 100.");

}

</script>

<p>This is an example from Chapter 6.</p>

</body>

</html>

The statement in Listing 6-1 uses the logical OR operator and reads, “If inputNum is greater
than 99 or inputNum is less than 51, do this.”

Consider again the example we’ve been using for much of this chapter. If you enter a number
greater than 99 or less than 51, you receive an alert. But what if the input is not a number at
all? What if you entered the word boo? You wouldn’t receive the alert because the condition
being used checks only whether the variable is above or below specified numbers.

Therefore, the code should check whether the value contained in the variable is a number.
You can accomplish this task with the help of the isNaN() function and by nesting the deci-
sion, like this:

if (isNaN(inputNum) || ((inputNum > 99) || (inputNum < 51))) {

 alert("That number, " + inputNum + ", is not between 50 and 100.");

}

The conditional is now evaluated to first check whether the value in the inputNum variable is
a number. If this initial check proves true (the user did not enter a number), no further pro-
cessing is done, preventing the rest of the statement from being evaluated. If the user did
enter a number, the isNaN check fails, and the if statement performs the checks for the range
of numbers, which are nested together between parentheses, creating their own conditional
set. The result, when run with the input value of boo, is shown in Figure 6-3.

Figure 6-3  Runn ng the examp e w th the sNaN() funct on n a nested cond t ona .

126	 Part II  Applying JavaScript

The full code is shown in Listing 6-2 (in the listing6-2.htm file in the companion content). The
nested condition is shown in boldface.

Listing 6-2  A nested if statement.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>An If Example</title>

</head >

<body>

<script type="text/javascript">

var inputNum = prompt("Please enter a number between 50 and 100:");

if (isNaN(inputNum) || ((inputNum > 99) || (inputNum < 51))) {

 alert("That number, " + inputNum + ", is not between 50 and 100.");

}

</script>

<p>This is an example.</p>

</body>

</html>

Using else if and else Statements
The next problem with the code example used so far is that the alert dialog box text in Figure
6-3 always indicates that a number was entered. That obviously isn’t always the case—I entered
the word boo. What you really need is a way to perform multiple separate conditional checks.
How can you do this? Here’s where else if and else become useful.

Else if
Most modern programming languages have the if/else if/else conditional constructs,
but they differ in how they use those constructs, especially the way they spell or con-
struct the else if statement. Some languages define it as elsif, all one word (and mis-
spelled). Others define it as elseif—all one word but spelled correctly. Remembering
these different constructs is a challenge, and this discussion hasn’t even considered
the different ways that languages use braces to define the code to be executed. In
JavaScript programming, you use else if—two words, both spelled correctly.

	 Chapter 6  Controlling Flow with Conditionals and Loops	 127

Using else if and else, you can create multiple levels of conditions, each of which is tested in
turn. The code within the first matching condition is executed. If nothing matches, the code
inside the else condition, if present, is executed. Listing 6-3 (listing6-3.htm in the companion
content) shows code that first checks to see if the inputNum variable contains a number. If
the value is indeed a number, the else if statement performs the checks to make sure the
input value is within the appropriate range. The code calls an appropriate alert() function
based on the matching condition. If you’ve entered a number, then the else condition fires
and displays an alert showing the number.

Listing 6-3  Us ng an else if and else cond t on.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>An If Example</title>

</head>

<body>

<script type="text/javascript">

var inputNum = prompt("Please enter a number between 50 and 100:");

if (isNaN(inputNum)) {

 alert(inputNum + " doesn't appear to be a number.");

}

else if ((inputNum > 99) || (inputNum < 51)) {

 alert("That number, " + inputNum + ", is not between 50 and 100.");

}

else {

 alert("You entered a number: " + inputNum);

}

</script>

<p>This is an example from Chapter 6.</p>

</body>

</html>

128 Part II Applying JavaScript

In the same way you can use else if and else to test several conditions, you can (sometimes
even must) use multiple levels of conditions . For example, you can test for a certain condition,
and when successful, execute additional conditions . Here’s an example that takes advantage
of the match() function and a regular expression . For more information about regular expres-
sions, see Chapter 4, “Working with Variables and Data Types .”

	 1.	 Open an editor and—if you followed the earlier procedure in this chapter—open the
file you updated, ifexample .htm (in the companion content) .

The file should have the following code . (If you didn’t follow the earlier example, just
create an empty file, paste in the following code, and go on to the next step .)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>An If Example</title>

</head>

<body>

<script type="text/javascript">

var inputNum = prompt("Please enter a number below 100:");

if (inputNum > 99) {

 alert("That number, " + inputNum + ", is not below 100.");

}

</script>

<p>This is an example from Chapter 6.</p>

</body>

</html>

	 2.	 Save the file with a different file name .

	 3.	 In the newly saved file, enter the following code shown in boldface . Note that I’ve
included the changes from the earlier example in boldface:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>A Multi-Level Example</title>

</head>

<body>

	 Chapter 6  Controlling Flow with Conditionals and Loops	 129

<script type="text/javascript">

var inputNum = prompt("Please enter a number between 50 and 100:");

if (isNaN(inputNum)) {

 if (inputNum.match(/one|two|three|four|five|six|seven|eight|nine|ten/)) {

 alert("While this is a number, it's not really a number to me.");

 } else {

 alert(inputNum + " doesn't appear to be a number.");

 }

}

else if ((inputNum > 99) || (inputNum < 51)) {

 alert("That number, " + inputNum + ", is not between 50 and 100.");

}

</script>

<p>This is an example from Chapter 6.</p>

</body>

</html>

	 4.	 Test all these conditions. Start by visiting the page in a web browser. You are prompted
to enter a number. For this first test, type the word , as follows:

	 5.	 Click OK. The first if condition matches and then the nested if examines the input. The
input matches the string “four”, resulting in this dialog box:

	 6.	 Click OK to close the dialog box. Reload the page. Now type the phrase:

130	 Part II  Applying JavaScript

	 7.	 Click OK. As with the previous load of the page, the first condition (isNaN()) matches.
However, because the inner if test doesn’t match the phrase pizza, the else condition
of the nested if will match, resulting in this dialog box:

	 8.	 Click OK to close the dialog box, and once again, reload the page. This time, type the
numeral 4 into the text box, as follows:

	 9.	 Click OK. Now the first if condition fails because the number 4 really is a number.
Therefore, the else if condition is evaluated. Because the number 4 is less than 51
and not greater than 99, the else if condition is a match and displays this alert:

	 10.	 Good testing practices dictate that you also test a number above 99. Feel free to do
so. When you’re ready, just click OK to close the dialog box and reload the page once
more. This time, type the number , like this:

	 Chapter 6  Controlling Flow with Conditionals and Loops	 131

	 11.	 When you click OK, you won’t receive any alerts, because the number 64 is between 50
and 100 and so doesn’t match any of the test conditions.

I explained the code you’re reviewing in this procedure and in previous procedures, but did
not address the regular expression contained in the nested if. That statement was:

if (inputNum.match(/one|two|three|four|five|six|seven|eight|nine|ten/) {

The regular expression is used with the match() function (or property) of the inputNum
variable. The match() function accepts a regular expression as its argument. In this case,
the argument is this:

/one|two|three|four|five|six|seven|eight|nine|ten/

The expression is delineated with two forward slashes (/), one on each end. After that, the
regular expression looks for any one of the strings one, two, three, four, five, six, seven, eight,
nine, or ten. The pipe character (|) between each string indicates a logical OR, meaning that
this regular expression will match any one of those strings, but not more than one.

Interestingly, although this regular expression is very simple, it’s also very flawed. For this
regular expression to be better, it would need to mark, or anchor, the position of the match-
ing strings. As the code is written now, the string sixty would match just as the word six
matches now.

My intention here wasn’t to show a perfect regular expression, but rather to expose you to
one so that when you need to work with them, you don’t run away screaming!

Working with Ternary Conditionals
Another style of conditional construct is called a ternary conditional. This type of conditional
uses the question mark (?) operator to create a compact if/else construct. The basic structure
of a ternary conditional expression is quite simple

(name == "steve") ? "Hello Steve" : "Hello Unknown Person";

This statement might read as follows, “If name is steve, then “Hello Steve”, else “Hello
Unknown Person”.

You might use a ternary expression in a statement like the following (this code is in the
ternary.txt file in the companion content):

var greeting = (name == "steve") ? "Hello Steve" : "Hello Unknown Person";

alert(greeting);

132	 Part II  Applying JavaScript

This code sets the variable greeting to the value from the outcome of the ternary test. If the
value of the name variable is “steve”, the greeting variable gets the string value “Hello Steve”;
otherwise, the greeting variable gets the string value “Hello Unknown Person”. Here’s that
same code in the traditional if/else form:

if (name == "steve") {

 var greeting = "Hello Steve";

}

else {

 var greeting = "Hello Unknown Person";

}

alert(greeting);

The ternary construct can sometimes be confusing if you’ve never seen it before. There’s no
shame in sticking to the traditional if/else syntax if you think it will help the readability of
your programs in the future—especially if the person reading them doesn’t know about the
ternary construction!

Testing with switch
The switch statement is an easy and efficient way to test a variable for several values and then
execute code based on whichever case matches. Although you can accomplish the task by
using if/else if statements, doing so can be cumbersome; the switch statement is more useful
for this situation.

Consider the example of a website that needs to execute certain code based on the language
that the user chooses. For this exercise, assume that the visitor has chosen his or her language
through a form. (Chapter 11, “JavaScript Events and the Browser,” examines a way to detect
the default language of the visitor’s browser.)

If this site needed to execute code for several languages, we could use a giant set of if/else
if/else conditionals. Assuming a variable called languageChoice with the value of the chosen
language, the code might look like this:

if (languageChoice == "en") {

 // Language is English, execute code for English.

}

else if (languageChoice == "de") {

 // Language is German, execute code for German.

}

else if (languageChoice == "pt") {

 // Language is Portuguese, execute code for Portuguese.

}

else {

 // Language not chosen, use Swedish.

}

	 Chapter 6  Controlling Flow with Conditionals and Loops	 133

This code works OK when only a few languages are selected, but imagine this scenario with
20 or more languages selected. Then add more code to be executed for each condition, and
it quickly becomes a maze. Here’s the same code within a switch (you can find the code in
the switches.txt file in the companion content):

switch(languageChoice) {

 case "en":

 // Language is English, execute code for English.

 break;

 case "de":

 // Language is German, execute code for German.

 break;

 case "pt":

 // Language is Portuguese, execute code for Portuguese.

 break;

 default:

 // Language not chosen, use Swedish.

}

// Back to code outside the switch statement

The switch statement looks for each language case and then executes code for that case. The
break statement indicates the end of the code that executes when a matching case is found.
The break statement causes the code execution to break out of the switch statement entirely
and continue executing after the closing brace of the switch statement.

For example, if the variable languageChoice was de and the break statement was missing,
the code for German would be executed, but the switch statement would continue test-
ing the rest of the code for the other languages until it encountered a break statement or
reached the end of the switch statement.

You almost always use the break statement with each case in a switch statement. However,
part of the elegance of the switch statement is apparent when you have multiple cases that
should execute the same code. Consider an example where a visitor chooses which country
or region he or she is from. On such a site, visitors from the United States, Australia, and
Great Britain would probably want their page to be displayed in English, even though people
in these three countries spell (and pronounce) many words differently. Here’s an example
switch statement (also in the switches.txt file in the companion content) for this:

switch(countryChoice) {

 case "US":

 case "Australia":

 case "Great Britain":

 // Language is English, execute code for English

 break;

 case "Germany":

 // Language is German, execute code for German.

 break;

 case "Portugal":

 // Language is Portuguese, execute code for Portuguese.

 break;

134	 Part II  Applying JavaScript

 default:

 // Locale not chosen, use Swedish.

}

// Back to code outside the loop

Note  As my fr ends from Montrea wou d po nt out and as I wou d recommend, v s tors from
any country shou d be ab e to choose another anguage that the s te supports, such as French
Ignore that feature for th s examp e, but take t nto account when des gn ng your s te

If the visitor chooses Australia as her country, the case for Australia will match, thus executing
the code for English. Thanks to the break statement, JavaScript then breaks out of the switch
statement and executes the first line of code following the switch statement.

Looping with while
The while statement creates a loop in which code is executed as long as some condition is
true. This section examines the while statement and the related do...while statement.

The while Statement
A while loop executes the code contained within its braces until a condition is met. Here’s an
example (this code is in the while.txt file in the companion content):

var count = 0;

while (count < 10) {

 // Do something in here.

 // Multiple lines are fine.

 // Don't forget to increment the counter:

 count++;

}

Always keep in mind two important aspects of while loops, listed here and discussed in turn:

n	 The code contained within a while statement might never execute, depending on the
starting value of the variable or condition being tested.

n	 The condition being tested by the while statement must be changed within the loop.

Making Sure the Code Executes at Least Once
In the preceding code example, the variable count is initially set to the number 0. The while
statement then runs as follows: the evaluation of the while statement examines the value of
the count variable to see whether it is less than 10. Because it is, the code within the braces
executes. (However, if the value of the count variable was not less than 10, the code within
the while statement’s braces would never execute—not even once.)

	 Chapter 6  Controlling Flow with Conditionals and Loops	 135

In JavaScript, the do...while loop executes code once, no matter what the initial condition is.
The do...while loop is discussed a little later in this chapter.

Changing the Condition
As previously stated, the evaluation of the while statement in the example examines the vari-
able to see whether it’s less than 10. If count is less than 10, the code within the while loop
executes.

One of the lines of code within the while loop increments the count variable using the ++
unary operator, as follows:

count++;

When the code in the while statement finishes executing, the evaluation repeats. Without the
code to increment the count variable, count would always be less than 10, so you would have
an endless loop on your hands—not what you want.

Tip  When you use a gener c counter var ab e, as I d d n the examp e, where you ncrement that
var ab e s not mportant as ong as you do t w th n the while statement’s braces or w th n the
while statement test Here’s an examp e while (i++ < 10) See Chapter 5 for more nformat on
about the postfix operator

The moral of this story is to make sure that you increment or change whatever condition that
you evaluate in the while statement.

The do...while Statement
Unlike the while statement, the do...while statement executes the code contained in its braces
at least once. The while statement might read like this: “While the condition is met, run this
code.” On the other hand, the do...while statement might read like this: “Do (or run) this code
while the condition is met.” Consider this code (in the dowhile.htm file in the companion
content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Do While</title>

</head>

<body>

<script type="text/javascript">

var count = 0;

do {

 alert("Count is " + count);

 count++;

136	 Part II  Applying JavaScript

}

while (count < 3);

</script>

</body>

</html>

When this code executes, three dialog boxes appear. During the first run, the count variable
holds a value of 0 because the variable is still set to the initial value, and the dialog box indi-
cates that, as shown in Figure 6-4.

Figure 6-4  The count s zero dur ng the first execut on.

After running once, the count variable gets incremented. When the while statement is evalu-
ated, count is still less than 3, so the code is executed again, resulting in the dialog box shown
in Figure 6-5.

Figure 6-5 When runn ng, the code ncrements the counter and shows the resu t of the next execut on.

The same process occurs again. The count variable is incremented, and the while condition
is evaluated. The value of count is still less than 3, so the code within the braces runs again,
showing another dialog box that looks like Figure 6-6.

	 Chapter 6  Controlling Flow with Conditionals and Loops	 137

Figure 6-6  The count var ab e after another run.

Experiment with while and do...while statements until you’re comfortable with the differences
between them.

Using for Loops
A for loop is frequently used in the same way a while loop is, namely, to execute code a
certain number of times. The for loop has two cousins in JavaScript: the for...in loop and
the for each...in loop. This section examines both loop types.

The for Loop
You use a for loop to create a loop in which the conditions are initialized, evaluated, and
changed in a compact form. Here’s an example:

for (var count = 0; count < 10; count++) {

 // Execute code here

}

A for statement has three clauses in parentheses. The first clause sets the initial expression, as
shown in the preceding example and also here:

var count = 0;

The next clause of a for statement specifies the test expression, represented by the following
code from the example:

count < 10;

The final expression is usually used to increment the counter used for the test. In the code
example, this expression is the final clause in the parentheses:

count++

138	 Part II  Applying JavaScript

Note  The ast express on n a for oop construct does not requ re a sem co on

Here’s an example that you can try. It uses a for loop to iterate over an array.

Using a for loop with an array

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the forloop.htm file in the Chapter06
sample files folder in the companion content.

	 2.	 Within the page, replace the TO DO comment with the following boldface code (you
can find the code in the forloop.txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>For Loop Example</title>

</head>

<body>

<script type="text/javascript">

var myArray = ["Vega","Deneb","Altair"];

var arrayLength = myArray.length;

for (var count = 0; count < arrayLength; count++) {

 alert(myArray[count]);

}

</script>

</body>

</html>

	 3.	 Save the page and view it in a web browser. You receive three successive alert() dialog
boxes:

	 Chapter 6  Controlling Flow with Conditionals and Loops	 139

As you can see from the dialog boxes, the code iterates through each of the values within the
myArray array. I’d like to highlight some of the code from this example. Recall from Chapter
4, in which you learned how to create an array, that arrays in JavaScript are indexed by integer
values beginning at 0. (This knowledge will come in handy in a little while.) Here’s the perti-
nent line from the preceding code example:

var myArray = ["Vega","Deneb","Altair"];

The code creates a variable called arrayLength and sets it to the length of the array. Obtaining
the length of the myArray array illustrates the use of the array object property named length.
(I explain objects in more depth in Chapter 8, “Objects in JavaScript.”) Obtaining the length
within a separate variable (arrayLength in this case, as shown in the following code) rather
than by using the length property within the for loop improves performance.

var arrayLength = myArray.length;

The for loop first creates and initializes the count variable, and next checks whether the count
variable is less than the length of the myArray array as set in the arrayLength variable. Finally,
it increments the value of the count variable. The code within the body of the for loop shows
an alert, using the value of the count variable to iterate through the indexes of the myArray
array. Here’s the code:

for (var count = 0; count < arrayLength; count++) {

 alert(myArray[count]);

}

140	 Part II  Applying JavaScript

The for...in Loop
The for...in loop iterates through the properties of an object, returning the names of the
properties themselves. Here’s an example:

for (var myProp in myObject) {

 alert(myProp + " = " + myObject[myProp]);

}

In this code, the variable myProp gets set to a new property of myObject each time the loop
is executed. Here’s a more complete example that you can try.

Using a for...in loop

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the forinloop.htm file in the
Chapter06 sample files folder, which you can find in the companion content.

	 2.	 Within the page, replace the TO DO comments with the following code shown in bold-
face (the code is in the forinloop.txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>For In Loop Example</title>

</head>

<body>

<script type="text/javascript">

 var star = new Object;

 star.name = "Polaris";

 star.type = "Double/Cepheid";

 star.constellation = "Ursa Minor";

 for (var starProp in star) {

 alert(starProp + " = " + star[starProp]);

 }

</script>

</body>

</html>

	 3.	 Save the file and view it in a web browser. You receive three dialog boxes:

	 Chapter 6  Controlling Flow with Conditionals and Loops	 141

As you can see from the code in the example, the variable starProp receives the name of
the property, whereas using starProp as the index of the star object yields the value of that
property.

Tip  You somet mes see for...in oops used to terate through an array n much the same way
you saw them used n the prev ous sect on However, us ng for...in to terate through an array
can have m xed resu ts One of the more v s b e prob ems of th s approach s that a for...in oop
doesn’t return the propert es n any part cu ar order Th s behav or can be troub esome, espec a y
when you want to wr te text to a webpage w th JavaScr pt! The po nt here s that when you want
to oop through a s mp e array, use the for oop rather than the for...in oop

The for each...in Loop
A newer construct available in JavaScript is the for each...in loop. Because it’s new, this con-
struct is not yet supported in all browsers—notably, it’s not supported in Internet Explorer 8
and earlier. It is supported in Firefox 2.0 and later, though.

142	 Part II  Applying JavaScript

Whereas the for...in construct returns the name of the property, the for each...in loop returns
the value of the property. The syntax is essentially the same, but with the addition of the
word each:

for each (var myValue in myObject) {

 alert(myValue " is in the object.");

}

Replacing the for...in loop from the earlier example with a for each...in loop results in the fol-
lowing code. The new code is in boldface. (The updated file is in the foreach.htm file in the
companion content.)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>For Each In Loop Example</title>

</head>

<body>

<script type="text/javascript">

 var star = new Object;

 star.name = "Polaris";

 star.type = "Double/Cepheid";

 star.constellation = "Ursa Minor";

 for each (var starValue in star) {

 alert(starValue + " is in the star object.");

 }

</script>

</body>

</html>

When you view the page in Internet Explorer, you see an error screen (or maybe just a blank
screen). Viewing the page in Firefox 3.0, however, reveals the correct behavior. Figure 6-7
shows one of the three dialog boxes that results.

Figure 6-7  terat ng through an object us ng the for each...in oop.

You may want to refrain from using the for each...in loops construction because it is not
supported in earlier (and still widely used) versions of Internet Explorer.

	 Chapter 6  Controlling Flow with Conditionals and Loops	 143

Validating Forms with Conditionals
Earlier in this chapter, you used the prompt() function to obtain input from the user. Using
the prompt() function is somewhat uncommon, and it’s fast becoming even less common
because Internet Explorer 7 blocks it. This section previews using web forms with JavaScript.
All of Chapter 14, “Using JavaScript with Web Forms,” is devoted to this subject.

Using an if else … if else conditional to validate input is a common task, so let’s do that.

Validating input with a conditional statement

	 1.	 Open Visual Studio, Eclipse, or another editor and create a new webpage. Name this
one form1example.htm.

	 2.	 Within the page, enter the following markup and add the code shown in boldface,
replacing the TO DO comment (you can find the new code in the form1example.txt
file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Just Your Basic Form</title>

 <script type="text/javascript">

 function alertName() {

 var name = document.forms[0].nametext.value;

 if (name == "steve") {

 alert("Hello Steve. Welcome to Machine");

 }

 else if (name == "nancy") {

 alert("Hello Tim.");

 }

 else {

 alert("Hello " + name);

 }

 return true;

 } //end function

 </script>

</head>

<body>

<form id="myform" action="#" onsubmit="return alertName();">

<p>Username: <input id="nametext" name="username" type="text" /></p>

<p><input type="submit" /></p>

</form>

</body>

</html>

144	 Part II  Applying JavaScript

	 3.	 Save the page and view it in a web browser. You should see a page like this:

	 4.	 In the form, type the name steve, without the quotation marks, being sure to use
lowercase letters. Click Submit Query, and you receive a dialog box like this:

	 5.	 Click OK, and now type in the name , again without the quotation marks and in lower-
case letters. When you click Submit Query, you receive a dialog box like this:

In case you’re wondering, Tim’s nickname is Nancy, so this dialog box actually does
make sense. It’s also correct per the code in the example.

	 Chapter 6  Controlling Flow with Conditionals and Loops	 145

	 6.	 Click OK to close the dialog box. Type the name and click Submit Query. You receive
this dialog box:

	 7.	 Click OK to close this dialog box.

You created a basic web form, accessed that form using JavaScript, and used a conditional to
take an action based on user input. Don’t worry if everything used in this example doesn’t
quite make sense yet. The main goal of the example was just to give some context for the
conditionals you learned about in this chapter.

Chapter 7, “Working with Functions,” examines using functions within JavaScript. The first
example in Chapter 14 shows how to write JavaScript validation code to ensure that required
fields are filled in.

Exercises
	 1.	 Use a prompt() function to collect a person’s name. Use a switch statement to

execute a dialog box displaying the phrase “Welcome <the entered name>” if the
name entered is yours, “Go Away” if the name entered is Steve, and “Please Come
Back Later <the entered name>” for all other cases.

	 2.	 Use a prompt() function to collect the current temperature as input by the visitor. If the
temperature entered is above 100, tell the visitor to cool down. If the temperature is
below 20, tell the visitor to warm up.

	 3.	 Use a ternary statement to accomplish the same task as in Exercise 2.

	 4.	 Use a for loop to count from 1 to 100. When the number is at 99, display an alert
dialog box.

	 5.	 Use a while loop to accomplish the same task described in Exercise 4.

	 	 147

Chapter 7

Working with Functions
After reading this chapter, you’ll be able to:

n	 Understand the purpose of functions in JavaScript.

n	 Define your own functions.

n	 Call functions and receive data back from them.

n	 Understand some of the built-in functions in JavaScript.

What’s in a Function?
A JavaScript function is a collection of statements, either named or unnamed (anonymous),
that can be called from elsewhere within a JavaScript program. Functions can accept argu-
ments, which are input values passed into the function. Within a function, those arguments
passed into the function can be acted upon and the results returned to the caller of the func-
tion via a return value.

Functions are perfect when you have something that needs to happen multiple times within
a program. Rather than defining the same code multiple times, you can use a function (which
is really just like a miniprogram inside a program) to perform that action. Even if you have
bits of code that are very similar—but not identical—throughout the program, you might be
able to abstract them into a single function.

A good example of abstracting similar code is using a function to verify that required form
fields have been filled in. You could write JavaScript code to verify each individual named
field in the form, or you could use a function. Chapter 14, “Using JavaScript with Web Forms,”
shows an example of building a specific function and then abstracting it.

You’ve already seen functions at work through examples in earlier chapters. A function is
defined with the keyword function, usually followed by the name of the function, and then
by parentheses that contain optional arguments or parameters to be used. Use braces to sur-
round the statements to be executed as part of the function:

function functionName() {

 // Statements go here;

}

148	 Part II  Applying JavaScript

Tip  It’s mportant to note that when a funct on s defined (you can see th s n the preced ng
bas c funct on defin t on), the code sn’t actua y executed unt the funct on s nvoked, or ca ed
You see how to ca a funct on ater n th s chapter

Function Arguments
Place arguments passed to a function within the parentheses of the function definition.
Here’s a brief example of using function arguments:

function myFunction(argument1, argument2, ..., argumentN) {

}

Here’s an example with two arguments

function myFunction(argument1, argument2) {

 // Do something

}

Calling, or invoking, the function is as simple as:

myFunction(val1,val2);

One of the differences between JavaScript (the ECMA-262 specification) and other languages
is that in JavaScript, you don’t need to specify the number of arguments being passed into a
function, nor do the number of arguments being passed in need to match those that are de-
fined in the function definition. When invoked, the function is given an object (that acts like
an array) named arguments. Arguments holds the arguments sent into the function, which
can be helpful when you don’t know the number of arguments being sent in. Here’s an
example of how this works (you can find this code in the functionbasics.txt file in the com-
panion content):

function myFunction() {

 var firstArg = arguments[0];

 var secondArg = arguments[1];

}

Better still, you could get the length of the arguments object and loop through each argu-
ment, as follows (also in the functionbasics.txt file in the companion content):

function myFunction() {

 var argLength = arguments.length;

 for (var i = 0; i < argLength; i++) {

 // Do something with each argument (i)

 }

}

	 Chapter 7  Working with Functions	 149

Here’s a more complete example showing the results from a simple use of the arguments
object (also in the functionexample.htm file):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Arguments Array</title>

</head>

<body>

<script type="text/javascript">

function myFunction() {

 var firstArg = arguments[0];

 var secondArg = arguments[1];

 alert("firstArg is: " + firstArg);

 alert("secondArg is: " + secondArg);

}

myFunction("hello","world");

</script>

</body>

</html>

When the code executes, it displays two alerts, as depicted in Figures 7-1 and 7-2.

Figure 7-1  Us ng the arguments object w th n a funct on to access the first argument.

Figure 7-2  Us ng the arguments object w th n a funct on to access the second argument.

Using the arguments object in this way, you can extrapolate to any number of arguments,
not only to the two shown in this example.

150	 Part II  Applying JavaScript

Variable Scoping Revisited
Function arguments are frequently variable names and shouldn’t be named the same as the
variables that are used to invoke the functions. I purposefully use “shouldn’t” rather than
“don’t,” because you could use the same name for the variables in the function and the variables
in the function invocation, but doing that could create some confusing code and confusing
scoping, as you’ll learn.

Chapter 4, “Working with Variables and Data Types,” contains a section about variable scop-
ing, including an exercise dealing with scoping inside and outside functions. The relevant
code from one of the variable scoping examples in Chapter 4 (and repeated in the scoping
revisit.txt file in the companion content) looks like this:

<head>

 <title>Scoping Example</title>

 <script type="text/javascript">

 var aNewVariable = "is global.";

 function doSomething(incomingBits) {

 alert("Global variable within the function: " + aNewVariable);

 alert("Local variable within the function: " + incomingBits);

 }

 </script>

</head>

<body>

<script type="text/javascript">

 doSomething("is a local variable");

 alert("Global var outside the function: " + aNewVariable);

 alert("Local var outside the function: " + incomingBits);

</script>

</body>

This example shows how you can globally and locally declare and scope variables from inside
and outside a function. However, the example keeps the variables logically separate, in that it
doesn’t use the same variable name, and then changes the variable s value. Here’s an example
in which using the same variable name might cause confusion. I find that the code I wrote
years ago is confusing enough without introducing weird scoping issues, so try to avoid code
like this:

function addNumbers() {

 firstNum = 4;

 secondNum = 8;

 result = firstNum + secondNum;

 return result;

}

result = 0;

sum = addNumbers();

	 Chapter 7  Working with Functions	 151

You might already have spotted the problem with this code. The var keyword is missing
everywhere. Even though the code explicitly initializes the result variable to 0 outside the
function, the variable gets modified by the call to the addNumbers() function. This in turn
modifies the result variable to 12, the result of adding 4 and 8 inside the function.

If you added an alert to display the result variable right after the initialization of the result
variable, the alert would show 0. And if you added another alert to display the result variable
after the call to the addNumbers() function, the result would show 12. I leave it to you in an
exercise later to add these alerts in the right places.

The bottom line is that your life is easier when you use different names for variables inside
and outside functions, and always use the var keyword to initialize variables. Depending on
the code contained in the function, the function may or may not have a return value. That
return value is passed back to the caller, as you see in the next section.

Return Values
When a function finishes executing its code, it can return a value to the caller by using the
return keyword. Take a look at Listing 7-1 (in the listing7-1.txt file in the companion content).

Listing 7-1  A s mp e return va ue examp e.

function multiplyNums(x) {

 return x * 2;

}

var theNumber = 10;

var result = multiplyNums(theNumber);

alert(result);

Listing 7-1 creates a function called multiplyNums with an intended input value, which will be
assigned to the variable x. The function performs one task: it returns its argument multiplied
by 2, as follows:

function multiplyNums(x) {

 return x * 2;

}

The code then creates a variable called theNumber, as follows:

var theNumber = 10;

Next, the code creates another variable called result. This variable holds the result of the call
to the multiplyNums function. The multiplyNum function uses the variable theNumber as an
argument:

var result = multiplyNums(theNumber);

152	 Part II  Applying JavaScript

When run, the code results in a dialog box, like the one shown in Figure 7-3.

Figure 7-3  Th s a ert shows the return va ue from the funct on ca .

You can place the return value anywhere within a function, not just at the end. Using a return
within a conditional or after a loop is common, as shown here (you can find this in the
morereturnexamples.txt file in the companion content):

function myFunction(x) {

 if (x == 1) {

 return true;

 } else {

 return false;

}

Be careful where you place the return statement, though, because when the function execution
gets to the return statement, the function returns immediately and won’t execute any code
after that. For example, code such as this (you can find this in the morereturnexamples.txt file
in the companion content) probably won’t do what you want:

function myFunction() {

 var count = 0;

 var firstNum = 48;

 return;

 var secondNum = 109;

}

This code never reaches the initialization of the variable secondNum.

More on Calling Functions
You nearly always invoke a function with some arguments, or with empty parentheses,
like this:

var result = orderFruit();

If arguments were required for that function, the function might look like this:

var result = orderFruit(type,quantity);

	 Chapter 7  Working with Functions	 153

Omitting the parentheses to call a function may result in actions that are entirely different
from what you want. Calling a function without parentheses results in the function name
being returned, rather than whatever the function was supposed to return. Just as important,
the function isn’t actually executed.

Here’s an example. Listing 7-2 (which you can find in the listing7-2.htm file in the companion
content) shows some basic JavaScript code.

Listing 7-2  nvok ng a funct on.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Order Fruit</title>

 <script type="text/javascript">

 function orderFruit() {

 var total = 0;

 // Call another function to place order

 return total;

 }

 </script>

</head>

<body>

<script type="text/javascript">

var result = orderFruit();

alert("The total is " + result);

</script>

</body>

</html>

When executed, this code invokes the orderFruit() function. The orderFruit() function invokes
another function (not shown) to place an order. The total is then calculated and sent back to
the caller. As written, the code works fine and results in a dialog box like that shown in Figure
7-4.

Figure 7-4  nvok ng the orderFruit() funct on w th parentheses y e ds the resu ts you d expect.

154	 Part II  Applying JavaScript

A slight modification to the code—specifically, changing the function call to remove the
parentheses—changes the entire result:

var result = orderFruit;

The result is shown in Figure 7-5.

Figure 7-5  Ca ng orderFruit w thout parentheses probab y doesn t turn out the way you want.

Regardless of whether a function returns a value or accepts any arguments, calling the func-
tion by using parentheses to execute its code is important.

Anonymous/Unnamed Functions (Function Literals)
The functions you ve seen so far are formally defined. However, JavaScript doesn t require
functions to be formally defined in this way. For example, with a function literal—also known
as an unnamed, or anonymous function—the function is defined and tied to a variable, like
this:

var divNums = function(firstNum,secondNum) { return firstNum / secondNum; };

You can easily test this functionality with the javascript: pseudo-protocol. Type the following
code in the address bar of your browser:

javascript:var divNums = function(firstNum,secondNum) { return firstNum / secondNum; };

alert(divNums(8,2));

Anonymous functions are frequently used in object-oriented JavaScript and as handlers for
events. You see an example of this usage in Chapter 8, “Objects in JavaScript,” and in later
chapters.

	 Chapter 7  Working with Functions	 155

Closures
In JavaScript, nested functions have access to the outer function s variables. Closures refer
to the existence of variables outside a function s normal execution context. Closures are
frequently created by accident and can cause memory leak problems in Windows Internet
Explorer if they’re not handled properly. However, closures are one of the more powerful
(and advanced) areas of JavaScript.

Here’s an example of a closure:

function myFunction() {

 var myNum = 10;

 function showNum() {

 alert(myNum);

 }

 return showNum();

}

var callFunc = myFunction();

myFunction();

In this example, the function showNum has access to the variable myNum created in the outer
(myFunction) function. The variable callFunc is created in the global context and contains a
reference to the showNum function. When the callFunc variable is created, it immediately has
access to the myNum variable.

Closures can be used to emulate private methods inside of objects, and have other uses,
such as in event handlers. Closures are one of the more powerful and advanced concepts in
JavaScript and as such aren t appropriate to discuss at length in an introductory book. You
can find more information about closures at http://msdn.microsoft.com/en-us/scriptjunkie
/ff696765.aspx and elsewhere on the Internet.

Methods
The easiest way to think about methods is that they are functions defined as part of an ob-
ject. That’s an oversimplification, but it suffices for now. You access a method of an object
by using the dot operator (“.”). Built-in objects, such as the Math, Date, and String objects, all
have methods that you’ve seen (or will soon see) in this book. Functions such as the alert()
function are actually just methods of the window object, and could be written as window.
alert() rather than just alert(). Chapter 8 covers objects and methods in greater detail.

156	 Part II  Applying JavaScript

Note  In much of the book, I use the term method and function nterchangeab y I’ cont nue to
do so just so that you better understand that the ne between these two s b urry for most uses
When a funct on s used n an object-or ented manner, us ng the term method s often c earer When
not used d rect y n an object-or ented manner—for examp e, the way you use the alert() funct on—
us ng the term function s acceptab e.

Defining Your Own Functions vs. Using Built-in Functions
As you’ve seen throughout the book, JavaScript has numerous built-in functions, or
methods. In addition to using these built-in functions, you will frequently find yourself
defining your own functions. Except for trivial scripts, most scripts you write will involve
your own functions.

In some cases, however, you might define a function and then later discover that
JavaScript already has an equally good built-in function for that same purpose. If you
find that a JavaScript built-in function performs the same task as your own function,
using the JavaScript function is usually a better idea.

A Look at Dialog Functions
By now, you know all about the alert() function in JavaScript because you’ve seen many
examples of it in previous chapters. You’ve also learned that the alert() function is just a
method of the window object. This section looks at the everyday use of the alert() function
in JavaScript, as well as two related functions of the window object.

More Info  The window object s mportant enough to get some add t ona attent on n Chapter
9, “The Browser Object Mode ” That chapter d scusses numerous other methods of the window
object

Although the window object has several methods, for now, I’d just like to highlight these
three (which I call functions): alert(), confirm(), and prompt(). Because you’ve already seen
too many alert() dialog boxes in the book, I won’t include another one here (thank me later).
Chapter 6, “Controlling Flow with Conditionals and Loops,” discussed the use of the prompt()
function and how Internet Explorer 7 blocks it by default as a security measure. The confirm()
function is still available in Internet Explorer, though.

The confirm() function displays a modal dialog box with two buttons, OK and Cancel, like the
one shown in Figure 7-6. (A modal dialog box prevents other activity or clicks in the browser
until the visitor closes the dialog box—in this case, by clicking OK or Cancel.)

	 Chapter 7  Working with Functions	 157

Figure 7-6  The confirm() JavaScr pt funct on prov des a d a og box for confirm ng user act ons.

When you click OK, the confirm() function returns true. As you might guess, when you click
Cancel, the confirm() function returns false.

Like alert() and prompt(), the confirm() function creates a modal dialog box on most platforms.
This can get annoying if these functions are overused or used in the wrong place. But used
properly, to provide important feedback and obtain vital information, these functions can be
quite useful.

Tip  Don’t use the confirm() funct on n p ace of a web form to obta n user nput The web form
s much better for nav gat on and w keep your v s tors happ er

The next exercise walks you through using the confirm() function to obtain input and make a
decision based on that input.

Obtaining input with confirm()

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file confirm.htm in the
Chapter07 sample files folder in the companion content.

	 2.	 In the page, replace the TO DO comments with the following code shown in boldface
(you can find this code is in the confirm.txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Confirming Something</title>

 <script type="text/javascript">

 function processConfirm(answer) {

 var result = "";

 if (answer) {

 result = "Excellent. We'll play a nice game of chess.";

 } else {

 result = "Maybe later then.";

158 Part II Applying JavaScript

 }

 return result;

 }

 </script>

</head>

<body>

<script type="text/javascript">

var confirmAnswer = confirm("Shall we play a game?");

var theAnswer = processConfirm(confirmAnswer);

alert(theAnswer);

</script>

</body>

</html>

	 3.	 Save the page and view it in a web browser . You are presented with a dialog box that
looks this:

	 4.	 Click OK . You see an alert() dialog box:

	 5.	 Click OK, and then reload the page .

	 6.	 You are again shown the original dialog box from the confirm() function, which asks
if you’d like to play a game . This time click Cancel . You are presented with a different
alert() dialog box:

	 Chapter 7  Working with Functions	 159

	 7.	 Click OK to close the dialog box.

The code has two major areas to examine, one within the <head> portion and the other
within the <body> portion. The function processConfirm(answer) is created in the <head>
portion of the page:

function processConfirm(answer) {

 var result = "";

 if (answer) {

 result = "Excellent. We'll play a nice game of chess";

 } else {

 result = "Maybe later then.";

 }

 return result;

}

This function evaluates the value contained in the argument held in the variable answer. If
the value in the answer variable evaluates to true, as it does when the visitor clicks OK, the
function creates the variable result and assigns to result a string value of “Excellent. We’ll play
a nice game of chess.” But, if the value in the answer variable evaluates to false, as it does
when the visitor clicks Cancel, the function still creates the result variable, but now assigns
it the value of “Maybe later then.” Regardless of what’s held in the answer variable, processConfirm
returns the result variable to the caller by using the return statement within the function.
You could write this function more succinctly as:

function processConfirm(answer) {

 if (answer) {

 return "Excellent. We'll play a nice game of chess.";

 } else {

 return "Maybe later then.";

 }

}

160	 Part II  Applying JavaScript

And even more succinctly:

function processConfirm(answer) {

 var result;

 (answer) ? result = "Excellent. We'll play a nice game of chess." : result = "Maybe

later then.";

 return result;

}

Note  In a ke hood, I wou d use the ast funct on examp e to perform th s task However, I’ve
found many programmers who aren’t comfortab e w th the ternary og c of the ast examp e So
for readab ty, I’d choose the more exp c t of the two

function processConfirm(answer) {

 if (answer) {

 return "Excellent. We'll play a nice game of chess.";

 } else {

 return "Maybe later then.";

 }

}

The JavaScript contained within the <body> section of the code creates the confirmation
dialog box, calls the processConfirm() function, and displays the result:

var confirmAnswer = confirm("Shall we play a game?");

var theAnswer = processConfirm(confirmAnswer);

alert(theAnswer);

Like the alert() function, the confirm() function accepts a single argument, which is the mes-
sage to be displayed in the dialog box. Though not necessary with the alert() function, with
the confirm() function, phrasing your prompt in the form of a question or other statement
that gives the visitor a choice is best. If the user really doesn’t have a choice, use the alert()
function instead. An even more succinct version combines all three lines, like this:

alert(processConfirm(confirm("Shall we play a game?")));

	 Chapter 7  Working with Functions	 161

Exercises
	 1.	 Define a function that takes one numeric argument, increments that argument, and then

returns it to the caller. Call the function from within the <body> of a page and display
the result on the screen.

	 2.	 Define a function that accepts two numeric parameters. If the value of the first param-
eter is greater than the second, show an alert to the visitor. If the value of the first pa-
rameter is less than or equal to the second, return the sum of both parameters.

	 3.	 Add appropriate alert() functions to the following code so that you can see the value in
the result variable both before and after the function call. Here’s the code:

function addNumbers() {

 firstNum = 4;

 secondNum = 8;

 result = firstNum + secondNum;

 return result;

}

result = 0;

result = addNumbers();

	 4.	 Create an array with seven string values, initialized to the names of these stars: Polaris,
Aldebaran, Deneb, Vega, Altair, Dubhe, and Regulus. Create an array with seven ad-
ditional string values, initialized to the names of the constellations in which the stars
are found: Ursa Minor, Taurus, Cygnus, Lyra, Aquila, Ursa Major, and Leo. Next, create
a function that accepts a single string parameter. Within the function, iterate through
the first array, searching for the star. When the star is found, return the value contained
in that index within the second array. In other words, return the constellation name for
that star. Within the <body> of the page, use a prompt to gather the name of the star
from the visitor, and then call the function with that input. Don’t forget to include code
that executes when the star isn’t found. Display the result on the screen.

	 	 163

Chapter 8

Objects in JavaScript
After reading this chapter, you’ll be able to:

n	 Understand objects in JavaScript, including object properties, object methods,
and classes.

n	 Create objects.

n	 Define properties and methods for objects.

n	 Understand arrays in JavaScript.

n	 Use several array methods.

Object-Oriented Development
For those who are new to object-oriented programming concepts or may need a refresher,
read on. If you’re already comfortable with object-oriented programming, skip ahead to the
section called “Creating Objects.”

A programming paradigm describes a methodology for solving the problems you encounter.
More than 25 different programming paradigms exist, some of which might be challenging
to find used in an actual program. You might have heard of others or even used them with-
out knowing it. Among these paradigms are functional programming, event-driven program-
ming, component-oriented programming, and structured programming.

Programming paradigms come and go. Object-oriented programming has been around for
many years, however, and doesn’t appear to be going away any time soon. This section can’t
do much more than give you an overview of this subject, but you need to be familiar with
object-oriented techniques and terminology so that you’re comfortable with the subset of
those typically used by a JavaScript programmer.

Objects
Objects are things. In the real world—as opposed to the virtual and sometimes surreal world
of computer programming—a ball, a desk, and a car are all objects. An object is something
that has describable characteristics, you can affect, and behaves in a particular way. An object
in the object-oriented programming paradigm is a combination of code and data that exhibits
characteristics and behavior in a similar manner.

164	 Part II  Applying JavaScript

Properties
Objects have properties—defined as their attributes. Going back to the real world again, a
ball has a color property—perhaps red, white, or multicolored. It also has a size property—
perhaps it is small like a baseball or bigger like a basketball, or like something else entirely.
These properties might be represented like this:

ball.color

ball.size

Methods
Just as objects can have properties, they can also have methods. Methods define the way an
object behaves. A ball might have a roll method, which calculates how far the ball will roll. In
theory, not all objects have methods, and not all objects have properties, though in practice
most objects have at least one method or one property.

Remember from Chapter 7, “Working with Functions,” that a method is just a function that
belongs to an object. A method definition that uses a function literal for the roll method
might look like this:

ball.roll = function() {

 var distance = this.size * this.forceApplied;

}

What’s this?
The ball.roll example used something new—the keyword this, which refers to the object
to which the current function or property belongs. In the context of objects, the keyword
this refers to the calling object. The keyword this can be used to set properties of objects
within a function call.

The this keyword is a boon to JavaScript developers looking to validate web forms,
which you learn in Chapter 14, “Using JavaScript with Web Forms.”

Classes
In object-oriented programming, classes define sets of objects that share the same properties
and methods. Classes simplify the creation of multiple objects of the same type. However,
ECMA-262 has no concept of classes in its object interface. Therefore, to take advantage of
the benefits of class-based programming, you have to use a pattern to create pseudo-classes.

	 Chapter 8  Objects in JavaScript	 165

Consider the star example, which I used in earlier chapters. Listing 8-1 (in the Listing8-1.txt
file in the companion content) shows what you need for a comprehensive webpage that
includes information about 14 important stars.

Listing 8-1  Assemb ng a star object.

 var star = {};

 star["Polaris"] = new Object;

 star["Mizar"] = new Object;

 star["Aldebaran"] = new Object;

 star["Rigel"] = new Object;

 star["Castor"] = new Object;

 star["Albireo"] = new Object;

 star["Acrux"] = new Object;

 star["Gemma"] = new Object;

 star["Procyon"] = new Object;

 star["Sirius"] = new Object;

 star["Rigil Kentaurus"] = new Object;

 star["Deneb"] = new Object;

 star["Vega"] = new Object;

 star["Altair"] = new Object;

 star["Polaris"].constellation = "Ursa Minor";

 star["Mizar"].constellation = "Ursa Major";

 star["Aldebaran"].constellation = "Taurus";

 star["Rigel"].constellation = "Orion";

 star["Castor"].constellation = "Gemini";

 star["Albireo"].constellation = "Cygnus";

 star["Acrux"].constellation = "Crux";

 star["Gemma"].constellation = "Corona Borealis";

 star["Procyon"].constellation = "Canis Minor";

 star["Sirius"].constellation = "Canis Major";

 star["Rigil Kentaurus"].constellation = "Centaurus";

 star["Deneb"].constellation = "Cygnus";

 star["Vega"].constellation = "Lyra";

 star["Altair"].constellation = "Aquila";

 star["Polaris"].type = "Double/Cepheid";

 star["Mizar"].type = "Spectroscopic Binary";

 star["Aldebaran"].type = "Irregular Variable";

 star["Rigel"].type = "Supergiant with Companion";

 star["Castor"].type = "Multiple/Spectroscopic";

 star["Albireo"].type = "Double";

 star["Acrux"].type = "Double";

 star["Gemma"].type = "Eclipsing Binary";

 star["Procyon"].type = "Double";

 star["Sirius"].type = "Double";

 star["Rigil Kentaurus"].type = "Double";

 star["Deneb"].type = "Supergiant";

 star["Vega"].type = "White Dwarf";

166	 Part II  Applying JavaScript

 star["Altair"].type = "White Dwarf";

 star["Polaris"].spectralClass = "F7";

 star["Mizar"].spectralClass = "A1 V";

 star["Aldebaran"].spectralClass = "K5 III";

 star["Rigel"].spectralClass = "B8 Ia";

 star["Castor"].spectralClass = "A1 V";

 star["Albireo"].spectralClass = "K3 II";

 star["Acrux"].spectralClass = "B1 IV";

 star["Gemma"].spectralClass = "A0 V";

 star["Procyon"].spectralClass = "F5 IV";

 star["Sirius"].spectralClass = "A1 V";

 star["Rigil Kentaurus"].spectralClass = "G2 V";

 star["Deneb"].spectralClass = "A2 Ia";

 star["Vega"].spectralClass = "A0 V";

 star["Altair"].spectralClass = "A7 V";

 star["Polaris"].mag = 2.0;

 star["Mizar"].mag = 2.3;

 star["Aldebaran"].mag = 0.85;

 star["Rigel"].mag = 0.12;

 star["Castor"].mag = 1.58;

 star["Albireo"].mag = 3.1;

 star["Acrux"].mag = 0.8;

 star["Gemma"].mag = 2.23;

 star["Procyon"].mag = 0.38;

 star["Sirius"].mag = -1.46;

 star["Rigil Kentaurus"].mag = -0.01;

 star["Deneb"].mag = 1.25;

 star["Vega"].mag = 0.03;

 star["Altair"].mag = 0.77;

As you can see, Listing 8-1 contains a lot of repeated code. Each star is defined and then
given four properties: the constellation in which it appears; and the star’s type, spectral class,
and magnitude (represented by the word mag in the code listing).

Consider the code in Listing 8-2 (in the Listing8-2.txt file in the companion content). It
accomplishes the same result as the code in Listing 8-1, but with the help of a constructor
pattern to create a pseudo-class.

Listing 8-2  Assemb ng a star object us ng a pseudo c ass.

var star = {};

function Star(constell,type,specclass,magnitude) {

 this.constellation = constell;

 this.type = type;

 this.spectralClass = specclass;

 this.mag = magnitude;

}

	 Chapter 8  Objects in JavaScript	 167

star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

star["Mizar"] = new Star("Ursa Major","Spectroscopic Binary","A1 V",2.3);

star["Aldebaran"] = new Star("Taurus","Irregular Variable","K5 III",0.85);

star["Rigel"] = new Star("Orion","Supergiant with Companion","B8 Ia",0.12);

star["Castor"] = new Star("Gemini","Multiple/Spectroscopic","A1 V",1.58);

star["Albireo"] = new Star("Cygnus","Double","K3 II",3.1);

star["Acrux"] = new Star("Crux","Double","B1 IV",0.8);

star["Gemma"] = new Star("Corona Borealis","Eclipsing Binary","A0 V",2.23);

star["Procyon"] = new Star("Canis Minor","Double","F5 IV",0.38);

star["Sirius"] = new Star("Canis Major","Double","A1 V",-1.46);

star["Rigil Kentaurus"] = new Star("Centaurus","Double","G2 V",-0.01);

star["Deneb"] = new Star("Cygnus","Supergiant","A2 Ia",1.25);

star["Vega"] = new Star("Lyra","White Dwarf","A0 V",0.03);

star["Altair"] = new Star("Aquila","White Dwarf","A7 V",0.77);

The Star function, shown in boldface in Listing 8-2, creates an interface for constructing star
objects quickly.

When called, the function returns a new star object:

star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

Even though the Listing 8-1 and Listing 8-2 are functionally equivalent, the code in Listing
8-2 is much shorter and easier to understand. Imagine an object that had nine properties
instead of just the four shown here.

The creation of a class-like interface in this section used the constructor pattern. The con-
structor pattern is helpful but results in multiple instances of the same method being created
each time the object is instantiated. A better, but more advanced, way to create multiple ob-
jects is to use a prototype pattern. For more information about creating objects using prototypes,
see http://msdn.microsoft.com/en-us/magazine/cc163419.aspx.

Creating Objects
You can create an object in JavaScript in two ways:

n	 Using the new keyword, as shown here:

var star = new Object;

n	 Using curly braces, as shown here:

var star = {};

The version you use depends largely on personal preference; they both accomplish the
same task.

168	 Part II  Applying JavaScript

Adding Properties to Objects
After creating an object, you can start assigning properties and methods to it. If you have
just one star object, you could assign properties directly to it, like this:

star.name = "Polaris";

star.constellation = "Ursa Minor";

When you need to create multiple related objects, you can assign properties efficiently by
following the example shown in the previous section.

Displaying Object Properties
With a for...in loop, you can loop through each of the properties in an object. Try it out.

Looping through object properties

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file proploop.htm,
which you can find in the Chapter08 sample files folder in the companion content.

	 2.	 In the page, replace the TO DO comment with the for loop shown here in boldface
(you can find this code in the proploop.txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Properties</title>

<script type="text/javascript">

 var star = {};

 function Star(constell,type,specclass,magnitude) {

 this.constellation = constell;

 this.type = type;

 this.spectralClass = specclass;

 this.mag = magnitude;

 }

 star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

 star["Mizar"] = new Star("Ursa Major","Spectroscopic Binary","A1 V",2.3);

 star["Aldebaran"] = new Star("Taurus","Irregular Variable","K5 III",0.85);

 star["Rigel"] = new Star("Orion","Supergiant with Companion","B8 Ia",0.12);

 star["Castor"] = new Star("Gemini","Multiple/Spectroscopic","A1 V",1.58);

 star["Albireo"] = new Star("Cygnus","Double","K3 II",3.1);

 star["Acrux"] = new Star("Crux","Double","B1 IV",0.8);

 star["Gemma"] = new Star("Corona Borealis","Eclipsing Binary","A0 V",2.23);

 star["Procyon"] = new Star("Canis Minor","Double","F5 IV",0.38);

 star["Sirius"] = new Star("Canis Major","Double","A1 V",-1.46);

 star["Rigil Kentaurus"] = new Star("Centaurus","Double","G2 V",-0.01);

 star["Deneb"] = new Star("Cygnus","Supergiant","A2 Ia",1.25);

 star["Vega"] = new Star("Lyra","White Dwarf","A0 V",0.03);

	 Chapter 8  Objects in JavaScript	 169

 star["Altair"] = new Star("Aquila","White Dwarf","A7 V",0.77);

</script>

</head>

<body>

<script type="text/javascript">

for (var propt in star) {

 alert(propt);

}

</script>

</body>

</html>

	 3.	 View this page in a web browser. You are presented with an alert() dialog box for each
of the stars in the star object, for a total of 14. (Yes, it’s a lot of clicking. Sorry about
that.) Here’s an example of the type of dialog box you see:

This step-by-step exercise builds on the earlier example of using pseudo-classes to define
properties of objects. In this case, a star object was created with the following code:

var star = {};

That object was then given several properties of individual star names by using a call to
create a new Star object (using the pseudo-class):

star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

Each property of the original star object, in this case the name of each star, was then
enumerated within the <body> of the code by using a for...in loop:

for (var propt in star) {

 alert(propt);

}

You might be wondering how to get to the actual properties of the stars, such as the con-
stellations, magnitudes, types, and spectral class. Chapter 14 shows you how to enumerate
through each of these.

170	 Part II  Applying JavaScript

Looking for a Property
Sometimes you don’t want or need to loop through every property. Sometimes you just want
to know whether a given property already exists within an object. You can use the in operator
to test for the property, as in this pseudo-code:

if (property in object) {

 // do something here

}

Listing 8-3 shows a more complete example (available in the Listing8-3.txt file in the com-
panion code). It examines the star object for one of the star names, “Polaris,” and if found,
adds a new property to it.

Listing 8-3  Look ng for a property.

var star = {};

function Star(constell,type,specclass,magnitude) {

 this.constellation = constell;

 this.type = type;

 this.spectralClass = specclass;

 this.mag = magnitude;

}

star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

star["Mizar"] = new Star("Ursa Major","Spectroscopic Binary","A1 V",2.3);

star["Aldebaran"] = new Star("Taurus","Irregular Variable","K5 III",0.85);

star["Rigel"] = new Star("Orion","Supergiant with Companion","B8 Ia",0.12);

star["Castor"] = new Star("Gemini","Multiple/Spectroscopic","A1 V",1.58);

star["Albireo"] = new Star("Cygnus","Double","K3 II",3.1);

star["Acrux"] = new Star("Crux","Double","B1 IV",0.8);

star["Gemma"] = new Star("Corona Borealis","Eclipsing Binary","A0 V",2.23);

star["Procyon"] = new Star("Canis Minor","Double","F5 IV",0.38);

star["Sirius"] = new Star("Canis Major","Double","A1 V",-1.46);

star["Rigil Kentaurus"] = new Star("Centaurus","Double","G2 V",-0.01);

star["Deneb"] = new Star("Cygnus","Supergiant","A2 Ia",1.25);

star["Vega"] = new Star("Lyra","White Dwarf","A0 V",0.03);

star["Altair"] = new Star("Aquila","White Dwarf","A7 V",0.77);

if ("Polaris" in star) {

 star["Polaris"].aka = "The North Star";

 alert("Polaris found and is also known as " + star["Polaris"].aka);

}

Note  There are other approaches for check ng property ex stence that aren’t covered n th s
book, such as the the !== operator

	 Chapter 8  Objects in JavaScript	 171

Adding Methods to Objects
In the same way you can add properties to self-defined objects, you can add methods.
For example, suppose you want to extend the Star class used in earlier examples to include
a method called show(), which just presents an alert() dialog box. You could extend this
method to do whatever you need it to do. For example, look at this code (from the adding-
methods.txt file in the companion code):

function Star(constell,type,specclass,magnitude) {

 this.constellation = constell;

 this.type = type;

 this.spectralClass = specclass;

 this.mag = magnitude;

 this.show = function() {

 alert("hello, this is a method.");

 }

}

To call the method, you write code that looks like this:

star["Polaris"].show();

Object-oriented programming in JavaScript doesn’t end here. More advanced features of the
object-oriented programming paradigm such as inheritance, superclassing, and prototypes
are all possible with JavaScript, but they are beyond the scope of this book. MSDN Magazine
published an article about some of the more advanced concepts, and you can find that article
at http://msdn.microsoft.com/en-us/magazine/cc163419.aspx.

Finding Out More About Arrays
Chapter 4 introduced arrays and provided some examples of ways to define them. With
arrays, you can group a set of values into an object and then access those values through a
numbered index value. For example, you can use the new Array() explicit constructor as fol-
lows (you can find this code in the morearrays.txt file in the companion content):

var star = new Array();

star[0] = "Polaris";

star[1] = "Deneb";

star[2] = "Vega";

star[3] = "Altair";

You also can perform the same task using the implicit array constructor (denoted by square
brackets), like so:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

172	 Part II  Applying JavaScript

The length Property
The length property of an array returns the number of elements in the array. There’s an im-
portant distinction between how many elements the array contains and how many have been
defined. Here’s a simple example. Consider the implicit star array definition discussed previ-
ously. You can count four star names: Polaris, Deneb, Vega, and Altair. The length property
returns the same result:

var numStars = star.length; // star.length is 4.

Elements can be counted by the length property that have not yet been defined or initialized.
Here’s an example that creates an array with more elements than were assigned:

var myArray = new Array(5);

Array Methods
This section introduces you to some of the methods of the array object. You can find more
information within the ECMA-262 specification at http://www.ecma-international.org/publications
/files/ECMA-ST/Ecma-262.pdf.

Adding and Removing Elements
You can add elements to an array using a few different methods, by either prepending them
to the front of the array or appending them to the end of it.

Using concat() to add elements  The concat() method appends elements to the end of the
array on which it is invoked. To use it, you supply the concat() method with arguments con-
taining the items to append. The method returns a new array, as follows (this code is in the
morearray.txt file in the companion content):

var myArray = new Array();

myArray[0] = "first";

myArray[1] = "second";

var newArray = myArray.concat("third");

// newArray is now [first,second,third]

You can also concatenate one array to another, like this:

var myFirstArray = [51,67];

var mySecondArray = [18,"hello",125];

var newArray = myFirstArray.concat(mySecondArray)

// newArray is [51,67,18,"hello",125]

	 Chapter 8  Objects in JavaScript	 173

Adding elements with concat()

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the concat.htm file in the Chapter08
sample files folder in the companion content.

	 2. 	Within the page, add the code shown in boldface type (the first part of the
concat.txt file):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Concat</title>

 <script type="text/javascript">

 var star = ["Polaris", "Deneb", "Vega", "Altair"];

 for (var i = 0; i < star.length; i++) {

 alert(star[i]);

 }

 </script>

</head>

<body>

</body>

</html>

	 3.	 Save the page and view it in a web browser. You receive an alert() dialog box (like the
one shown here) for each of the four star names defined in the star array.

	 4.	 Alter the code to concatenate some additional stars onto the star array. (Yes, I realize
that you could just add them directly to the star array, but that’s cheating.) Here’s the
code (the changes are shown in boldface and are in the second part of the concat.txt
file):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Concat</title>

 <script type="text/javascript">

174	 Part II  Applying JavaScript

 var star = ["Polaris", "Deneb", "Vega", "Altair"];

 var newstars = ["Aldebaran", "Rigel"];

 var morestars = star.concat(newstars);

 var mStarLength = morestars.length;

 for (var i = 0; i < mStarLength; i++) {

 alert(morestars[i]);

 }

 </script>

</head>

<body>

</body>

</html>

	 5.	 Save and view the page in a web browser. You receive six alert() dialog boxes (sorry!),
one for each star, like this one for Aldebaran:

Joining and concatenating with join  The join() method converts all the elements of an
array to a joined string. This method is unlike the concat() method, which concatenates but
does not perform any type conversions. Here’s the code:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

var starString = star.join();

The starString variable contains Polaris,Deneb,Vega,Altair, as shown in Figure 8-1.

Figure 8-1  Us ng join() to jo n an array.

The join() method enables you to specify the join delimiter as well. Instead of just using a
comma, you might want to use an asterisk, like this:

	 Chapter 8  Objects in JavaScript	 175

var star = ["Polaris", "Deneb", "Vega", "Altair"];

var starString = star.join("*");

The result would be Polaris*Deneb*Vega*Altair, as shown in Figure 8-2.

Figure 8-2  Jo n ng w th a d fferent de m ter.

Tip  The join() method s a qu ck way to see the contents of an array w thout creat ng an ent re
for oop structure

Using push and pop to add and remove elements  Whereas concat() returns the newly
concatenated array, push() and pop() add and remove elements. The push() method returns
the length of the new array, and pop() returns the removed element. The methods push() and
pop() operate on the end of the array, as shown in the following code and in the evenmorearrays
.txt file in the companion content:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

star.push("Aldebaran");

Running the preceding code results in the star object containing five elements: Polaris,
Deneb, Vega, Altair, and Aldebaran.

The pop() method removes the last element and returns the element that is removed:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

var removedElement = star.pop();

The removedElement variable contains the string “Altair” because that was the last element of
the array. The length of the array is also shortened (or decremented) by 1.

Using shift and unshift to add and remove elements  The push() and pop() methods oper-
ate on the end of the array. The shift() and unshift() methods perform the same functions as
push() and pop(), except the former do it at the beginning of the array. In this code, the unshift()
method adds an element to the beginning of an array:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

star.unshift("Aldebaran");

176	 Part II  Applying JavaScript

The star array is:

["Aldebaran", "Polaris", "Deneb", "Vega", "Altair"]

Use shift() to remove an element from the beginning of an array. Note that shift() returns the
removed element, just like pop():

var star = ["Polaris", "Deneb", "Vega", "Altair"];

var removedElement = star.shift();

The star array now contains:

["Deneb", "Vega", "Altair"]

Using slice to return parts of an array  The slice() method is useful when you need to return
specific portions of an array, but you must be careful, because unless you make a copy of the
array, slice() changes the original array. For instance, the following code returns and places
into the cutStars variable the value “Vega,Altair”, because Vega and Altair are the third and
fourth elements of the star array (remember that arrays start counting from zero).

var star = ["Polaris", "Deneb", "Vega", "Altair"];

var cutStars = star.slice(2,3);

Sorting elements with sort  It’s sometimes helpful to sort the elements of an array. Look at
this code:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

var sortedStars = star.sort();

The result is shown in Figure 8-3, and as you can see, the elements of the star array are sorted
alphabetically, even though they weren’t given alphabetically in the code. Note that both the
original star array and the sortedStars variable contain sorted lists.

Figure 8-3  The resu t of a sorted array us ng the sort() method.

	 Chapter 8  Objects in JavaScript	 177

Be careful not to use the sort() method to sort numbers. Consider this code:

var nums = [11,543,22,111];

var sortedNums = nums.sort();

You might expect the sortedNums variable to contain 11,22,111,543, but instead it sorts the
values alphabetically, as shown in Figure 8-4.

Figure 8-4  Attempt ng to sort numbers w th sort() doesn t work at east not f you want them sorted n
numer ca order.

Iterating through arrays  Two primary methods exist for iterating through array elements
in JavaScript. As of this writing, the primary cross-browser method for doing so is the for()
method, which you ve seen throughout the book so far. Here’s a quick reminder of its syntax:

var candies = ["chocolate","licorice","mints"];

for (var i = 0; i < candies.length; i++) {

 alert(candies[i]);

}

Introduced with ECMA-262 version 5 and supported in all browsers with the exception of
Windows Internet Explorer 8 and earlier, the forEach() method walks through array elements
as well. The syntax for forEach() is similar to that of a for loop:

var candies = ["chocolate","licorice","mints"];

candies.forEach(function(candy) {

 alert(candy);

}

Note  Use the forEach() method (and other new methods) w th caut on, because they aren’t yet
w de y supported

The array object has other methods that you should know about. Some that you might en-
counter are listed in Table 8-1, but you should refer to the ECMA-262 specification available
at http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf for a full list.
Methods that are new to the ECMA-262 version 5 standard are noted.

178	 Part II  Applying JavaScript

Table 8-1  Select Methods of the Array Object
Method Description New to ECMA-262 Edition 5
reverse() Reverses the order of the e ements No

map() Executes a funct on on each array tem and
returns an array

Yes

indexOf() Returns the ndex of the first occurrence of the
argument

Yes

lastIndexOf() Returns the ast ndex of the argument n the
array

Yes

every() Executes a funct on on each array tem wh e
the funct on cont nues to return true

Yes

filter() Executes a funct on on each array tem and
returns an array conta n ng on y the tems for
wh ch the funct on returns true

Yes

some() Executes a funct on on each array tem wh e
the funct on returns false

Yes

splice() Inserts or removes e ements from an array
Returns an array conta n ng the de eted tems

No

Taking Advantage of Built-in Objects
The JavaScript language makes several useful objects available to assist with tasks common
to the JavaScript program. You’ve already seen some of these, such as the Date, Number, and
Math objects, which were covered in Chapter 4.

The Global Object
JavaScript has a global object that contains some of the methods already discussed, such as
isNaN(). Another three commonly used global object methods are encodeURI(), encodeURI-
Component(), and eval(), which are discussed in this section.

Making URIs Safe
The encodeURI() method takes a Uniform Resource Identifier (URI) that contains characters
which are not allowed in a given URI scheme, and it encodes them so that they can be used
according to the standard. For example, RFC (Request For Comments) 2396 defines a generic
syntax for URIs. The encodeURI() method can be used to correct the following URI:

http://www.braingia.org/a uri with spaces.htm

 Chapter 8 Objects in JavaScript 179

The preceding URI contains spaces—which are not allowed in an HTTP URI—and therefore
the URI needs to be encoded:

alert(encodeURI("http://www.braingia.org/a uri with spaces.htm"));

Figure 8-5 shows the result .

FIGURE	8-5	 Us ng the encodeURI() method to proper y encode a UR n JavaScr pt .

Whereas the encodeURI() method works on an entire URI, like the one shown in Figure 8-5,
the encodeURIComponent() method works on only part of a URI, such as the /a uri with spaces
.htm portion of the example shown .

Both the encodeURI() and encodeURIComponent() methods have decoding counterparts,
decodeURI() and decodeURIComponent(), respectively .

Using the eval() method
The eval() method is one of the most powerful and dangerous methods you can use in
JavaScript . The eval() method takes a single argument that is interpreted and executed
by the JavaScript engine, for example:

eval("alert('hello world')");

The eval() method executes the alert code, just as it would if the code were executed directly .
Typically, you use the eval() method during Asynchronous JavaScript and XML (AJAX) calls,
but doing so poses a security problem because the code returned from the AJAX call is ex-
ecuted just as if it were normal code, and that code could be malicious .

180	 Part II  Applying JavaScript

Exercises
	 1.	 Create code to loop through a simple array of four objects, shown here, and display

those in an alert() dialog box, one for each element of the array:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

	 2.	 Create an object to hold the names of three of your favorite songs. The objects should
have properties containing the artist, the song length, and the title for each song.

	 3.	 The first step-by-step exercise in this chapter used a list of stars and a class to populate
those objects, shown here:

 function Star(constell,type,specclass,magnitude) {

 this.constellation = constell;

 this.type = type;

 this.spectralClass = specclass;

 this.mag = magnitude;

 }

 star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

 star["Mizar"] = new Star("Ursa Major","Spectroscopic Binary","A1 V",2.3);

 star["Aldebaran"] = new Star("Taurus","Irregular Variable","K5 III",0.85);

 star["Rigel"] = new Star("Orion","Supergiant with Companion","B8 Ia",0.12);

 star["Castor"] = new Star("Gemini","Multiple/Spectroscopic","A1 V",1.58);

 star["Albireo"] = new Star("Cygnus","Double","K3 II",3.1);

 star["Acrux"] = new Star("Crux","Double","B1 IV",0.8);

 star["Gemma"] = new Star("Corona Borealis","Eclipsing Binary","A0 V",2.23);

 star["Procyon"] = new Star("Canis Minor","Double","F5 IV",0.38);

 star["Sirius"] = new Star("Canis Major","Double","A1 V",-1.46);

 star["Rigil Kentaurus"] = new Star("Centaurus","Double","G2 V",-0.01);

 star["Deneb"] = new Star("Cygnus","Supergiant","A2 Ia",1.25);

 star["Vega"] = new Star("Lyra","White Dwarf","A0 V",0.03);

 star["Altair"] = new Star("Aquila","White Dwarf","A7 V",0.77)

The code then used a simple for loop to move through each of the star objects and
displayed the names of the stars, as shown here:

for (var propt in star) {

 alert(propt);

}

Your task is to modify this code to display one single dialog box containing all the star
names rather than display one dialog box for each star.

	 	 181

Chapter 9

The Browser Object Model
After reading this chapter, you’ll be able to:

n	 Understand the different objects available as part of the window object.

n	 Use the navigator object to view properties of the visitor’s browser.

n	 Obtain information about the visitor’s screen, including available height and width.

n	 Use JavaScript to detect whether Java is enabled in the browser.

n	 Parse the query string sent by the browser.

Introducing the Browser
Until this chapter in the book, you reviewed JavaScript mainly in the abstract. This chapter
starts to examine JavaScript as you’d apply it in the real world.

I feel rather silly about writing this, but it’s important, so I’m going to say it anyway: the
browser is central to JavaScript programming. Projects like Rhino (http://www.mozilla.org
/rhino/) want to change that, but understanding the environments that browsers provide
is central to writing good JavaScript code that works well on multiple browsers running on
multiple platforms. This section introduces you to the Browser Object Model.

The Browser Hierarchy
The Browser Object Model creates a tree-like hierarchy of objects, many of which provide
properties and methods for the JavaScript programmer. The browser itself is represented
by one object, called the window object. The window object is the parent of several child
objects:

n	 document

n	 frames

n	 history

n	 location

n	 navigator

n	 screen

n	 self/window/parent

182	 Part II  Applying JavaScript

The document child of the window object is special because it has several child and even
grandchild objects. The window object, its children, and their place in the browser hierarchy
are illustrated in Figure 9-1.

Figure 9-1  The window object and ts ch dren.

I discuss the document object in its own chapter—Chapter 10, “The Document Object
Model.” You learn about the other children of the window object in the remainder of this
chapter.

Events
Events were briefly described in Chapter 1, “JavaScript Is More Than You Might Think.” You
use events in many areas of JavaScript programming, and quite a bit when working with web
forms. Events are triggered when actions occur. The action can be initiated by users, when
they click a button or link, or move the mouse into or out of an area; or by programmatic
events, such as when a page loads. Chapter 11, “JavaScript Events and the Browser,” goes into
detail about events related to the window object; Chapter 14, “Using JavaScript with Web
Forms,” provides more information about web forms.

	 Chapter 9  The Browser Object Model	 183

A Sense of Self
The window object is a global object that represents the currently open window in the browser.
The window object has several properties, methods, and child objects. You already used
some of these methods, such as alert() and prompt(). Because the window object is a global
object, you don’t need to preface its properties and methods with window. Instead, you can
call them directly, as you already saw done in the examples that made calls to the alert()
method.

Direct descendants of the window object don’t require the window prefix, but when you deal
with objects beyond the window object’s direct descendants, you need to precede them with
the window object name. For example, the document object is a direct descendant of the
window object and therefore doesn’t need the window prefix, but descendants of the docu-
ment object do need it, as shown in the following example:

alert("something"); // note no window. prefix.

document.forms[0] // note the document. prefix but still no window. prefix

The window object also has properties and methods. Among its properties is the self prop-
erty, which refers to the window object (and gave me the idea for the title for this section).
Table 9-1 lists some of the widely used properties of the window object. You examine many
of these in examples throughout the book.

Table 9-1  Selected Properties of the window Object
Property Description
closed Set to true when the w ndow has been c osed

defaultStatus Used to set the text that appears by defau t n the status bar of a browser

name The name of the w ndow as set when the w ndow s first opened

opener A reference to the w ndow that created the w ndow

parent Frequent y used w th frames to refer to the w ndow that created a part cu ar
w ndow or s one eve up from the frame

status Frequent y used to set the text n the status bar when a v s tor hovers over an
e ement such as a nk

top Refers to the h ghest or topmost parent w ndow

Table 9-2 and Table 9-3 describe some of the window object’s methods. You see examples of
how to use many of these throughout the remainder of this book.

184	 Part II  Applying JavaScript

Table 9-2  Selected Methods of the window Object
Method Description
addEventListener() Cross-browser (except for W ndows Internet Exp orer) event hand er

method See Chapter 11 for more nformat on

attachEvent() The vers on of addEventListener() n Internet Exp orer See Chapter 11
for more nformat on

blur() Changes the focus of keyboard nput away from the browser w ndow

focus() Changes the focus of keyboard nput to the browser w ndow

close() C oses the browser w ndow

detachEvent() The vers on of removeEventListener() n Internet Exp orer

removeEventListener() Cross-browser (except for Internet Exp orer) event hand er remova
method

open() Opens a w ndow

print() Causes the browser’s pr nt funct on to be nvoked; behaves just as
though someone c cked Pr nt n the browser

Some methods of the window object deal with moving and resizing the window and are
described in Table 9-3.

Table 9-3  Selected Methods of the window Object for Moving and Resizing
Method Description
moveBy() Used to move the w ndow to a re at ve ocat on

moveTo() Used to move the w ndow to a spec fic ocat on

resizeBy() Used to change the s ze of the w ndow by a re at ve amount

resizeTo() Used to change the s ze of the w ndow to a certa n s ze

Timers are found in some JavaScript applications and are discussed in Chapter 11. The
window object methods related to timers are the following:

n	 clearInterval()

n	 clearTimeout()

n	 setInterval()

n	 setTimeout()

The rest of the chapter looks more closely at some of the direct children of the window
object.

	 Chapter 9  The Browser Object Model	 185

Getting Information About the Screen
The screen object provides a way to obtain information about the visitor’s screen. You might
need this information to determine which images to display or how large the page can be.
Regardless of whether you use the screen object, you need to create a good CSS-based
design (CSS stands for Cascading Style Sheets) that gracefully handles screens of all sizes.

Note  You often see ch d objects of the window object referred to as propert es of the window
object—for examp e, the screen property rather than the screen object

The available properties of the screen object are as follows:

n	 availHeight

n	 availWidth

n	 colorDepth

n	 height

n	 width

You might be wondering what the difference is between the availHeight and availWidth
properties, and the height and width properties. The availHeight and availWidth properties
return the available height and width (no kidding!) of the screen minus the space used by
other controls, such as the taskbar in Microsoft Windows. The height and width properties
return the gross height and width. This might make more sense with an example.

Determining a visitor’s screen height and width

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the screen.htm file in the
Chapter09 sample files folder in the companion content.

	 2.	 In the page, add the boldface code shown here (you can find this in the screen.txt file
in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Screen</title>

</head>

<body>

186	 Part II  Applying JavaScript

 <script type="text/javascript">

 alert("Available Height: " + screen.availHeight);

 alert("Total Height: " + screen.height);

 alert("Available Width: " + screen.availWidth);

 alert("Total Width: " + screen.width);

 </script>

</body>

</html>

	 3.	 Save and view the page in a web browser. You receive four alert() dialog boxes, one for
each of the properties called. The sample screenshots shown here reflect a 1024 × 768
pixel display.

	 Chapter 9  The Browser Object Model	 187

As you can see from these screenshots, the total width and height are 1184 pixels and 771
pixels, respectively. Notice that the available width remains 1184, whereas the available
height is reduced to 731 from 771 because of the taskbar.

Using the navigator Object
The navigator object provides several properties that assist in the detection of various
elements of the visitor’s browser and environment. One of the most popular operations
JavaScript can perform is detecting which browser the visitor is using. (Well, this section isn’t
about that—but it could be. See the sidebar “Problems with Browser Detection” for more
information.)

Problems with Browser Detection
For a long time, websites used the navigator object to detect which browser the visitor
was using. (Well, a long time in Internet years—which could be several years or as short
as a few months, depending on the technology you’re talking about.) Browser detection
was used so that browser-specific JavaScript code could be executed. Although simple
browser detection had its uses, some poorly designed sites used this technique as a
means to lock out visitors who had particular browsers.

Little did they know that the information sent by a browser can be easily fooled. The
User Agent Switcher add-on for Firefox is one such way to alter this information, thus
rendering browser detection with the navigator object useless.

Tip  I’ve sa d t before n th s book and I’ say t now (and probab y w repeat t aga n
ater) never re y on anyth ng sent from the v s tor’s browser to your webs te A ways ver fy
Assum ng that the browser s Internet Exp orer just because t says so s not suffic ent
Chapter 11 shows a better method for detect ng whether the browser s capab e of han-
d ng the JavaScr pt on your webs te

When you use the navigator object to detect the visitor’s browser, you encounter an-
other problem because there are so many browsers out there. A web developer can
spend too much time keeping track of which browsers might support which functions
and trying to account for all those browsers in the code. All is not lost for the navigator
object though—it’s still useful, as you will soon see.

In this exercise, you walk through the properties of the navigator object and their values.

188	 Part II  Applying JavaScript

Looking at the navigator object

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the naviprops.htm file in the
Chapter09 sample files folder in the companion content.

	 2.	 Within the page, replace the TODO comment with the boldface code shown here
(this code is in the naviprops.txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>The navigator Object</title>

</head>

<body>

 <script type="text/javascript">

 var body = document.getElementsByTagName("body")[0];

 for (var prop in navigator) {

 var elem = document.createElement("p");

 var text = document.createTextNode(prop + ": " + navigator[prop]);

 elem.appendChild(text);

 body.appendChild(elem);

 }

 </script>

</body>

</html>

	 3.	 Save and view the page in a web browser of your choice. If you chose Firefox, you see a
page like this:

	 Chapter 9  The Browser Object Model	 189

	 4.	 If you chose Internet Explorer, the page will look similar to this; however, note the
difference in the available properties:

I just couldn’t bring myself to use yet another alert() dialog box for this exercise, so I had to
use some functions that I haven’t yet introduced. Never fear, though—the elements in this
example are introduced in Chapters 10 and 11.

The code for this exercise employs a function that uses the Document Object Model to create
Hypertext Markup Language (HTML) elements within the webpage. A for loop is used to
iterate through each of the properties presented by the navigator object:

function showProps() {

 var body = document.getElementsByTagName("body")[0];

 for (var prop in navigator) {

 var elem = document.createElement("p");

 var text = document.createTextNode(prop + ": " + navigator[prop]);

 elem.appendChild(text);

 body.appendChild(elem);

 }

}

If the JavaScript you’re using doesn’t work for a certain version of a web browser, you could
detect the browser by implementing a workaround based on using the navigator object, but
understand that this strategy isn’t reliable and you really shouldn’t use it as standard practice.
But sometimes, you just need to use it.

190 Part II Applying JavaScript

If your site uses Java, you can use the navigator object to check whether Java is enabled .
Here’s how:

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the file javatest .htm in the
Chapter09 sample files folder .

	 2.	 Within the page, replacing the TODO comment with the boldface the code shown here
(also located in the javatest .txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Java Test</title>

 <script type="text/javascript">

 if (navigator.javaEnabled()) {

 alert("Java is enabled");

 } else {

 alert("Java is not enabled");

 }

 </script>

</head>

<body>

</body>

</html>

	 3.	 Save the page and view it in Internet Explorer (if you have it installed) . By default, Java
is enabled in Internet Explorer, so you should see a dialog box like this:

	 4.	 Switch to Firefox, if you have it available, and disable Java (in the Windows version of
Firefox, you can do this by selecting Add-Ons from the Tools menu, clicking Plugin,
and then clicking Disable For The Java Plugins .) When you disable Java and refresh the
page, you see a dialog box like this:

	 Chapter 9  The Browser Object Model	 191

The location Object
The location object gives you access to the currently loaded Uniform Resource Identifier (URI),
including any information about the query string, the protocol in use, and other related com-
ponents. For example, a URI might be:

http://www.braingia.org/location.html

If the webpage at that URI contains the JavaScript code to parse the URI that is presented in
the next example, the output would look like that shown in Figure 9-2.

Figure 9-2  The location object be ng used to d sp ay the var ous propert es.

The protocol in this case is http:, the host is www.braingia.org (as is the host name), and the
pathname is location.html. Nothing was entered on the query string, so the search value
remains empty. The port is the standard port for HTTP traffic, tcp/80, so that, too, is empty.

192	 Part II  Applying JavaScript

Here’s an exercise that examines the query string.

Looking at the location object

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the location1.htm file in the
Chapter09 sample files folder in the companion content.

	 2.	 This first bit of HTML and JavaScript creates the page that you saw in Figure 9-2.
(Actually, it steals the code from an earlier exercise that used the navigator object but
with a slight modification for the location object.) We build upon that code for this ex-
ercise, so add the boldface code shown here to the location1.htm page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Location, Location, Location</title>

</head>

<body>

 <script type="text/javascript">

 var body = document.getElementsByTagName("body")[0];

 for (var prop in location) {

 var elem = document.createElement("p");

 var text = document.createTextNode(prop + ": " + location[prop]);

 elem.appendChild(text);

 body.appendChild(elem);

 }

 </script>

</body>

</html>

	 3.	 View the page in a web browser. Your results will vary, depending on how you set
up your web server. This example shows an Apache web server running on a local
IP address: 192.168.1.14.

	 Chapter 9  The Browser Object Model	 193

	 4.	 Modify the URI that you use to call the page by adding some query string parameter/
value pairs. For example, the URI used for my local environment is http://192.168.1.14
/jsbs/c9/location1.htm. (Your environment and the location from which you serve the
file will likely be different from this.) I’m going to modify the URL and add two param-
eters, name Steve and country US. Feel free to change the value for the name param-
eter to your name and change the country value to your home country (if you’re not
from the United States, that is). The values you choose aren’t all that important here—
what matters is that you use more than one parameter/value pair. Here’s my final URI:
http://localhost:1627/Chapter9/location1.htm?name Steve&country US.

	 5.	 When you load the page with the parameters you added, the search property has a
value, as shown here:

194	 Part II  Applying JavaScript

	 6.	 Open the location1.htm file again, and save it as location2.htm.

	 7.	 Alter the code in location2.htm so that it examines the search property, like this (the
changes are shown in boldface type and are in the location2.txt file in the companion
content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Location, Location, Location</title>

</head>

<body>

 <script type="text/javascript">

 var body = document.getElementsByTagName("body")[0];

 for (var prop in location) {

 var elem = document.createElement("p");

 var text = document.createTextNode(prop + ": " + location[prop]);

 elem.appendChild(text);

 body.appendChild(elem);

 }

 if (location.search) {

 var querystring = location.search;

 var splits = querystring.split('&');

 for (var i = 0; i < splits.length; i++) {

 var splitpair = splits[i].split('=');

 var elem = document.createElement("p");

 var text = document.createTextNode(splitpair[0] + ": " +

	 Chapter 9  The Browser Object Model	 195

splitpair[1]);

 elem.appendChild(text);

 body.appendChild(elem);

 }

 }

 </script>

</body>

</html>

	 8.	 Execute this code by pointing your browser to location2.htm?name Steve&country US
(alter the name and country as appropriate, unless your name is Steve and you live in
the United States). You now receive a page that lists the normal properties that you saw
earlier, but also lists (near the bottom) the parameter/value pairs parsed from the query
string, like this:

	 9.	 Notice, however, that the first parameter, name, contains the question mark (?) from
the query string, which is not what you want. You can solve this problem in several
ways. One of the simplest is to use the substring() method. Change the querystring
variable definition line to read:

var querystring = location.search.substring(1);

196	 Part II  Applying JavaScript

The substring() method returns the string starting at the point specified. In this case,
the first character of location.search (at index 0) is the question mark; therefore, use
substring() starting at index 1 to solve the problem. The final code (with the change
shown in boldface type) looks like what follows. (You can find this in the location3.txt
file in the companion content.):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Location, Location, Location</title>

</head>

<body>

 <script type="text/javascript">

 var body = document.getElementsByTagName("body")[0];

 for (var prop in location) {

 var elem = document.createElement("p");

 var text = document.createTextNode(prop + ": " + location[prop]);

 elem.appendChild(text);

 body.appendChild(elem);

 }

 if (location.search) {

 var querystring = location.search.substring(1);

 var splits = querystring.split('&');

 for (var i = 0; i < splits.length; i++) {

 var splitpair = splits[i].split('=');

 var elem = document.createElement("p");

 var text = document.createTextNode(splitpair[0] + ": " +

splitpair[1]);

 elem.appendChild(text);

 body.appendChild(elem);

 }

 }

 </script>

</body>

</html>

	 10.	 Save this code as location3.htm and run it again. You see from the results that you’ve
solved the problem of the question mark:

	 Chapter 9  The Browser Object Model	 197

The location can also be set using JavaScript and the location object. Typically you accom-
plish this using the assign() method of the location object. For example, to redirect to my
website (always a good idea), I might use this code:

location.assign("http://www.braingia.org");

Calling the assign() method is essentially the same as setting the href property:

location.href = "http://www.braingia.org";

You can also change other properties of the location object, such as the port, the query
string, or the path. For example, to set the path to /blog,/, you can do this:

location.pathname = "blog";

To set the query string to ?name Steve, do this:

location.search = "?name=Steve";

You can reload the page by calling the reload() method:

location.reload();

198	 Part II  Applying JavaScript

When you call location.reload(), the browser may load the page from its cache rather than
re-request the page from the server; however, if you pass a Boolean true to the method, the
browser reloads the page directly from the server:

location.reload(true);

Note  Be carefu us ng the reload() method Try ng to re oad the page w th n a scr pt, as opposed
to through a funct on ca tr ggered by an event, s ke y to cause a oop cond t on

The history Object
The history object provides ways to move forward and backward through the visitor’s brows-
ing history. (However, for security reasons, JavaScript cannot access the URIs for sites that the
browser visits.) Specifically, you can use the back(), forward(), and go() methods. It probably
goes without saying, but back() and forward() move one page backward and forward, respec-
tively. The go() method moves to the index value specified as the argument.

Note  If an app cat on doesn’t go to a d fferent page or ocat on n the address bar, the app ca-
t on won’t be part of the browser’s h story and thus not access b e w th these funct ons

Here’s some example code for moving backward and forward that can be adapted as need-
ed. Examples in later chapters show more detail about how this kind of code might be used
in the real world.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>History</title>

 <script type="text/javascript">

 function moveBack() {

 history.back();

 }

 function moveForward() {

 history.forward();

 }

 </script>

</head>

<body>

<p>Click to go back</p>

<p>Click to go forward</p>

</body>

</html>

	 Chapter 9  The Browser Object Model	 199

Note  Th s code uses an n ne event hand er (onclick), wh ch s not recommended for use n
unobtrus ve JavaScr pt, because the event hand er nserts behav or n the page markup The use
of onclick here s for ustrat ve purposes on y, to avo d ntroduc ng the event hand er concept,
wh ch gets ts own chapter—Chapter 11

Registering Handlers
HTML 5.0 introduced two new methods of the navigator object: registerContentHandler()
and registerProtocolHandler(). Using these methods, a website can register a URI for
handling certain types of information, such as an RSS feed. However, these methods
are not yet widely supported, and therefore aren’t covered in this book.

Exercises
	 1.	 Use the availHeight and availWidth methods to determine whether a screen is at least

768 pixels high and 1024 pixels wide. If it’s not, display an alert() dialog box stating the
size of the available screen.

	 2.	 Alter the step-by-step exercise that used the location object to display an alert() dialog
box based on the values of the query string. Specifically, display the word “Obrigado” if
the country is specified as Brazil, and display “Thank you” if the country is Great Britain.
Test these conditions.

	 3.	 Install the User Agent Switcher add-on to Firefox or a similar add-on to Internet Explorer.
Then use the code from the “Looking at the navigator object” exercise earlier in this
chapter to experiment with the different values that you find. This exercise helps to
show why using the navigator object as the sole means of determining compatibility
is not recommended. Bonus: Define your own user agent.

	 	 201

Part III

Integrating JavaScript into Design

Chapter	10:	The	Document	Object	Model

Chapter	11:	JavaScript	Events	and	the	Browser

Chapter	12:	Creating	and	Consuming	Cookies

Chapter	13:	Working	with	Images	in	JavaScript

Chapter	14:	Using	JavaScript	with	Web	Forms

Chapter	15:	JavaScript	and	CSS

Chapter	16:	JavaScript	Error	Handling

	 	 203

Chapter 10

The Document Object Model
After reading this chapter, you’ll be able to:

n	 Use the Document Object Model (DOM) to retrieve elements from a document.

n	 Create new elements in a document.

n	 Make changes to elements in a document.

n	 Remove elements from a document.

The Document Object Model Defined
The Document Object Model provides a way to access and alter the contents of Hypertext
Markup Language (HTML) documents. The DOM is a standard defined by the World Wide
Web Consortium (W3C). Most Internet browsers implement the DOM in various forms—and
with varying degrees of success.

Like many other standards, especially those related to web programming, the DOM has
evolved over the years. It has three specifications, known as levels in DOM-speak, with a
fourth specification on the way.

The DOM is much more powerful than this chapter or even this book can convey, and there’s
much more to it than I attempt to cover. You can use the DOM for more than just JavaScript
programming. This book focuses on how you can use JavaScript to access and manipulate
the DOM.

When I refer to the DOM in this chapter (and throughout this book), I emphasize how it relates
to the current task rather than to the broader, relevant concepts or what might be possible
with the DOM. For example, this book concentrates on how the DOM represents HTML doc-
uments as trees. The DOM does so for HTML and Extensible Markup Language (XML) alike,
but because this is a book about JavaScript, it’s most important that you understand the
DOM’s relation to HTML.

For more information about the DOM, refer to its specification at the W3C site:
http://www.w3.org/DOM/.

204	 Part III  Integrating JavaScript into Design

Note  The examp es n th s chapter use the n ne event hand ers such as the on oad event at-
tached d rect y to the <body> tag, and the onc ck event hand er attached to var ous HTML
tags Use of n ne event hand ers s not best pract ce, and s used here for ustrat ve purposes
on y Chapter 11, “JavaScr pt Events and the Browser,” ntroduces a better approach for attach ng
events to HTML DOM Leve 0 s a so known

DOM Level 0: The Legacy DOM
DOM Level 0 was implemented before other formal specifications of the DOM. After DOM
Level 1 was specified, the previous technology related to document scripting was codified
(though not really in any formal way by any standards body) as the legacy DOM Level 0.
Today, every major browser supports DOM Level 0 components for downward compatibility.
You don’t want all those scripts you wrote back in 1998 to break!

The DOM Level 0 concentrated mainly on giving access to form elements, but it also incor-
porated providing access to links and images. Chapter 14, “Using JavaScript with Web Forms,”
covers forms and how you access them with the DOM. Rather than spend time on examples
of DOM Level 0, I concentrate on DOM Levels 1 and 2, which you’re more likely to use when
you program in JavaScript.

DOM Levels 1 and 2
The W3C issued Level 1 of the DOM as a specification in 1998. Like the legacy DOM, Level
1 is supported, in various forms, by all the major browsers. Level 2 of the DOM was formally
released in 2000. Support of Level 2 DOM varies more widely between browsers. Truthfully,
support of all DOM levels varies from browser to browser and from version to version.

Versions of Windows Internet Explorer prior to version 9 claim to support the DOM, but they
do so differently from other browsers. As a result, you need to be aware that the DOM fea-
ture or function you’re using or attempting to use in your JavaScript code might not work in
Internet Explorer or might work only in Internet Explorer and nowhere else (and no, that’s
not acceptable). Windows Internet Explorer Version 9 is a step in the right direction, but you
still need to account for compatibility issues between browsers. Where applicable, I point out
the places where browsers implement the DOM differently and some workarounds for such
events.

	 Chapter 10  The Document Object Model	 205

The DOM as a Tree
The DOM represents HTML documents in a tree-like structure—or rather, an uprooted tree-
like structure—because the root of the tree is on top. For example, consider the simple HTML
document shown in Listing 10-1.

Listing 10-1  A s mp e HTML document.

<html>

<head>

<title>Hello World</title>

</head>

<body>

<p>Here's some text.</p>

<p>Here's more text.</p>

<p>Link to the W3</p>

</body>

</html>

Figure 10-1 shows the HTML from Listing 10-1 when viewed in the tree structure of the DOM.

html

head body

pp ptitle

Here’s some
text

W3

a

Here’s more
text

Link to
the

Figure 10-1  A s mp e document represented as a tree structure.

206	 Part III  Integrating JavaScript into Design

Many HTML elements can have attributes, such as the href attribute of the <a> element
shown in Listing 10-1. You can both retrieve and set these attributes using the DOM, as you
will see later in this chapter.

When working with the DOM, you should be aware of the distinction among retrieving ele-
ments, setting elements and items related to elements, and removing or deleting elements.
The methods for working with DOM elements reflect this distinction.

Working with Nodes
The elements within the tree structure are sometimes referred to as nodes or node objects.
Nodes at the level below a given node are known as children. For example, in the structure
shown in Figure 10-1, the body node has three child nodes, all p elements, and one of the
p elements has a child of its own, an a element. The body node is said to be a parent of the p
nodes. Any nodes under a given node are known as descendants of that node. The three
p nodes in Figure 10-1 are known as siblings because they’re on the same level.

In the same way you use methods to work with elements of the DOM, you use methods to
work with nodes that reflect the parent/child and sibling relationships. For example, you can
use methods such as appendChild(), shown later in this chapter, to add nodes to an existing
parent.

Retrieving Elements
Retrieving the elements of a document is an essential way you use the DOM when program-
ming with JavaScript. This section examines two of the primary methods you use to retrieve
elements: getElementById() and getElementsByTagName().

Retrieving Elements by ID
The getElementById() method is a workhorse method of the DOM. It retrieves a specified
element of the HTML document and returns a reference to it. To retrieve an element, it must
have an id attribute. For example, you can modify the HTML from Listing 10-1 to add an id
attribute to the a element, as shown in boldface here:

<html>

<head>

<title>Hello World</title>

<body>

<p>Here's some text.</p>

<p>Here's more text.</p>

<p>Link to the W3</p>

</body>

</html>

	 Chapter 10  The Document Object Model	 207

Now that the a element has an id, you can retrieve it using the getElementById() method,
as follows:

var a1 = document.getElementById("w3link");

The reference for the element with the ID w3link would be placed inside the JavaScript
variable a1.

All HTML elements support id attributes, which makes them all retrievable by JavaScript. In
this example, all the p elements get IDs, thus making them retrievable using the getElement-
ById() method, too. Take a look at this code:

<html>

<head>

<title>Hello World</title>

<body>

<p id="sometext">Here's some text.</p>

<p id="moretext">Here's more text.</p>

<p id="linkp">Link to the W3</p>

</body>

</html>

You can retrieve the <p> elements in the same way:

var p1 = document.getElementById("sometext");

var p2 = document.getElementById("moretext");

var plink = document.getElementById("linkp");

But what can you do with those elements after you retrieve them? For elements such as a,
you can access their attributes by retrieving the value of the href attribute, as in this example.
You can find this in the companion code in the getelement.htm file.

<html>

<head>

 <title>Get By Id</title>

 <script type="text/javascript">

 function checkhref() {

 var a1 = document.getElementById("w3link");

 alert(a1.href);

 }

 </script>

</head>

<body onload="checkhref()">

<p id="sometext">Here's some text.</p>

<p id="moretext">Here's more text.</p>

<p id="linkp">Link to the W3</p>

</body>

</html>

The page containing this code displays a dialog box showing the href attribute from the
a element, like the one in Figure 10-2.

208	 Part III  Integrating JavaScript into Design

Figure 10-2  The href attr bute retr eved w th the he p of getElementById().

Later in this chapter, you see how to change elements and attributes.

A Note on the innerHTML Property
One way to change the text of elements is to use the innerHTML property. The inner
HTML property enables fast and simple access to the text in such elements as a p
element. This property generally works well—so well, in fact, that although it wasn’t
well liked in many web programming circles for some time, I find it difficult to skip it
entirely in this book. So I won’t.

The problem with innerHTML is that it wasn’t formally defined as a standard by the
W3C, so it’s not necessarily supported in all browsers in the way that other DOM-
specified objects are. However, innerHTML will be a part of the HTML 5.0 specification,
and with the sometimes unpredictable implementations of the actual DOM specifica-
tion, innerHTML is still desirable. The major browsers support innerHTML—and they do
so fairly consistently.

Take a look at this example, which you can find in the companion code in the inner
html.htm file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Get By Id</title>

 <script type="text/javascript">

 function changetext() {

 var p1 = document.getElementById("sometext");

 alert(p1.innerHTML);

 p1.innerHTML = "Changed Text";

 }

 </script>

</head>

<body onload="changetext()">

<p id="sometext">Here's some text.</p>

<p id="moretext">Here's more text.</p>

<p id="linkp">Link to the W3</p>

</body>

</html>

	 Chapter 10  The Document Object Model	 209

The changetext() function retrieves the element with an ID of sometext, and places a
reference to it in the variable p1, using this code:

var p1 = document.getElementById("sometext");

Next, it calls the innerHTML property, sending the result to an alert() dialog box.

Notice not only the alert() dialog box, but also the text of the first line in the back-
ground window: When the user clicks OK, the alert() dialog box disappears, and the
next line of JavaScript executes, using the innerHTML property to change the text of
the first p element to “Changed Text”. The result is shown here:

210	 Part III  Integrating JavaScript into Design

Retrieving by Tag Name
The getElementById() method works well when you’re retrieving only one or just a few ele-
ments, but when you need to retrieve more than one element at a time, you might find the
getElementsByTagName() method to be more appropriate.

The getElementsByTagName() method returns all the elements of the specified tag type in an
array or in a list format. For example, to retrieve all the images (tags) in a document,
you write the following code:

var images = document.getElementsByTagName("img");

You could then examine the properties of the img elements stored in the images variable by
looping through them.

Here’s an example that modifies a table. This code changes the background color of each td
element within the table when the user clicks the Click To Change Colors link. You can find
this code in the companion content, in the file getbytagname.htm:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Tag Name</title>

 <script type="text/javascript">

 function changecolors() {

 var a1 = document.getElementsByTagName("td");

 var a1Length = a1.length;

 for (var i = 0; i < a1Length; i++) {

 a1[i].style.background = "#aaabba";

 }

 }

 </script>

</head>

<body>

<table id="mytable" border="1">

<tr><td id="lefttd0">Left column</td><td id="righttd0">Right column</td></tr>

<tr><td id="lefttd1">Left column</td><td id="righttd1">Right column</td></tr>

<tr><td id="lefttd2">Left column</td><td id="righttd2">Right column</td></tr>

</table>

Click to Change Colors

</body>

</html>

Figure 10-3 shows how this page looks when viewed in a web browser.

	 Chapter 10  The Document Object Model	 211

Figure 10-3  Us ng getElementsByTagName() to format e ements from a tab e.

Clicking the link causes the table elements to change background color, which you can see in
Figure 10-4.

Figure 10-4  After a user c cks the nk, the tab e e ements change the background co or.

Examining the code, you see that the JavaScript in the <head> portion of the page creates a
function called changecolors():

function changecolors() {

That function retrieves all the td elements by using the getElementsByTagName() method,
placing them into the a1 array:

var a1 = document.getElementsByTagName("td");

212	 Part III  Integrating JavaScript into Design

The code then enumerates this array using a for loop, starting at element 0, and continuing
to the end of the array. It uses the a1Length variable, which obtained the length of the a1
array in the line preceding the for loop.

Within the for loop, one line of code changes the background style of each element to
#aaabba, a shade of blue. It’s normally better to change the actual style by applying it
through CSS (Cascading Style Sheets) than to explicitly change an attribute, as shown in the
example. However, until you read about CSS and JavaScript in Chapter 15, “JavaScript and
CSS,” this approach suffices:

for (var i = 0; i < a1Length; i++) {

 a1[i].style.background = "#aaabba";

}

The link calls the changecolors() function because of an onclick event:

Click to Change Colors

Note  The onclick event, a ong w th onload and other events, are covered n deta n Chapter 11

One common question concerns how to color or shade every other row within a table. You
can do that easily with JavaScript and some CSS, as discussed in Chapter 15.

HTML Collections
A number of objects contain groups of elements from a document. These include:

n	 document.anchors  A group containing all the named <a> elements (in other words,
those with a name attribute assigned to them).

n	 document.forms  A group containing all the <form> elements within a document.

n	 document.images  A group containing all the elements.

n	 document.links  A group containing all the <a> elements that contain an href
attribute.

Working with Siblings
JavaScript contains methods and properties for working with the parent/child and sibling
relationship of an HTML document. For example, the childNodes property contains a group
of nodes comprising the children of the given element. The group is similar to an array,
though it’s not a true Array type in JavaScript—for example, assume a <div> element with
an ID of mydiv and several <a> anchor elements as its children. The following line of code
retrieves the first child and places it into the childOne variable:

	 Chapter 10  The Document Object Model	 213

var childOne = document.getElementById("mydiv").childNodes[0];

Just as the parent node can have one or more children, each child can have a parent node,
which you retrieve using its parentNode property. You can iterate through the children using
the nextSibling and previousSibling properties. If there are no more siblings, the property
returns null. For example, the previousSibling property returns null when used on the first
child, and the nextSibling property returns null when used on the last child.

Finally, the firstChild and lastChild properties contain the first child (childNodes[0]) and last
child of a given element, respectively. When an element contains no children, these proper-
ties are both null.

Working with Attributes
The attributes of elements are both gettable and settable through JavaScript. This section
looks at both tasks.

Viewing Attributes
Sometimes, especially when first programming with JavaScript, you might not know what
attributes are available for a given element. But you don’t have to worry about that, because
of a loop that calls the getAttribute() method. Here’s a generic function that displays all the
attributes of a given element:

function showattribs(e) {

 var e = document.getElementById("braingialink");

 var elemList = "";

 for (var element in e) {

 var attrib = e.getAttribute(element);

 elemList = elemList + element + ": " + attrib + "\n";

 }

 alert(elemList);

}

A little JavaScript with the getElementById() method is all you need to invoke this function, as
you see in this exercise.

Retrieving element attributes

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file showattribs.htm in
the Chapter10 sample files folder.

	 2.	 Within the page, replace the TODO comment with the following code shown boldface
type. (The code is in the showattribs.txt file in the companion content.)

214	 Part III  Integrating JavaScript into Design

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Show Attribs</title>

 <script type="text/javascript">

 function showattribs(e) {

 var e = document.getElementById("braingialink");

 var elemList = "";

 for (var element in e) {

 var attrib = e.getAttribute(element);

 elemList = elemList + element + ": " + attrib + "\n";

 }

 alert(elemList);

 }

 </script>

</head>

<body>

<a onclick="return showattribs();" href="http://www.braingia.org"

id="braingialink">Steve Suehring's

Web Site

<script type="text/javascript">

</script>

</body>

</html>

	 3.	 Save the code and view it in a web browser. You see a page like this:

	 4.	 Click the link. The JavaScript function executes. The function retrieves the a element’s
attributes and loops through them, appending them to a variable. Finally, that variable
displays in an alert() dialog box, like the partial one shown here:

	 Chapter 10  The Document Object Model	 215

216	 Part III  Integrating JavaScript into Design

Setting Attributes
You saw how the getAttribute() method retrieved the values in an attribute. You also can set
attributes using the setAttribute() method.

The setAttribute() method takes two arguments or parameters: the attribute you want to
change and the intended value for that attribute. Here’s an example that changes the href
attribute value, which you can also find in the companion code in the setattrib.htm file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Set Attrib</title>

</head>

<body>

Steve Suehring's Web Site

<script type="text/javascript">

 var a1 = document.getElementById("braingialink");

 alert(a1.getAttribute("href"));

 a1.setAttribute("href","http://www.microsoft.com");

 alert(a1.getAttribute("href"));

</script>

</body>

</html>

When you view this page in a web browser, you see an alert() dialog box that displays the
current value of the href attribute, as shown in Figure 10-5.

Figure 10-5  The n t a va ue of the href attr bute.

When the dialog box closes, the setAttribute() method executes and the href attribute changes,
as shown in Figure 10-6.

	 Chapter 10  The Document Object Model	 217

Figure 10-6  The new va ue of the href attr bute.

The setAttribute() method doesn’t work consistently in Internet Explorer prior to version 8.0,
so a reliable way to set attributes is to use dot notation to access the element’s properties.
For example, you can set the href in the following code in the same way you used it in the
previous code example:

a1.href = "http://www.braingia.org";

If your web application doesn’t support earlier versions of Internet Explorer, using the setAttribute()
and getAttribute() methods are preferable. Additionally, you can use the removeAttribute()
method to remove an attribute entirely from an element. The same caution about support in
earlier versions of Internet Explorer applies.

Creating Elements
You aren’t limited to interacting with the elements that already exist on a page. You can add
elements to a document using the DOM. This section examines some ways to do that.

Adding Text
In its most basic form, the createElement() method of the document object creates or adds an
element to a document. Here’s some example code:

var newelement = document.createElement("p");

The element within the variable newelement now has a reference to the new element. To
make the element visible, you need to append the element to the document—though usually
only after adding text to it. You add an element to a document using the appendChild()
method, as follows:

document.body.appendChild(newelement);

218 Part III Integrating JavaScript into Design

But what good is a p element if it doesn’t have any text? The appendChild() element can help
there, too, in conjunction with the createTextNode() method, as follows:

newelement.appendChild(document.createTextNode("Hello World"));

You can use the three lines of code you’ve seen so far at any time after the body of the
document has been declared . Here’s the code in the context of a webpage . You can find this
example in the companion code in the file create .htm:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Create</title>

</head>

<body>

 <script type="text/javascript">

 var newelement = document.createElement("p");

 document.body.appendChild(newelement);

 newelement.appendChild(document.createTextNode("Hello World"));

 </script>

</body>

</html>

When viewed in a browser, the result is a simple p element containing the text Hello World,
as shown in Figure 10-7 .

FIGURE	10-7	 Us ng createElement, createTextNode, and appendChild() to create an e ement .

	 Chapter 10  The Document Object Model	 219

Adding an Element and Setting an ID
The previous example showed how to add an element. Usually you want to set some attri-
butes, such as the ID for that element, as well. This code expands on the previous example to
add an id attribute (you can find this code in the companion code in the file createid.htm):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Create</title>

</head>

<body>

 <script type="text/javascript">

 var newelement = document.createElement("p");

 newelement.setAttribute("id","newelement");

 document.body.appendChild(newelement);

 newelement.appendChild(document.createTextNode("Hello World"));

 </script>

</body>

</html>

Deleting Elements
You can remove nodes from a document using the removeChild() method. Recall the code
from the previous section, which added an element. Expanding on that code by adding a few
p elements simplifies your work with it:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Create</title>

</head>

<body>

 <script type="text/javascript">

 for (var i = 0; i < 3; i++) {

 var element = document.createElement("p");

 element.setAttribute("id","element" + i);

 document.body.appendChild(element);

 element.appendChild(document.createTextNode("Hello World, I'm Element " + i + "."));

 }

 </script>

</body>

</html>

220	 Part III  Integrating JavaScript into Design

When viewed in a web browser, the document creates a page that looks like the one in
Figure 10-8.

Figure 10-8  Creat ng and add ng three e ements us ng a for oop and the DOM.

You can add a few lines of code that remove one of the newly created elements. Using
removeChild() remove any element from your documents, not just elements that you create.
The two added lines of code are:

var removeel = document.getElementById("element1");

document.body.removeChild(removeel);

For this example, add the lines of code right after the code that creates the elements. In prac-
tice, you can place the call to removeChild() anywhere, as long as the element has already
been created. The final code with the new lines shown in boldface type follows. You can find
it in the companion code as removeel.htm:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Create</title>

</head>

<body>

 <script type="text/javascript">

 for (var i = 0; i < 3; i++) {

 var element = document.createElement("p");

 element.setAttribute("id","element" + i);

 document.body.appendChild(element);

 element.appendChild(document.createTextNode("Hello World, I'm Element " + i + "."));

 }

 var removeel = document.getElementById("element1");

 document.body.removeChild(removeel);

 </script>

</body>

</html>

	 Chapter 10  The Document Object Model	 221

Figure 10-9 shows the result. The for loop still creates three elements, but the code above in
bold removes the middle one immediately.

Figure 10-9  Us ng removeChild() to remove an e ement from a document.

Exercises
	 1.	 Create a document containing a paragraph of text that you create and append using

the DOM. Create a link immediately after this paragraph that links to a site of your
choice, also using the DOM. Make sure that all the elements have id attributes.

	 2.	 Create a document with any elements you like, or use an existing HTML document that
contains id attributes in its elements. Retrieve two of those elements, make changes to
them, and put them back into the document. The type of change you make depends
on the type of element you choose. For example, if you choose an a element, you might
change the href; if you choose a p element, you might change the text.

	 3.	 Create a document by using the DOM that contains a table with at least two columns
and two rows. Add some text in the table cells.

	 	 223

Chapter 11

JavaScript Events and the Browser
After reading this chapter, you’ll be able to:

n	 Understand the earlier event model.

n	 Understand the W3C JavaScript event model.

n	 Add event handlers to a webpage by using JavaScript.

n	 Open new windows by using JavaScript.

n	 Open new tabs in a web browser.

n	 Create a timer by using JavaScript.

Understanding Window Events
You’ve seen event handling used a few times in earlier chapters to respond to user actions or
document events. To review, the Window object’s events include mouseover() and mouse-
out(), and load() and click(). These events are fairly well standardized across all browsers, but
other events and event handling are not as easy to implement. This section explores events
and how you use them in JavaScript programming.

The Event Models
Your first challenge in understanding events is to understand the two distinct models: the
model used by Windows Internet Explorer versions prior to 9, and the model defined by the
World Wide Web Consortium (W3C). An older model—the earlier Document Object Model
0 (DOM 0)—includes the events you saw throughout earlier chapters. (You learned a little
about DOM 0 in Chapter 1, “JavaScript Is More Than You Might Think.”) DOM 0 is the most
cross-browser compatible model and is supported by all JavaScript-capable browsers. In this
discussion, I provide a brief overview of the DOM 0 event model, and then explore the com-
peting W3C and Internet Explorer event models.

Using the DOM 0 Model
The DOM 0 event model is by far the easiest model to use (as you learned in previous chap-
ters), and it is the most compatible one to use for event handling in JavaScript. (As mentioned
earlier, it is supported in all major web browsers). So why not just use the DOM 0 event
model everywhere? The reason is simple: it lacks the flexibility needed for complex event
handling. For example, the DOM 0 model can’t handle multiple event actions on the same

224	 Part III  Integrating JavaScript into Design

element. Still, there’s nothing wrong with using it for simple scripts, as shown throughout the
book so far.

The DOM 0 event model includes several events that multiple Hypertext Markup Language
(HTML) tags raise in response to various user actions or state changes. Table 11-1 describes
each event.

Table 11-1  DOM 0 Events
Event Name Description
onblur() The e ement ost focus (that s, t s not se ected by the user)

onchange() The e ement has e ther changed (for examp e, a user typed nto a text fie d)
or ost focus

onclick() The mouse c cked an e ement

ondblclick() The mouse doub e-c cked an e ement

onfocus() The e ement got focus

onkeydown() A keyboard key s pressed (as opposed to re eased) wh e the e ement
has focus

onkeypress() A keyboard key s pressed wh e the e ement has focus

onkeyup() A keyboard key s re eased wh e the e ement has focus

onload() The e ement s oaded (a document, a frameset, or an mage)

onmousedown() A mouse button s pressed

onmousemove() The mouse s moved

onmouseout() The mouse s moved off of or away from an e ement

onmouseover() The mouse s over an e ement

onmouseup() A mouse button s re eased

onreset() The form e ement s reset, such as when a user presses a form reset button

onresize() The w ndow’s s ze s changed

onselect()	 The text of a form e ement s se ected

onsubmit() The form s subm tted

onunload() The document or frameset s un oaded

Newer Event Models: W3C and Internet Explorer
The W3C codified an event model that allows powerful event handling, and almost all later
versions of major browsers support it with the notable exception of Internet Explorer prior
to version 9, which uses a different model. Because the standard W3C event model and the
earlier Internet Explorer event model differ, you must account for each in any JavaScript that
uses either event handling approach rather than only the approach provided by the DOM 0
event model.

Conceptually, the process of event handling is similar in the W3C model and Internet Explorer
models. In both models, you register the event first, associating a function with the event.

	 Chapter 11  JavaScript Events and the Browser	 225

When a registered event gets triggered, the event’s function gets called. However, the loca-
tion at which the event occurs is one important difference between them.

To understand this difference, imagine a document with a <body> element and another
element in the body, for example, an . If a visitor moves the mouse over the image,
should the onmouseover() event be handled first within the , or within the <body>?
The two models diverge in determining where the event should be processed.

The W3C model supports two forms for locating where the event should be handled: Event
Capture and Event Bubbling. With Event Capture, the search for a handler begins at the top
level (the document level) and proceeds downward through the DOM tree to more specific
elements. If you used Event Capture in the example from the last paragraph, an event would
be processed first by the <body> element and then by the element. Processing occurs
in exactly the reverse order for Event Bubbling; the element in which the event occurred gets
searched for a handler first, and the search proceeds upward from there.

As previously stated, the W3C model—and therefore all browsers that adhere to it (in other
words, all browsers except older versions of Internet Explorer)—can use both forms of event
handling (you learn about this soon), whereas older versions of Internet Explorer use only
Event Bubbling. With the W3C model, you register an event using the addEventListener()
method. With the earlier Internet Explorer model, you use attachEvent()for the same pur-
pose. In practical terms, this means that you need to use both methods in every script you
write that handles events, choosing at runtime the one appropriate for the browser in which
the script is running. The basic structure of the addEventListener() method is this:

addEventListener(event,function,capture/bubble);

The capture/bubble parameter is a Boolean value, where true indicates that the event should
use top-down capturing and false indicates that the event should use bubbling. Here’s a typi-
cal call to the addEventListener() method for a Submit button. The call registers the submit
event, specifying a function named myFunction() (which would be defined elsewhere in the
code), and uses top-down event capturing:

window.addEventListener("submit",myFunction(),true);

To register the same event using bubbling, you write this:

window.addEventListener("submit",myFunction(),false);

The attachEvent() method used in the earlier Internet Explorer model doesn’t require the
third argument, because you don’t have to decide whether to use capturing or bubbling;
the earlier Internet Explorer model offers only bubbling.

Here’s an example of registering the submit event in earlier versions of Internet Explorer,
associating it with myFunction() by calling attachEvent():

226	 Part III  Integrating JavaScript into Design

window.attachEvent("onsubmit",myFunction());

You might have noticed a subtle difference in the name of the event to which the event
handlers were added—submit, as opposed to onsubmit in the DOM Level 0 model. Many of
the events in the DOM Level 2 changed names. Table 11-2 shows the names of several DOM
Level 0 events and their W3C DOM Level 2 counterparts. Note that the DOM 2 events simply
remove the word “on” from the event name. (The earlier Internet Explorer model uses the
DOM 0 names.)

Table 11-2  DOM 0 and DOM Level 2 Events
DOM 0 Event DOM 2 Event
onblur() blur

onfocus() focus

onchange() change

onmouseover() mouseover

onmouseout() mouseout

onmousemove() mousemove

onmousedown() mousedown

onmouseup() mouseup

onclick() click

ondblclick() dblclick

onkeydown() keydown

onkeyup() keyup

onkeypress() keypress

onsubmit() submit

onload() load

onunload() unload

Both the W3C and earlier Internet Explorer models include methods to remove event listen-
ers. In the W3C model, the method is called removeEventListener() and takes the same three
arguments as addEventListener():

removeEventListener(event,function,capture/bubble)

The earlier Internet Explorer model uses detachEvent() for this same purpose:

detachEvent(event,function);

You might find it necessary to stop event handling from propagating upward or downward
after the initial event handler is executed. The W3C model uses the stopPropagation() method
for this purpose, whereas the earlier Internet Explorer model uses the cancelBubble property.
I provide an example of this behavior in the “Opening, Closing, and Resizing Windows” sec-
tion later in this chapter.

	 Chapter 11  JavaScript Events and the Browser	 227

A Generic Event Handler
Adding event listeners for each event that you need to handle quickly can become too
cumbersome. Instead, use a generic event handler for this purpose so that you can abstract
the cross-browser incompatibilities. Listing 11-1 shows a generic event handler. You can find
this code in the companion content, in the ehandler.js file in the Chapter11 folder.

Listing 11-1  A gener c event hand er.

var EHandler = {};

if (document.addEventListener) {

 EHandler.add = function(element, eType, eFunc) {

 if (eType == "load") {

 if (typeof window.onload == "function") {

 var existingOnload = window.onload;

 window.onload = function() {

 existingOnload();

 eFunc();

 } //end existing onload handler

 } else {

 window.onload = eFunc;

 }

 } else {

 element.addEventListener(eType, eFunc, false);

 }

 };

 EHandler.remove = function(element, eType, eFunc) {

 element.removeEventListener(eType, eFunc, false);

 };

}

else if (document.attachEvent) {

 EHandler.add = function(element, eType, eFunc) {

 if (eType == "load") {

 if (typeof window.onload == "function") {

 var existingOnload = window.onload;

 window.onload = function() {

 existingOnload();

 eFunc();

 } //end existing onload handler

 } else {

 window.onload = eFunc;

 }

 } else {

 element.attachEvent("on" + eType, eFunc);

 }

 };

 EHandler.remove = function(element, eType, eFunc) {

 element.detachEvent("on" + eType, eFunc);

 };

}

228	 Part III  Integrating JavaScript into Design

This generic event handler creates an object called EHandler (which stands for event handler),
which then has two methods added to it, add()and remove(), both available in the W3C and
the earlier Internet Explorer models. The add method in each model determines whether the
event type is a load event, meaning that the function needs to be executed on page load. If
the function does, the add handler needs to determine whether any existing onload functions
are already defined. If they are, the handler must set the onload functions to run with the
newly defined function.

For the purposes of this chapter and the remainder of the book, I expect you to save this file
to an external JavaScript file called ehandler.js, and add the file into any JavaScript files in
need of an event handler. As a reminder, you can add an external JavaScript file like this:

<script type="text/javascript" src="ehandler.js"></script>

Luckily, Windows Internet Explorer 9 uses the W3C compatible model; as that new browser
version becomes more popular in the market, attachEvent will slowly be replaced. However,
sites that support earlier browsers will still need to use the older Microsoft model for years to
come.

You can improve on this event handler script so that it is more suitable for situations you
might encounter when building more powerful JavaScript applications. (You can find more
information about this topic at John Resig’s website: http://ejohn.org/blog/flexible-javascript-
events/.) However, a better solution is to use a JavaScript framework or library, such as jQuery,
to abstract the event model even more.

More Information  I d scuss n more depth jQuery and other JavaScr pt frameworks beg n-
n ng w th Chapter 19, “A Touch of AJAX ” For now, the s mp e event hand er scr pt presented n
th s sect on suffices as an examp e n th s book For more advanced JavaScr pt programm ng us-
ng events, I recommend you use a brary such as jQuery rather than the s mp e event hand er
shown here

The remainder of this chapter applies knowledge you gained about events as well as about
the Browser Object Model from Chapter 9, “The Browser Object Model”; the Document
Object Model from Chapter 10, “The Document Object Model”; and the syntax from the Part
I of the book, “JavaWhat? The Where, Why, and How of JavaScript.”

Detecting Visitor Information
JavaScript programming often requires browser detection—that is, the detection of which
browser a visitor to a website is using. For several years, browser detection was accomplished
largely by using the userAgent property of the navigator object. The userAgent property
is available through the navigator object and shows information about the user’s browser.
However, relying on the userAgent property is no longer recommended, because visitors can

	 Chapter 11  JavaScript Events and the Browser	 229

so easily forge it. In addition, maintaining accurate userAgent information for every version of
every browser is incredibly difficult.

I personally use five different browsers of various versions. Maintaining an up-to-date list
of which browser supports which feature for just my handful of browsers is even too cumber-
some. Imagine what it would be like trying to maintain JavaScript code that accounted for
every browser and every version of that browser! It would be virtually impossible. And that
doesn’t even take fake (either for malicious or other purposes) userAgent strings into account!

So I discuss the userAgent property only briefly and then move on to show the newer (and
much better) methods for determining whether the JavaScript that you’re using will work in
the visitor’s browser. This section also examines other properties of the navigator object that
are helpful, if not 100 percent reliable.

A Brief Look at the userAgent Property
As mentioned, the userAgent string is a property of the navigator object. It contains infor-
mation about the user’s browser. To show the userAgent information, just type this in your
browser:

javascript:alert(navigator.userAgent);

If you’re using Windows Internet Explorer 7, you might see an alert like the one in Figure
11-1.

Figure 11-1  The userAgent property of the navigator object.

Other browsers report different information. For example, one version of Firefox reports itself
as this:

Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.3) Gecko/20100401 Firefox/3.6.3

This string usually changes as each new version of a browser is released. If you tried to track
each released version of each browser, and then tried to track which version of each browser
supported which feature of JavaScript, you’d be spending a lot of time (and possibly a lot of
your employer’s or client’s time as well) maintaining that list.

230	 Part III  Integrating JavaScript into Design

A much better way to track what is and is not supported in the visitor’s browser is a tech-
nique known as feature testing, discussed in the next section.

Feature Testing
Using feature testing, sometimes referred to as object detection, a JavaScript program attempts
to detect whether the browser that is visiting the webpage supports a given feature.

Fortunately, you don’t have to test whether every function and method you want to use are
supported in the visitor’s browser. The DOM Level 0 model and other earlier functions of
JavaScript are so widely supported, and their cross-browser implementations are so close,
that testing for particular features isn’t necessary. However, you must still test whether
JavaScript is available, because not all browsers support JavaScript, and not all visitors have
the JavaScript support option turned on.

The typeof operator is the primary mechanism used to implement feature testing. In general
terms, you use the operator as follows:

if (typeof featureName != "undefined") {

 // Do Something Fun With That Feature

}

Try an example. To test for the existence of the getElementById() method, which indicates
that the browser supports the more advanced DOM interface, you might use this code:

if (typeof document.getElementById != "undefined") {

 alert("getelembyid is supported");

} else {

 alert("no getelembyid support");

}

You may be tempted to skip the use of typeof within the test, and you may see examples on
the web where a feature test looks like this:

if (document.getElementById) { ... }

Unfortunately, this method of feature testing isn’t as reliable as the typeof test. The problem
is that the shorter syntax runs the method. When you omit typeof, the method or property
being tested might return 0 or false by default, which makes the test fail; in other words, it
appears that the browser doesn’t support that method or property—when it actually does.
Therefore, testing using typeof is safer and more reliable.

	 Chapter 11  JavaScript Events and the Browser	 231

Another way to accomplish this task that looks a bit cleaner is to use the ternary operator to
set a flag early in the code. Script that runs later on can use a standard if conditional to check
the flag, as shown here:

// test for getElmementById, set getElem to the result

var getElem = (typeof document.getElementById == "function") ? true : false;

// now you can test getElem

if (getElem) {

 // We know getElementById is supported,

 // so let's use it.

}

Keeping JavaScript Away from Older Browsers
One of the most discouraging problems you face as a web programmer is dealing with the
presence of older browsers. Writing webpages that have any sort of current look and feel
and still display reasonably well in older browsers is becoming increasingly difficult. What
defines an older browser? Ask three different web designers and you’ll probably get three
different answers. To me, an older browser is one that is more than three years old, though
I lean toward saying two years rather than three.

By this definition, then, Firefox 1.0 is an older browser, even though most webpages display
fine, and almost all the JavaScript code you write will probably work perfectly in that version
of Firefox. A more general rule is that any version of Internet Explorer or Netscape earlier
than version 5 tends to have many, many quirks that web designers must take into account.

Given the depressing fact that browsers even older than Microsoft Internet Explorer 5.0 are
sometimes still in use, accepting that your code might fail in these browsers is a good idea.
You can try to make your code fail gracefully; however, doing even that may not always be
possible. I recently installed a copy of Netscape 3 (which, if I remember correctly, was released
in 1997). The browser had trouble with most JavaScript, and also had problems displaying
HTML and CSS (Cascading Style Sheets) on basic websites. This was to be expected, because
that version of Netscape was released well before many of the standards in use today were
codified. The point is that no matter how hard you try, your website is probably never going
to fail gracefully in really old versions of browsers. I recommend that you choose a minimum
browser level to support—and design for that target, keeping in mind that the later the mini-
mum level, the more visitors you shut out of the site. The goal is to strike a balance between
being a welcoming site and being a cutting-edge site.

There are two primary techniques for keeping JavaScript away from older browsers: inserting
HTML-style comments into the JavaScript, and using the <noscript> </noscript> tags.

To use HTML comments in your JavaScript, you surround them within <!-- and --> marks, as
shown in this example:

232 Part III Integrating JavaScript into Design

<script type="text/javascript">

<!-- //Begin Comment

var helloelem = document.getElementById("hello");

alert(helloelem.innerHTML);

// End Comment-->

</script>

Unfortunately, not every browser obeys these HTML comments, so you still encounter errors
sometimes . This style of commenting, or protection, is becoming less and less common . As
the old browsers slowly get cycled out, this type of workaround isn’t really necessary .

Whatever falls between the <noscript> </noscript> tag pairs is displayed only when the page
detects no JavaScript support in the browser . Here’s an example of <noscript>:

<noscript>

<p>This Web Page Requires JavaScript</p>

</noscript>

When visitors whose browsers don’t accept JavaScript visit the webpage, they see whatever
falls between the <noscript> </noscript> tag pair . In this example, they’d see the text “This
Web Page Requires JavaScript .” Note that using <noscript> doesn’t halt execution or parsing
of the remainder of the document, so other HTML within the page is displayed, but using it
does provide you with a good opportunity to fail gracefully by offering a text-only page or a
site map link .

I recommend keeping the use of <noscript> to a minimum, and using it only in those applica-
tions where JavaScript is an absolute necessity for functionality, rather than in applications
where your JavaScript provides only behavioral aspects, such as rollovers . You can easily
overuse JavaScript or use it incorrectly, hindering the user experience rather than enhancing
it . There’s nothing worse than to have visitors come to your site only to have their browsers
crash, lock up, or become otherwise unresponsive because of some unnecessary JavaScript
widget .

Tip Remember that there are severa eg t mate reasons that a v s tor m ght not have JavaScr pt
capab ty, not the east of wh ch s that she or he s us ng an access b e/ass st ve browser or text
reader You shou d str ve to a ow text capab t es on your s te and prov de a s te map for usab ty

Other navigator Properties and Methods
Although the userAgent string is falling out of favor, the navigator object does provide some
helpful information that JavaScript programmers can retrieve . Chapter 9 explored the naviga-
tor object in detail, showing all the navigator object’s properties as well as how to determine
whether Java is enabled in the browser .

	 Chapter 11  JavaScript Events and the Browser	 233

Note  Use the navigator object w th caut on Somet mes the resu ts m ght not be ent re y accu-
rate Worse yet, the navigator object m ght not be ava ab e when JavaScr pt sn’t supported on
the v s tor’s browser For examp e, re y ng on navigator object propert es for the funct ona ty of
your page wou d defin te y be a prob em!

Opening, Closing, and Resizing Windows
One of the most maligned uses of JavaScript is its ability to open, close, and resize browser
windows. The act of opening a browser window in response to or as part of the onload event
was one of the most frequent and annoying operations that Internet advertisers employed
(and still do). Mozilla Firefox, Opera, and others give their users the ability to block all these
annoyances by default without sacrificing usability. Windows Internet Explorer 6.0 with
Service Pack 2 and later has that capability as well.

I have yet to see an automatic pop-up window that actually enhances the usability of a web-
site without being intrusive. If you believe that your site requires a component that opens a
new window, I recommend rethinking the navigation before creating that component. Not
only will your visitors thank you because your site has simplified navigation and is more in-
tuitive, but your site will work better because it will rely less on JavaScript, which might be
disabled.

Despite those annoying windows, your visitors sometimes might want to open new windows
in response to events like a mouse click. For example, clicking a link might open a small side
window that allows visitors to choose an option from a menu, or that displays Help text
about the various options.

The window object contains several methods helpful for opening, closing, and resizing
browser windows. The open method, as you might guess, is used to open a new browser
window. The basic syntax of the open() method is this:

window.open(url, name, features)

The url parameter is a string representing the Uniform Resource Locator (URL) to load. If this
parameter is left blank, the browser opens a default about:blank page. The name parameter
is a string representing the name of the window to open. If a window with the same name is
already open, the URL opens in that named window; otherwise, a new window opens.

The features parameter is a string of comma-separated options that represents various fea-
tures you want the new window to have, such as the window’s height and width, and a scroll-
bar. Table 11-3 lists some of the features available. This list is not comprehensive, because
browsers support different features and feature names. See http://msdn2.microsoft.com
/en-us/library/ms536651.aspx for information about Internet Explorer, and https://developer
.mozilla.org/en/DOM/window.open for information about Firefox and the Mozilla family.

234	 Part III  Integrating JavaScript into Design

Table 11-3  Some Features Used in the open() Method of the window Object
Feature Description
directories Determ nes whether the persona too bar or bookmarks too bar d sp ays n the

new w ndow User-configurab e n F refox

height The he ght n p xe s of the new w ndow

left The ocat on n p xe s from the eft edge of the screen where the new w ndow
s to be p aced

location Determ nes whether the ocat on bar w be d sp ayed Th s s a ways d sp ayed
n Internet Exp orer 7 and ater and can be changed to a ways be d sp ayed n
F refox, so th s opt on s s ow y becom ng obso ete

menubar Determ nes whether the menu bar appears n the new w ndow

resizable Determ nes whether the w ndow s res zab e by the v s tor F refox a ways a ows
the w ndow to be res zed for access b ty (and just genera fr end ness, too)

scrollbars Determ nes whether scro bars are d sp ayed

status Determ nes whether the status bar s d sp ayed n the new w ndow
User-configurab e n F refox

toolbar Determ nes whether the too bar appears n the new w ndow

top The ocat on n p xe s from the top edge of the screen where the new w ndow s
to be p aced

width The w dth n p xe s of the new w ndow

Some browsers give users control over whether the options in Table 11-3 have any effect. For
example, attempting to hide the location bar from a new window doesn’t work in Internet
Explorer or in Firefox (depending on how the user has configured Firefox).

The close() method of the window object has no parameters. To use close(), simply call it like
this:

window.close()

This method doesn’t always work reliably, so you should never assume that the window was
actually closed. At best you can hope it was.

Window Opening Best Practices
Although you can open new windows using little more than the window frame, as shown in
Figure 11-2, I recommend against doing so except in exceptional cases.

	 Chapter 11  JavaScript Events and the Browser	 235

Figure 11-2  A w ndow that does not have the menu bar or many other features users expect n browser
w ndows.

Instead, include in any new open windows the menus, navigational elements, and the address
bar. Firefox and increasingly Internet Explorer don’t allow JavaScript to disable functionality
such as resizing and interface components such as the status bar. Those elements are impor-
tant for enabling the visitor to use the site and application in a way that works for her based
on her needs rather than on the developer’s needs. Including those options, and designing
your pages and site so that the visitor isn’t affected by those user interface elements, is the
best approach.

You’ll find window.open() increasingly unnecessary. With the advent of tabbed browsing,
window.open() is near the end of its useful life. The next section moves outside the realm
of a JavaScript book to show how you can open a new tab without any JavaScript.

Opening Tabs: No JavaScript Necessary?
Actually, you don’t need any JavaScript to open a new tab, which is really what most devel-
opers are looking for anyway. Instead, you can open a new tab using the target attribute of
anchor (<a>) elements. Using the target attribute is preferable, because it won’t interfere with
the visitor’s experience in later browsers such as Firefox and Internet Explorer 7 or later.

Here’s an example of the target attribute in action:

236	 Part III  Integrating JavaScript into Design

Go To Microsoft

Another example to open in a new unnamed tab:

Go To Microsoft

Resizing and Moving Windows
JavaScript also supports resizing the browser window. However, browsers like Firefox include
an option to prevent window resizing by JavaScript. For this reason, I strongly recommend
against resizing windows using JavaScript, and this book introduces you to the methods and
properties for doing so only briefly. For more information about resizing or moving browser
windows, refer to http://support.microsoft.com/kb/287171.

Chapter 9 included a section titled “Getting Information About the Screen,” which showed
properties of the window’s screen object, including availHeight and availWidth. These prop-
erties are sometimes used to assist with changing the size of a browser window. Other helpful
properties and methods in the window object related to resizing and moving windows are
listed in Table 11-4.

Table 11-4  Selected Properties and Methods Related to Moving and Resizing Windows
Property/Method Description
moveBy(x,y) Move the w ndow by the amount of x and y n p xe s

moveTo(x,y) Move the w ndow to the coord nates spec fied by x and y.

resizeBy(x,y) Res ze the w ndow by the amount of x and y n p xe s

resizeTo(x,y) Res ze the w ndow to the s ze spec fied by x and y.

Timers
JavaScript includes functions called timers that (as you might guess) time events or delay
execution of code by a given interval.

Four global functions are involved in JavaScript timers:

n	 setTimeout()

n	 clearTimeout()

n	 setInterval()

n	 clearInterval()

	 Chapter 11  JavaScript Events and the Browser	 237

At their most basic, the two timer-related functions for setting the timer—setTimeout() and
setInterval()—expect two arguments: the function to be called or executed, and the interval.
With setTimeout(), the specified function is called when the timer expires. With setInterval(),
the specified function is called each time the timer interval has elapsed. The functions return
an identifier that you can use to clear or stop the timer with the complementary clearTime-
out() and clearInterval() functions.

Timer-related functions operate in milliseconds rather than in seconds. Keep this in mind
when using the functions. There’s nothing worse than setting an interval of 1, expecting it
to execute every second, only to find that it tries to execute 1,000 times a second.

Tip  One second s 1,000 m seconds

Listing 11-2 (in the listing11-2.htm file in the companion content) shows an example of the
setTimeout() function set to show an alert after 3 seconds.

Listing 11-2  An examp e of setTimeout() .

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>timer</title>

<script type="text/javascript" src="ehandler.js"></script>

</head>

<body id="mainBody">

<p>Hello</p>

<script type="text/javascript">

function sendAlert() {

 alert("Hello");

}

function startTimer() {

 var timerID = window.setTimeout(sendAlert,3000);

}

var mainBody = document.getElementById("mainBody");

EHandler.add(mainBody, "load", function() { startTimer(); });

</script>

</body>

</html>

The example in Listing 11-2 includes two functions, sendAlert() and startTimer(). The onload
event of the page calls the startTimer() function, which has one line that calls the setTimeout()
function. The setTimeout() function in this case calls another function called sendAlert() after
3 seconds (3,000 milliseconds).

238	 Part III  Integrating JavaScript into Design

The timerID variable contains an internal resource that points to the setTimeout() function
call. You could use this timerID variable to cancel the timer, like this:

cancelTimeout(timerID);

The setTimeout() function can accept raw JavaScript code rather than a function call; how-
ever, using a function call is the recommended approach. Choosing to include raw JavaScript
code rather than a function call can result in JavaScript errors in some browsers.

Exercises
	 1.	 Create a webpage that contains an onclick event handler connected to a link using a

DOM 0 inline event. The event handler should display an alert stating “You Clicked
Here”.

	 2.	 Change the webpage created in Exercise 1 to use the newer style of event handling
shown in ehandler.js (in the companion content) and connect the same click/onclick
event to display the alert created in Exercise 1.

	 3.	 Create a webpage with a link to http://www.microsoft.com. Make that link open in a
new tab.

	 	 239

Chapter 12

Creating and Consuming Cookies
After reading this chapter, you’ll be able to:

n	 Understand HTTP cookies.

n	 Create cookies with JavaScript and send them to the browser.

n	 Understand how to make a cookie expire in the future.

n	 Understand how to set the path and domain for a cookie.

n	 Read cookies from the browser and parse their contents.

Understanding Cookies
Hypertext Transfer Protocol (HTTP) cookies are bits of data that are sent back and forth
between a client (usually a browser) and a server. They are used to keep track of everything
from the state of an application (such as where you are in the application), to session infor-
mation, to information about your visit such as your user ID (though there are plenty of rea-
sons why you shouldn’t store user IDs or any other personal information in a cookie).

RFC 2965 describes HTTP cookies in some detail—perhaps even more than you want to know
for now. You can see the RFC at http://www.rfc-editor.org/cgi-bin/rfcdoctype.pl?loc RFC&lets
go 2965&type ftp&file format txt.

Cookies and Privacy
Despite all the privacy problems that some may link to cookies, cookies themselves
are quite harmless. At best, they reside in random access memory (RAM) only for the
length of time that the visitor keeps the browser open. At worst, they sit as text files on
the visitor’s hard drive.

Cookies don’t raise privacy issues except regarding the information stored in them. Yes,
it’s true that nothing stops a website operator from storing within a cookie data that
shouldn’t be there, but the website operator could also store that data in other unsafe
ways that have nothing to do with cookies. Cookies aren’t the problem—the problem
is the people who misuse them to store private data. Everything you store in a cookie
is only as secure as the computer on which it is stored. So, I would advise you never to
store personally identifiable information within a cookie. Keep your visitors’ data safe.

240	 Part III  Integrating JavaScript into Design

A cookie is typically just a text file—that’s the easiest and most convenient way to think of it.
A cookie can contain several different elements, but at heart it is a set of name/value pairs,
many of which are set by the site operator or developer and are optional.

When visitors come to my website, http://www.braingia.org/, and go to the blog link, they
might end up with a cookie on their computer. The contents of the cookie would be some-
thing like this:

Name: cookie4blog

Content: sess_id02934235

Domain: www.braingia.org

Path: /

Send For: Any type of connection

Expires: Never

The browser stores the cookie on the visitor’s computer until the cookie expires, which in this
case is never. When a repeat visitor returns to a site, the visitor’s browser sends the cookie to
the server. The server can then tell that the visitor was there before, and the server may use
some personalized settings from the cookie to customize the visitor’s experience.

One of the features of cookies is that they are sent only to servers on the domain for which
they were set. So, the cookie shown in the preceding code is sent by the browser to a server
only when the domain that the browser is trying to visit matches www.braingia.org. Also, a
cookie can have its secure flag set (the one in the example does not). If the secure flag is set,
the cookie can be sent only over a Secure Sockets Layer (SSL)–enabled session, such as over a
Hypertext Transfer Protocol Secure (HTTPS) connection.

Note  Th rd-party cook es and the subt e ways someone can work around the doma n m tat on
are beyond the scope of th s book

JavaScript can both create and read cookies. The remainder of this chapter looks at both
functions.

Creating Cookies with JavaScript
You can use JavaScript to create cookies by using the document.cookie property. This section
discusses how to create cookies and send them to the site visitor’s browser.

Tip  When work ng w th cook es, us ng s mp e str ng va ues s mportant Avo d spaces, punctua-
t on, and other nona phanumer c characters, because they are not a owed You can use these

ega characters n cook es, but not n the r nat ve form—you must escape them, otherw se,
they m ght cause prob ems for the cook e, the page, and the browser L ke other prob ems w th
JavaScr pt and web programm ng n genera , these prob ems m ght be subt e and genera y d f-
ficu t to troub eshoot When n doubt, st ck to a phanumer c characters

	 Chapter 12  Creating and Consuming Cookies	 241

Looking at a Simple Cookie
A cookie needs a name. This bit of JavaScript creates a cookie and then sends it to the
browser:

var cookName = "testcookie";

var cookVal = "testvalue";

var myCookie = cookName + "=" + cookVal;

document.cookie = myCookie;

When you visit a page with the preceding JavaScript code, the code sets a cookie named
testcookie in your browser. Assuming that you allow the cookie, the browser stores the
cookie’s data (testvalue) as well as other information about the cookie for future use.

When you set a cookie through JavaScript, the cookie gets appended to the end of any exist-
ing cookies. This process will make more sense when you start reading cookies. You should
also understand that to specify attributes in a particular cookie, you must concatenate the
attribute’s name/value pair onto the cookie as you build it. The next example helps you
to visualize this aspect of working with cookies in JavaScript.

Setting a Cookie’s Expiration Date
The example shown earlier created a cookie by building a name/value pair, like so:

var myCookie = cookName + "=" + cookVal;

In essence, the code looks like this (this cookie has only the cookie name and cookie
data set):

testcookie=testvalue;

To add an expiration date, you add an expires attribute, so the cookie becomes:

testcookie=testvalue; expires=Sat, 12 Mar 2011 17aad:51:50 GMT;

Adding an expiration date is just a matter of concatenating the expiration date onto the end
of the cookie to be sent. The format of the expiration date is important. To get the date for-
matted correctly for the cookie, you need a few different JavaScript functions. In the follow-
ing exercise, you practice creating a cookie with an expiration date.

Prior to beginning the exercise, it’s a good idea to enable prompting for cookies in your
browser. Doing so makes debugging much easier, because each time a server or some
JavaScript code sends a cookie to your browser, you get prompted.

Unfortunately, enabling prompting in Windows Internet Explorer is unreliable, so you need
to use Firefox for this exercise. In the Windows version of Firefox, click Tools and then Options
(in the Linux version of Firefox, click Edit and then Preferences). In the Options dialog box,

242	 Part III  Integrating JavaScript into Design

click the Privacy icon, and then select Use Custom Settings For History from the drop-down
list. Now select Ask Me Every Time from the Keep Until drop-down list, as shown in Figure
12-1.

Figure 12-1  Chang ng cook e sett ngs n F refox.

Tip  Don’t forget to change these sett ngs back to your norma sett ngs when you’re fin shed
test ng cook e-re ated ssues The constant prompt ng can get qu te annoy ng, because of the
number of cook es that most webs tes set

Adding an expiration date to a cookie

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file cookie-expire.htm
in the Chapter12 sample files folder in the companion content.

	 2.	 Within the webpage, add the code in boldface type, shown here (the code is in cookie-
expire.txt, and the completed version in cookie.htm—both in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

	 Chapter 12  Creating and Consuming Cookies	 243

<title>Hello Cookie</title>

<script type="text/javascript">

var cookName = "testcookie";

var cookVal = "testvalue";

var myCookie = cookName + "=" + cookVal;

document.cookie = myCookie;

</script>

</head>

<body>

<p>Hello</p>

</body>

</html>

	 3.	 Deploy this page to a server and view it in a web browser. You should receive a prompt
like this:

Click Deny in Firefox to make sure this cookie does not get saved by the browser. If
you accidentally accept the cookie, close your browser and reopen it. Because this was
a session cookie, it’ll be closed when you close the browser. Congratulations—you’ve
used JavaScript code to send a cookie to the browser!

	 4.	 Modify the code to add lines for the date. This code should appear prior to the
myCookie variable declaration, like this:

var date = new Date();

date.setTime(date.getTime()+604800000)

var expireDate = date.toGMTString();

	 5.	 Modify the myCookie variable declaration to include the new expiration elements:

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate;

	 6.	 The entire code should now look like this (the added lines are shown in boldface type):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hello Cookie</title>

<script type="text/javascript">

var cookName = "testcookie";

var cookVal = "testvalue";

var date = new Date();

date.setTime(date.getTime()+604800000)

var expireDate = date.toGMTString();

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate;

document.cookie = myCookie;

244	 Part III  Integrating JavaScript into Design

</script>

</head>

<body>

<p>Hello</p>

</body>

</html>

	 7.	 When viewed in a web browser, the JavaScript code on the page sends a cookie to the
browser with an expiration date of exactly one week from the time of your visit. The
dialog box you see looks like the following screenshot. Click the Show Details button to
expand the dialog box so that it looks like this, if necessary:

In this exercise, four lines were added or modified to allow the cookie to have an expiration
date rather than exist only for the life of the active browser window. The first three lines set
the date. The first line creates a new date and places it in the date variable. Next, the code
sets the date using the setTime() method. The parameter for the setTime() method is an ex-
pression that includes a call to getTime(). The getTime() method retrieves the current date
in milliseconds since 1/1/1970. The value returned by getTime() represents the current date,
so for the cookie to expire at some point in the future (a week in this case), you calculate the
number of seconds in a week (604,800 to be exact) and then multiply that by 1,000 to con-
vert the time to milliseconds. Add the resulting number (604,800,000) to the value returned
by getTime(). Then, you can convert this number to a Greenwich Mean Time (GMT) string
with the help of the date object’s toGMTString() method.

Finally, the code appends the expires attribute to the cookie. The final result looks like this:

testcookie=testvalue;expires=Mon, 12 Jul 2010 23:22:22 GMT

	 Chapter 12  Creating and Consuming Cookies	 245

Setting the Cookie Path
In the examples shown so far, on my test machine, the browser sends the cookie to the server
when the path for the HTTP request matches /jsbs/c12/, because the server is where I’ve been
serving the pages from for my environment. This path will probably be different in other
cases, such as in your environment or on your test machine. You can change this path by
adding another option onto the cookie when it’s set. A more common scenario is just to set
the path to a forward slash (/) so that the cookie is available for all requests from the origi-
nating domain.

Like the expires option, setting the path involves appending a name/value pair to the cookie.

Here’s an example webpage like the ones shown so far in this chapter, which includes the
previously added code to specify an expiration date and the new path option (shown in
boldface type and in the cookie-path.htm file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hello Cookie</title>

<script type="text/javascript">

var cookName = "testcookie";

var cookVal = "testvalue";

var date = new Date();

date.setTime(date.getTime()+604800000)

var expireDate = date.toGMTString();

var path = ";path=/";

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate + path;

document.cookie = myCookie;

</script>

</head>

<body>

<p>Hello</p>

</body>

</html>

The preceding code added one line for the path functionality and changed the myCookie
variable definition, adding the new path variable. With this new code, the resulting cookie
now looks like this:

testcookie=testvalue;expires=Mon, 12 Jul 2010 23:22:22 GMT;path=/

View the page that creates this cookie, and you see the cookie dialog box similar to Figure
12-2.

246	 Part III  Integrating JavaScript into Design

Figure 12-2  Sett ng the path w th n the cook e.

Setting the Cookie Domain
The examples shown so far haven’t set a domain attribute; domain is by default set to the
host and domain for the server that is sending the cookie to the browser (or for the server
that sent the JavaScript code responsible for serving the cookie). In these examples, the do-
main has been www.braingia.org. However, many sites (including braingia.org) have multiple
hosts from which HTTP content is served. For example, there might be an entirely sepa-
rate server, maybe called images.braingia.org, that serves only the images on the pages in
braingia.org. It would be convenient if you could simply set the domain to braingia.org so
that the same cookies could be shared across the entire domain.

If you think that setting the domain for the cookie is just like setting the path, you’re right.
Appending the domain option to the cookie causes the domain to be set to a specific value.
Here’s an example webpage that integrates the path, expiration date, and now the domain.
The new code to specify the domain and append the domain attribute to the myCookie vari-
able is shown in boldface type (and is located in the cookie-domain.htm file in the companion
content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hello Cookie</title>

<script type="text/javascript">

var cookName = "testcookie";

var cookVal = "testvalue";

var date = new Date();

date.setTime(date.getTime()+604800000)

var expireDate = date.toGMTString();

var path = ";path=/";

var domain = ";domain=braingia.org";

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate + path + domain;

document.cookie = myCookie;

	 Chapter 12  Creating and Consuming Cookies	 247

</script>

</head>

<body>

<p>Hello</p>

</body>

</html>

When you view the page in a browser, the dialog box, shown in Figure 12-3, appears.

Figure 12-3  Sett ng the cook e s doma n so that t can be read from anywhere n the braingia.org doma n.

Tip  Just as you can make the doma n ess spec fic (as n th s examp e), you can a so make t more
spec fic, wh ch a ows you to create cook es that m ght be read on y by images.braingia.org or by
someotherspecificcomputer.braingia.org However, you cannot set a doma n outs de the doma n
from wh ch the content s be ng served For examp e, you can’t change the doma n va ue to
microsoft.com for a cook e served from braingia.org The browser w just gnore t

Working with Secure Cookies
Setting the secure flag in a cookie indicates that the cookie will be sent only when the
connection uses SSL, such as an HTTPS connection.

The code to add the secure flag onto the myCookie variable you’ve used throughout this
chapter looks like this:

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate + path + domain +

";secure";

When you view this page in a browser, even over an unencrypted HTTP connection, the
JavaScript code creates the cookie, as indicated in the dialog box shown in Figure 12-4.
Notice that the Send For option value is now "Encrypted connections only", whereas in all
the previous screenshots in this chapter, the value was set to "Any type of connection".

248 Part III Integrating JavaScript into Design

FIGURE	12-4	 Sett ng a cook e s secure flag .

At this point, you know everything you need to know about setting cookies with JavaScript .
It’s finally time to learn how to read cookies with JavaScript .

Reading	Cookies	with	JavaScript
Until now, you’ve looked at code that sends a cookie to the browser when you visit a web-
page . When the browser subsequently visits a page whose domain and path match cookies
stored on the client computer, the browser sends any matching cookies to the server along
with the request for the webpage . The cookie is available to the JavaScript code in the page
when the page is delivered to the browser .

Reading cookies with JavaScript involves taking the cookies from the document.cookie
object and then splitting them into manageable pieces . A call to the split method of
document.cookie takes care of it, because cookies are delimited by semicolons, similar to
the way in which a cookie’s attributes are delimited (as described in the previous section
of the chapter) . Here’s an example:

var incCookies = document.cookie.split(";");

With this bit of JavaScript, all the cookies would be split up, waiting to be accessed . With the
help of a for loop, you can loop through all the cookies available for the domain to find each
cookie’s name and data, as follows . (Note that this code does not examine the attributes of
each cookie other than the cookie name and cookie data .)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Reading Cookie</title>

<script type="text/javascript">

var incCookies = document.cookie.split(";");

var cookLength = incCookies.length;

	 Chapter 12  Creating and Consuming Cookies	 249

for (var c = 0; c < cookLength; c++) {

 alert(incCookies[c]);

}

</script>

</head>

<body>

<p>Hello</p>

</body>

</html>

This code (available in readcookie.htm) reads the available cookies for the domain into a vari-
able called incCookies. The cookies are split at their semicolon delimiters. For example, I set
several cookies for the braingia.org domain, both through my normal use of the site and for
the examples in this chapter. You can read all the cookies for the domain using the preceding
code. Figure 12-5 and Figure 12-6 show two of the alerts.

Figure 12-5  The first cook e read by the oop.

Figure 12-6  The second cook e read by the oop.

Using the for loop, you can split the cookies along the equal sign () to further divide the
cookie name from the cookie data, as shown in this code:

var incCookies = document.cookie.split(";");

var cookLength = incCookies.length

for (var c = 0; c < cookLength; c++) {

 var pairs = incCookies[c].split("=");

 var cookieName = pairs[0];

 var cookieValue = pairs[1];

 alert("Name: " + cookieName + " - " + "Value: " + cookieValue);

}

In this code (in the readcookie2.htm file in the companion content), each cookie, incCookie[c],
is split at the equal sign () and placed into a variable called pairs. The first index of the pairs
variable is the name of the cookie; the second index is its data. Take a look at Figure 12-7 for
an example of the output.

250	 Part III  Integrating JavaScript into Design

Figure 12-7  Sp tt ng a name/value pa r to separate the cook e name and cook e data.

Removing Cookies
There’s no built-in method for removing or deleting cookies, either through JavaScript or
by any other means. To remove a cookie, simply clear its value and set its expiration date
to some time in the past.

A previous example used this code to create and set a cookie:

var cookName = "testcookie";

var cookVal = "testvalue";

var date = new Date();

date.setTime(date.getTime()+604800000)

var expireDate = date.toGMTString();

var path = ";path=/";

var domain = ";domain=braingia.org";

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate + path + domain;

document.cookie = myCookie;

You can delete this cookie by setting its expiration date to sometime in the past. Note that
the components, such as name, path, and domain, must match for the cookie to be reset. In
effect, you want to overwrite the existing cookie with a new one that expired in the past, as
follows:

var cookName = "testcookie";

var cookVal = "";

var date = new Date();

date.setTime(date.getTime()-60)

var expireDate = date.toGMTString();

var path = ";path=/";

var domain = ";domain=braingia.org";

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate + path + domain;

document.cookie = myCookie;

This code (in the cookie-delete.htm file in the companion content) causes the testcookie data
to be set to an empty value and the expiration date to be set in the past.

Note  When th s JavaScr pt executes, F refox de etes the cook e mmed ate y; however, other
browsers may keep the cook e unt the browser c oses

	 Chapter 12  Creating and Consuming Cookies	 251

Exercises
	 1.	 Create a webpage that sends a cookie to the browser. Set the expiration date ahead

one day. Verify that the JavaScript code sent the cookie to the browser by viewing it as
it gets set or after it’s been stored on the computer. You could accomplish this second
part of the exercise; by using JavaScript or by viewing the cookies on the computer.

	 2.	 Create a webpage that sends a cookie with the cookie’s expiration date set ahead one
week, and set the secure flag. This page can be the same one you created for Exercise
1, but be sure to give the cookie a different name so that you’ve created two separate
cookies, one for each exercise. Also, be sure to enable the secure flag for the cookie in
this exercise, not for the cookie in Exercise 1.

	 3.	 Create a webpage that attempts to read the cookie with the secure flag set. Did you
receive the cookie? If not, what would you need to do to receive it?

	 4.	 Create a webpage that reads the cookie you created in Exercise 1. Use a for loop and an
if conditional to display an alert() dialog box when the cookie with the correct name is
found within the loop. Don’t display an alert() dialog box for any other cookies.

	 	 253

Chapter 13

Working with Images in JavaScript
After reading this chapter, you’ll be able to:

n	 Understand both new and old methods for creating rollover images using JavaScript.

n	 Preload images using JavaScript.

n	 Create a slideshow of images.

n	 Enhance image maps using JavaScript.

Working with Image Rollovers
The term image rollover refers to changing an image when a user moves the mouse over it,
to provide visual feedback about the mouse location on the screen. Although this technique
has been largely supplanted by cascading style sheets–based solutions, because this is a
JavaScript book, I show you only the JavaScript methods for creating rollovers. You can still
benefit from learning how JavaScript-based rollovers work, even if you use cascading style
sheets to create them.

Rollovers take advantage of certain events that relate to mouse movement on a computer,
primarily mouseover and mouseout.

A Simple Rollover
Placing mouseover and mouseout event handlers within the img tag creates the rollover
effect. The handlers display images that differ only slightly from each other. The following
HTML creates a rollover effect using the old DOM event handling model:

<img id="home" name="img_home" src="box1.png" alt="Home"

mouseover="window.document.img_home.src='box2.png'"

mouseout="window.document.img_home.src='box1.png'">

The important parts of this img tag are its name (img home); the mouseover and mouseout
events; and code that runs when those events fire. The tag’s name allows you to access the
image easily through the window.document object call, and the mouseover and mouseout
events make the action happen. When viewed in a web browser, the preceding code loads
the image called box1.png, as shown in Figure 13-1.

254	 Part III  Integrating JavaScript into Design

Figure 13-1  The n t a oad of the box1.png graph c through a webpage.

When you move the mouse over the graphic, the mouseover event fires, and the following
code changes the source of the graphic to box2.png:

window.document.img_home.src='box2.png'

While the mouse is over the graphic, the image changes to the one shown in Figure 13-2, in
which the direction of the gradient is reversed.

Figure 13-2  The graph c changes when the mouse moves over t.

	 Chapter 13  Working with Images in JavaScript	 255

When the mouse moves away from the graphic, the image changes back to box1.png, thanks
to the mouseout event, which calls this JavaScript:

window.document.img_home.src='box1.png'

Modern Rollovers
A newer method for creating rollovers with JavaScript is to use the Document Object Model
(DOM) and the onload event of the window object. (The onload event of the window object
was covered in Chapter 11, “JavaScript Events and the Browser.”) With the DOM in use, when
the page calls the onload event, the onload handler calls a JavaScript function that populates
the mouseover and mouseout events for all the images in the document.

Using Modern Rollovers
Although I call using the DOM with onload “Modern Rollovers,” and it does accom-
plish the goal of unobtrusive scripting, it can be somewhat cumbersome. It can also
be slightly less compatible when used across various browsers and platforms.

The pragmatist in me wants to say that using the example that was just shown is accept-
able, especially if your webpage has just a few graphics, but I feel like I’m teaching a
bad practice if I tell you to use it. Therefore, I leave it up to you to choose which approach
works best for you. If you have a lot of graphics that require the rollover effect, you’ll
find that this second, more current approach, which uses a generic function to handle
the rollover events, is easier to maintain.

This page works exactly the same as the example in the preceding section, but uses different
code, as shown in Listing 13-1 (see listing13-1.txt in the sample code).

Listing 13-1  A d fferent approach to ro overs

function rollover() {

 var images = document.getElementsByTagName("img");

 var imgLength = images.length;

 for (var i = 0; i < imgLength; i++) {

 images[i].mouseover = mouseOver;

 images[i].mouseout = mouseOut;

 }

}

function mouseOver() {

 this.src = "box2.png";

}

function mouseOut() {

 this.src = "box1.png";

}

256	 Part III  Integrating JavaScript into Design

This code, coupled with an onload event handler, creates a simple mouseover effect. By using
the EHandler event creation object with the code created in Chapter 11 (ehandler.js), you can
add the onload event to the <body> tag. First, include the ehandler.js script:

<script type="text/javascript" src="ehandler.js"></script>

Next, the rollover function gets called in response to the onload event. Again, you set this up
using the EHandler object s add method. Add the following code to the end of the HTML:

<script type="text/javascript">

var bodyEl = document.getElementsByTagName('body')[0];

EHandler.add(bodyEl,"load",function() { rollover(); });

</script>

Even though the functionality is the same as the preceding example, the code in Listing 13-1
is not very portable. (You do some work to improve that soon.) Following is an explanation of
the code from Listing 13-1.

The function retrieves all the elements using the getElementsByTagName() method of
the document object, and places them into a variable called images. Next, the code retrieves
the number of elements contained in the images variable by using the length property, and
stores the result in the imgLength variable. The code uses the value in imgLength to iterate
through all the images. Within the loop, it sets the mouseover and mouseout events to their
respective functions, called mouseOver() and mouseOut() in this code.

Up to this point, the code is remarkably portable, though it doesn’t reflect best practice. The
code gets a bit worse within the mouseOver and mouseOut event handlers, because the src
attributes are hard-coded to the file names box1.png and box2.png. This is fine if all you
have is one image and its accompanying rollover, as in this example. However, if you have a
page full of images, as is more likely the case in the real world, this code breaks. In addition,
the this keyword is quirky when it is called from another function related to event handling.
Therefore, the script needs improving.

This example code does show the basic theory of how to implement rollovers. Loop through
the images (or retrieve them by ID) and set their mouseover and mouseout events to specific
functions, which in turn should set the src attribute to the name of the image to use for that
event. Now it’s your turn to make the function more portable so that you can use it in the
future.

This exercise uses six images (three graphics, each of which has a default and a rollover im-
age), but the code is written to support any number of images. I included the images used
in this exercise with the downloadable code for this book, so you don’t have to reinvent the
wheel just to make this exercise work.

	 Chapter 13  Working with Images in JavaScript	 257

Creating portable rollovers

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file rollover.htm in the
Chapter13\rollover sample files folder in the companion content. This folder includes
six images: home default.png, home over.png, about default.png, about over.png,
blog default.png, and blog over.png. The file names containing default are the images
to display initially; the file names containing over are the rollover images.

	 2.	 Within the webpage, add the boldface code shown here into rollover.txt (to replace the
TODO comments):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Rollover</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

function rollover() {

 var images = document.getElementsByTagName("img");

 var imgLength = images.length;

 for (var i = 0; i < imgLength; i++) {

 EHandler.add(images[i],"mouseover", function(i) {

 return function() {

 images[i].src = images[i].id + "_over.png";

 };

 }(i));

 EHandler.add(images[i],"mouseout", function(i) {

 return function() {

 images[i].src = images[i].id + "_default.png";

 };

 }(i));

 }

}

</script>

</head>

<body>

<p></p>

<p></p>

<p></p>

<script type="text/javascript">

var bodyEl = document.getElementsByTagName("body")[0];

EHandler.add(bodyEl,"load", function() { rollover(); });

</script>

</body>

</html>

	 3.	 View the page in a browser. You should see a page similar to this screenshot. If you run
into problems, make sure that each of the images is located in the current directory,
because that’s where the tag is looking for them.

258	 Part III  Integrating JavaScript into Design

	 4.	 Roll the mouse over the buttons one at a time. Each image should change to its corre-
sponding rollover image. Here’s what the screen looks like when the mouse is over the
Blog graphic:

This example shows a better rollover implementation. Like the previous example, this code
creates a function and then calls it using the window.onload event. Also, like the previous ex-
ample, this code gathers all the images into a variable called images and then loops through
each one, adding an mouseover and mouseout event handler to each, as follows:

	 Chapter 13  Working with Images in JavaScript	 259

function rollover() {

 var images = document.getElementsByTagName("img");

 var imgLength = images.length;

 for (var i = 0; i < imgLength; i++) {

 EHandler.add(images[i],"mouseover", function(i) {

 return function() {

 images[i].src = images[i].id + "_over.png";

 };

 }(i));

 EHandler.add(images[i],"mouseout", function(i) {

 return function() {

 images[i].src = images[i].id + "_default.png";

 };

 }(i));

 }

}

Again, the example uses the EHandler event registration script developed in Chapter 11,
calling the EHandler add() method to register a mouseover and mouseout event set for each
image. The function used to register events is somewhat complex because of a problem with
how Windows Internet Explorer handles the keyword this in event handling.

In other browsers such as Firefox, the this keyword refers to the actual element where the
event fires—in this case, the img element. However, Internet Explorer doesn t register an
event until it s used, so the element isn t registered during the event registration (inside of
the for loop). Therefore, the code needs to jump through some hoops to pass a reference to
the element for Internet Explorer. In this case, the index i is passed into the wrapper function,
which then calls its own anonymous function.

This example differs from Listing 13-1 because it removes the definitions of the mouseOver()
and mouseOut() functions. With this example, each image’s ID is gathered with a call to
images[i].id within an anonymous function. That name is then concatenated with the string
“ over.png” and “ default.png” for their respective functions.

Making sure that the file names and the tags’ id attributes match is important. For
example, here’s one of the tags from the example:

<p></p>

Because these file names are generated in the mouseover and mouseout event handlers
based on the element IDs, the file names for the About graphic must be about default.png
and about over.png. Similarly, the image file names must be home default.png and home
over.png for the Home graphic, and so on.

260	 Part III  Integrating JavaScript into Design

Note  Of course, you cou d use an ent re y d fferent nam ng convent on—the mportant ssue s
that the nam ng convent on you use for the ro over graph cs fi es must match what you coded n
the JavaScr pt

The rollover() function shown in the example gathers all the images on the page. For real-
world pages, that means there’s a good chance that the images variable list contains graphics
and images that don’t have a rollover action. Therefore, a further improvement on this script
is to create a conditional to check whether the graphic should be a rollover. One of the sim-
plest solutions is to refine the naming convention for rollover graphics to include the word
rollover in the tag’s id attribute, like this:

<p></p>

The new code iteration uses a regular expression through the match() method to examine
whether the id attribute contains the word rollover. If it does, the code continues the rollover
action; otherwise, it simply returns. Figure 13-3 shows an example page with four images,
three of which have rollover behavior.

Figure 13-3  An examp e w th on y certa n mages be ng ro overs.

When you move the mouse over any of the top three images on the page, the rollover image
loads. However, because the ID of the last image doesn’t contain the word rollover, it doesn’t
get a mouseover or mouseout event handler. Here’s the full code (but note that the script still
needs a little more improvement before it’s done). Note the new names of the image files.
(This code is included in the companion content sample files in the \rolloverregexp folder.)

	 Chapter 13  Working with Images in JavaScript	 261

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Rollover</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

function rollover() {

 var images = document.getElementsByTagName("img");

 var imgLength = images.length;

 for (var i = 0; i < imgLength; i++) {

 if (images[i].id.match(/rollover/)) {

 EHandler.add(images[i],"mouseover", function(i) {

 return function() {

 images[i].src = images[i].id + "_over.png";

 };

 }(i));

 EHandler.add(images[i],"mouseout", function(i) {

 return function() {

 images[i].src = images[i].id + "_default.png";

 };

 }(i));

 }

 }

}

</script>

</head>

<body>

<p><img id="rollover_home" name="img_home" src="rollover_home_default.png"

alt="Home"></p>

<p><img id="rollover_blog" name="img_blog" src="rollover_blog_default.png"

alt="Blog"></p>

<p><img id="rollover_about" name="img_about" src="rollover_about_default.png"

alt="About"></p>

<p></p>

<script type="text/javascript">

var bodyEl = document.getElementsByTagName("body")[0];

EHandler.add(bodyEl,"load", function() { rollover(); });

</script>

</body>

</html>

The differences between this code and the earlier code are slight and exist within the roll-
over() function and the img elements in the HTML. In the rollover() function, a regular expres-
sion is built directly within the match() method to look for the string rollover within the
image’s id attribute. If the string rollover appears within the ID, the rollover action is set, just
as in the previous examples. If the string isn’t found, the for loop continues.

262	 Part III  Integrating JavaScript into Design

Preloading Images
You may have noticed an issue when you first began working with the rollover examples in
the previous section. When the rollover image is first loaded, it can take a second to render.
This delay occurs because the image has to be loaded through the web server and network
before it is displayed in the browser.

This isn’t a huge issue; it’s more of an annoyance when using the application across a super
fast network connection. However, the lag is noticeable in real-world web applications, espe-
cially for users who may be running on slow dial-up connections. Luckily, you can preload the
images using a little JavaScript. Preloading stores the images in the browser’s cache, so they
are available almost instantly when a visitor moves the mouse over an image.

The basic premise behind preloading an image is to create an image object and then call the
src() method on that object, pointing to the image you’d like to preload. What you do with
that object after you call the src() method isn’t important. JavaScript makes the call to load
the image asynchronously, so the rest of the script continues to execute while the image
loads in the background.

The asynchronous nature of preloading does have an important implication when you’re
working with multiple images: you must create a new image object for each image that you
need to preload. If you have a batch of rollover images, as is often the case, each image
needs its own object and src() method call.

The final version of the rollover code incorporates preloading. Listing 13-2 shows the rollover
script as well as the HTML page for context; the preload elements of the code are shown in
boldface. This code is included in the companion content sample files in the rollover \regexp-
preload folder.

Listing 13-2  Pre oad ng and ro overs.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.

dtd">

<html>

<head>

<title>Rollover</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

function rollover() {

 var images = document.getElementsByTagName("img");

 var imgLength = images.length;

 var preLoad = [];

 for (var i = 0; i < imgLength; i++) {

 if (images[i].id.match(/rollover/)) {

 preLoad[i] = new Image();

 preLoad[i].src = images[i].id + "_over.png";

 EHandler.add(images[i],"mouseover", function(i) {

	 Chapter 13  Working with Images in JavaScript	 263

 return function() {

 images[i].src = images[i].id + "_over.png";

 };

 }(i));

 EHandler.add(images[i],"mouseout", function(i) {

 return function() {

 images[i].src = images[i].id + "_default.png";

 };

 }(i));

 }

 }

}

</script>

</head>

<body>

<p><img id="rollover_home" name="img_home" src="rollover_home_default.png"

 alt="Home"></p>

<p><img id="rollover_about" name="img_about" src="rollover_about_default.png"

 alt="About"></p>

<p><img id="rollover_blog" name="img_blog" src="rollover_blog_default.png"

 alt="Blog"></p>

<p></p>

<script type="text/javascript">

var bodyEl = document.getElementsByTagName("body")[0];

EHandler.add(bodyEl,"load", function() { rollover(); });

</script>

</body>

</html>

To review, the code uses the image tag naming convention to construct the image names,
so all the same warnings about synchronizing the id attributes with your JavaScript code dis-
cussed earlier in this chapter apply.

Working with Slideshows
You can use JavaScript to create a “slideshow” effect in which one image is swapped for an-
other in the browser window. For the purposes of this chapter, you build a visitor-controlled
slideshow—that is, one in which the visitor controls the image changes by clicking buttons to
move forward and backward through them, as opposed to the timed slideshow, in which the
application swaps the images automatically after a certain interval.

Creating a Slideshow
You can implement slideshow functionality through JavaScript in several ways. One approach
might be to use a for loop to iterate through the images, but this section illustrates another,
more straightforward slideshow variation.

264	 Part III  Integrating JavaScript into Design

Most slideshows are rather simple in design, though admittedly I’ve seen some overly com-
plex ones. Listing 13-3, which I explain, shows the slideshow in its first version, with just for-
ward capability.

Listing 13-3  A bas c (but s ght y ncomp ete) s deshow.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Slideshow</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

var images = ['home_default.png','about_default.png','blog_default.png','logo.png'];

function nextImage() {

 var img = document.getElementById("slideimage");

 var imgname = img.name.split("_");

 var index = imgname[1];

 if (index == images.length - 1) {

 index = 0;

 } else {

 index++;

 }

 img.src = images[index];

 img.name = "image_" + index;

}

</script>

</head>

<body>

<p></p>

<form name="slideform">

<input type="button" id="nextbtn" value="Next">

</form>

<script type="text/javascript">

var nextBtn = document.getElementById("nextbtn");

EHandler.add(nextBtn,"click",function() { nextImage(); });

</script>

</body>

</html>

I might as well discuss the HTML portion of this code, because it’s short. Here it is:

<p></p>

<form name="slideform">

<input type="button" id="nextbtn" value="Next">

</form>

	 Chapter 13  Working with Images in JavaScript	 265

This HTML code displays an image and sets its ID and name to specific values that will be
used later by the JavaScript. Next, it creates a form button that has a value of Next. That’s
all there is to it.

The JavaScript portion of the code first links to the EHandler object script developed in
Chapter 11:

<script type="text/javascript" src="ehandler.js"></script>

The heart of the code that moves forward through the slideshow is next:

var images = ['home_default.png','about_default.png','blog_default.png','logo.png'];

function nextImage() {

 var img = document.getElementById("slideimage");

 var imgname = img.name.split("_");

 var index = imgname[1];

 if (index == images.length - 1) {

 index = 0;

 } else {

 index++;

 }

 img.src = images[index];

 img.name = "image_" + index;

}

The JavaScript creates an array of images.

Note  Th s mage array created n the preced ng scr pt conta ns on y the fi e names, so the mage
fi es must be ocated n the same d rectory as the JavaScr pt be ng executed Otherw se, the m-
age fi e names w th n th s array w a so need to nc ude the appropr ate path(s)

Next, a script in the body of the document connects the nextImage()function to the click
event of the Next button by using the EHandler add() method:

<script type="text/javascript">

var nextBtn = document.getElementById("nextbtn");

EHandler.add(nextBtn,"click",function() { nextImage(); });

</script>

At this point, when a user clicks the Next button, the script will call the nextImage() function.
The nextImage() function retrieves the image object from the HTML tag, using the
getElementById() function. Next, it splits the name attribute of that image at the underscore
character, so the function can obtain the number from the ending characters of the name
attribute. It stores that number in the index variable.

266 Part III Integrating JavaScript into Design

The next portion of the code performs a conditional test that checks whether the index value
equals the length of the images array minus 1 . If this condition is true, the user has reached
the end of the slideshow, so the script sets the index value back to 0 to start over . If the slide-
show has not yet reached the end of the available images, the code increments the index
value by 1 .

The final two lines of JavaScript set the src attribute to the new image and set its name appro-
priately so that the next time the code goes through the function, the current index can be
determined .

Moving Backward
You might think that adding a button to enable backward traversal through the slideshow
should just be a matter of copying and pasting the code you just created, altering it slightly
to implement the Previous button’s functionality . In most instances, you’d be right . However,
consider the special case of trying to go backward from the first image . Contending with that
scenario makes using a Previous button a bit more challenging .

This next exercise reuses some of the graphics you’ve already seen in previous exercises and
examples in this chapter . They may make the slideshow rather boring, so feel free to replace
them with whatever other images you have handy . I didn’t select four images for this ex-
ample for any special reason, so you’re welcome to use more . However, be sure to use at
least three images so that you can fully test the backward and forward capabilities of the
JavaScript .

	 1.	 Using Visual Studio, Eclipse, or another editor, edit the file slideshow .htm in the
Chapter13\slideshow sample files folder, which you can find in the companion content .

	 2.	 Within that page, replace the TODO comments in slideshow .txt with the boldface code
shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Slideshow</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

var images = ['home_default.png','about_default.png','blog_default.png','logo.png'];

function nextImage() {

 var img = document.getElementById("slideimage");

 var imgname = img.name.split("_");

 var index = imgname[1];

 if (index == images.length - 1) {

 index = 0;

	 Chapter 13  Working with Images in JavaScript	 267

 } else {

 index++;

 }

 img.src = images[index];

 img.name = "image_" + index;

}

</script>

</head>

<body>

<p></p>

<form name="slideform">

<input type="button" id="nextbtn" value="Next">

</form>

<script type="text/javascript">

var nextBtn = document.getElementById("nextbtn");

EHandler.add(nextBtn,"click",function() { nextImage(); });

</script>

</body>

</html>

	 3.	 View the page in a web browser. You should see a page like this:

	 4.	 Click Next to scroll through all the images. Notice that the slideshow wraps back to the
first image once the slideshow gets to its end.

	 5.	 Now alter the code to add a Previous button (the new code is shown in boldface):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Slideshow</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

var images = ['home_default.png','about_default.png','blog_default.png','logo.png'];

function nextImage() {

 var img = document.getElementById("slideimage");

 var imgname = img.name.split("_");

268	 Part III  Integrating JavaScript into Design

 var index = imgname[1];

 if (index == images.length - 1) {

 index = 0;

 } else {

 index++;

 }

 img.src = images[index];

 img.name = "image_" + index;

}

function prevImage() {

 var img = document.getElementById("slideimage");

 var imgname = img.name.split("_");

 var index = imgname[1];

 if (index == 0) {

 index = images.length - 1;

 } else {

 index--;

 }

 img.src = images[index];

 img.name = "image_" + index;

}

</script>

</head>

<body>

<p></p>

<form name="slideform">

<input type="button" id="prevbtn" value="Previous">

<input type="button" id="nextbtn" value="Next">

</form>

<script type="text/javascript">

var nextBtn = document.getElementById("nextbtn");

var prevBtn = document.getElementById("prevbtn");

EHandler.add(nextBtn,"click",function() { nextImage(); });

EHandler.add(prevBtn,"click",function() { prevImage(); });

</script>

</body>

</html>

	 6.	 View the page in a browser again. You see that there’s a Previous button.

	 Chapter 13  Working with Images in JavaScript	 269

	 7.	 Test the page’s functionality by using both buttons in any combination to move back-
ward and forward through the slideshow.

The code for this exercise added a new button within the HTML for the Previous function:

<input type="button" id="prevbtn" value="Previous">

In addition, the JavaScript added a new function called prevImage() to go backward through
the images:

function prevImage() {

 var img = document.getElementById("slideimage");

 var imgname = img.name.split("_");

 var index = imgname[1];

 if (index == 0) {

 index = images.length - 1;

 } else {

 index--;

 }

 img.src = images[index];

 img.name = "image_" + index;

}

The code is strikingly similar to the nextImage() function, except for the conditional. If the
index is 0, the slideshow is at the first image, and therefore, the function needs to loop back
to the last image. Otherwise, the code moves backward by one index, showing the previous
image.

270	 Part III  Integrating JavaScript into Design

Working with Image Maps
Image maps are images that have particular areas defined to behave in specific ways, such
as linking to another document. Image maps are frequently used in maps to pick out the
country or region in which the visitor resides. They also are used within menus, though less
so with the advent of cascading style sheets.

Unfortunately, I’m not nearly a good enough artist to draw a map of the Earth. Instead, I cre-
ated a wildly out-of-scale representation of a small piece of the night sky facing north from
44.52 degrees North latitude, -89.58 degrees West longitude, during the summer months.
This graphic is included within the sample code for this chapter (in the companion content)
and is called nightsky map default.gif.

In the illustration shown in Figure 13-4 are four constellations: Ursa Minor, Cepheus, Draco,
and Cassiopeia.

Figure 13-4  A sma p ece of the n ght sky as seen from Stevens Po nt, W scons n.

	 Chapter 13  Working with Images in JavaScript	 271

I made this graphic into an image map so that when visitors click any of the constellations,
they’re taken to the Wikipedia page about that constellation. The code for this image map is
shown in Listing 13-4 (and is included in the sample files in the Chapter 13\nightsky folder in
the companion content).

Listing 13-4  An mage map for the n ght sky graph c.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Night Sky</title>

<script type="text/javascript">

</script>

</head>

<body>

<p><img id="nightsky" name="nightsky" src="nightsky_map_default.gif" isMap

useMap="#sky" alt="The Night Sky"></p>

<p><map name="sky">

<area coords="119,180,264,228" alt="Ursa Minor" shape="RECT"

 href="http://en.wikipedia.org/wiki/Ursa_Minor">

<area coords="66,68,193,170" alt="Draco" shape="RECT"

 href="http://en.wikipedia.org/wiki/Draco">

<area coords="36,170,115,246" alt="Draco" shape="RECT"

 href="http://en.wikipedia.org/wiki/Draco">

<area coords="118,249,174,328" alt="Draco" shape="RECT"

 href="http://en.wikipedia.org/wiki/Draco">

<area coords="201,47,298,175" alt="Draco" shape="RECT"

 href="http://en.wikipedia.org/wiki/Cepheus_(constellation)">

<area coords="334,95,389,204" alt="Cassiopeia" shape="RECT"

 href="http://en.wikipedia.org/wiki/Cassiopeia_(constellation)">

</map></p>

</body>

</html>

This code creates a simple image map using pixel coordinates that represent small rectan-
gular shapes for each constellation, and three rectangles to account for the constellation
Draco’s shape and tail. This code alone is functional and creates a working image map, but
you can enhance it with JavaScript.

The <area> tag of an image map supports mouseover and mouseout events. Using these
events and some JavaScript, you can improve the usability of the image map. For example,
when a visitor moves the mouse over one of the mapped areas, you could load a new image
that highlights the constellation. The following code demonstrates using the mouseover and
mouseout events in this manner. Listing 13-5 shows the code (which is also included in the
sample files in the Chapter 13\nightsky folder in the companion content).

272	 Part III  Integrating JavaScript into Design

Listing 13-5  An mage map w th JavaScr pt funct ona ty.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Night Sky</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

function loadConst() {

 var areas = document.getElementsByTagName("area");

 var areaLength = areas.length;

 for (var i = 0; i < areaLength; i++) {

 EHandler.add(areas[i],"mouseover", function(i) {

 return function() {

 document.getElementById("nightsky").src = "nightsky_map_" + 	

				 areas[i].id + ".gif";

 };

 }(i));

 EHandler.add(areas[i],"mouseout", function(i) {

 return function() {

 document.getElementById("nightsky").src =

 "nightsky_map_default.gif";

 };

 }(i));

 } //end for loop

} // end function loadConst

</script>

</head>

<body>

<p><img id="nightsky" name="nightsky" src="nightsky_map_default.gif" isMap

useMap="#sky"

alt="The Night Sky"></p>

<p><map name="sky">

<area id="ursaminor" coords="119,180,264,228" alt="Ursa Minor" shape="RECT"

 href="http://en.wikipedia.org/wiki/Ursa_Minor">

<area id="draco" coords="66,68,193,170" alt="Draco" shape="RECT"

 href="http://en.wikipedia.org/wiki/Draco">

<area id="draco" coords="36,170,115,246" alt="Draco" shape="RECT"

 href="http://en.wikipedia.org/wiki/Draco">

<area id="draco" coords="118,249,174,328" alt="Draco" shape="RECT"

 href="http://en.wikipedia.org/wiki/Draco">

<area id="cepheus" coords="201,47,298,175" alt="Draco" shape="RECT"

 href="http://en.wikipedia.org/wiki/Cepheus_(constellation)">

<area id="cassie" coords="334,95,389,204" alt="Cassiopeia" shape="RECT"

 href="http://en.wikipedia.org/wiki/Cassiopeia_(constellation)">

</map></p>

<script type="text/javascript">

var bodyEl = document.getElementsByTagName("body")[0];

EHandler.add(bodyEl,"load", function() { loadConst(); });

</script>

</body>

</html>

	 Chapter 13  Working with Images in JavaScript	 273

When you view the page in a web browser, as you move the mouse over each constellation,
the constellation’s outline appears, as shown in Figure 13-5. The JavaScript that enhances
the image map is really just a variation of the rollover code you saw earlier in this chapter,
although it retrieves <area> elements rather than elements:

var areas = document.getElementsByTagName("area");

Figure 13-5  Add ng JavaScr pt to the mage map to mp ement a ro over.

An obvious improvement to this script would be to preload all the rollover images for the
image map. (You do this later in one of the chapter exercises.)

Note  The HTML used n th s examp e sn’t ent re y va d accord ng to the HTML 4 01 standard,
because the <area> tags for the Draco conste at on a use the same id va ue To make th s HTML
va d, each tag wou d need ts own id va ue However, th s wou d comp cate the JavaScr pt be-
cause each ID wou d need to be sp t or otherw se parsed to make sure that Draco’s out ne s
oaded; otherw se, you’d need to oad three d fferent mages or find some other workaround

274	 Part III  Integrating JavaScript into Design

Exercises
	 1.	 Create a preloaded rollover image, making sure to keep the JavaScript functions sepa-

rate from the HTML.

	 2.	 Using the image map example from this chapter (or an image map of your own if you
prefer), preload all the images used within the image map so that they don’t need to
be downloaded when the visitor moves the mouse over the different areas of the map.

	 	 275

Chapter 14

Using JavaScript with Web Forms
After reading this chapter, you’ll be able to:

n	 Understand how to validate the input to a web form using JavaScript.

n	 Work with radio buttons, select boxes, and check boxes, both to get their values and
set their state.

n	 Provide feedback based on validation, both through an alert() dialog box and inline
within the document.

n	 Understand the limitations of JavaScript form validation, and see an example of valida-
tion gone wrong.

JavaScript and Web Forms
JavaScript has been used with web forms for a long time—typically, to quickly verify that a
user has filled in form fields correctly before sending that form to the server, a process called
client-side validation. Prior to JavaScript, a browser had to send the form and everything in it
to the server to make sure that all the required fields were filled in, a process called server-
side validation.

Important  When us ng JavaScr pt, you must perform server-s de va dat on, just n case a user
d sab ed JavaScr pt or s purposefu y do ng someth ng ma c ous

Remember the alert() function you examined in earlier chapters, which was used to illustrate
simple examples? It’s back. The alert() function is used often to provide user feedback during
form validation, although newer techniques use the Document Object Model (DOM) to display
friendlier feedback.

A webpage with a basic form might look like the one in Figure 14-1.

276	 Part III  Integrating JavaScript into Design

Figure 14-1  A bas c web form.

When a user submits this form, the JavaScript code in the background checks to make sure
that the Name text box was filled in. When filled out correctly, with the name “Steve”, for ex-
ample, the page displays the entered name, as shown in Figure 14-2.

Figure 14-2 When the web form s fi ed out correct y, the Name text box d sp ays a greet ng.

If a user fails to enter any data in the Name text box, the script displays an alert() dialog box
indicating that the field is required, as you can see in Figure 14-3.

Figure 14-3  The form d sp ays an a ert when the Name text box s empty.

	 Chapter 14  Using JavaScript with Web Forms	 277

The code that does all this follows. You can find it in the formvalid.htm file in the companion
content. The file includes the Hypertext Markup Language (HTML) shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>A Basic Example</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

function formValid(eventObj) {

 if (document.forms[0].textname.value.length == 0) {

 alert("Name is required.");

 if (eventObj.preventDefault) {

 eventObj.preventDefault();

 } else {

 window.event.returnValue = false;

 }

 return false;

 } else {

 alert("Hello " + document.forms[0].textname.value);

 return true;

 }

}

</script>

</head>

<body>

<p>A Basic Form Example</p>

<form action="#">

<p>Name (Required): <input id="textbox1" name="textname" type="text" /></p>

<p><input id="submitbutton1" type="submit" /></p>

<script type="text/javascript">

var formEl = document.getElementsByTagName("form")[0];

EHandler.add(formEl,"submit", function(eventObj) { formValid(eventObj); });

</script>

</form>

</body>

</html>

The JavaScript within the <head> element first links to the event handler script ehandler.js,
which was developed in Chapter 11, “JavaScript Events and the Browser.” Next, it defines a
function called formValid() to process the input from the simple form, as shown in this code:

function formValid(eventObj) {

 if (document.forms[0].textname.value.length == 0) {

 alert("Name is required.");

 if (eventObj.preventDefault) {

 eventObj.preventDefault();

 } else {

 window.event.returnValue = false;

 }

 return false;

278	 Part III  Integrating JavaScript into Design

 } else {

 alert("Hello " + document.forms[0].textname.value);

 return true;

 }

}

Within the formValid() function, an if conditional test uses the document.forms[] array. By
examining the first index value (0) of that array, the code finds the only form on this webpage.
The conditional tests whether the length of the textname.value property on the form is 0. If it
is, the script indicates the error using an alert() dialog box. If it is not, it displays whatever is in
the textname.value property.

The return value is important. When the submit or click event handlers are called and return
false, the browser halts the form submission process. This is why returning false is important
when validation fails. Without returning false, the default action is to continue and submit the
form. You can stop the default action in most browsers by calling the preventDefault() meth-
od. However, preventDefault() is not available in Windows Internet Explorer prior to version
9, so the script executes a conditional test to see first whether the preventDefault() method
is available. If it is, the script calls preventDefault(); otherwise, the script sets the returnValue
property of the window.event object to false to account for Internet Explorer.

The next bit of JavaScript, which appears in the <body> HTML element, adds the submit
event to the form by using the EHandler event handler script:

var formEl = document.getElementsByTagName("form")[0];

EHandler.add(formEl,"submit", function(eventObj) { formValid(eventObj); });

Note that to retrieve the form, the formValid() function uses the first index value of the
document.forms[] list, whereas the var formEl definition uses the getElementsByTagName
method. Both of these approaches work fine when only one form is on the page. You’ll also
frequently see script that accesses the form through its name, as shown in the next section.

Obtaining Form Data
Before you can provide feedback based on the form data, you have to get access to it. The
previous example showed how to access the form data using the document.forms[] array and
the getElementsByTagName function. This section shows a different way to perform the same
operation—using the form’s name property instead of its index.

Like other elements of an HTML page, you can set the id attribute for a form element. Here’s
the previous example with an id attribute:

<form action="#" name="testform">

<p>Name (Required): <input id="textbox1" name="textname" type="text" /></p>

<p><input id="submitbutton1" type="submit" /></p>

</form>

	 Chapter 14  Using JavaScript with Web Forms	 279

You can then access the form using its name rather than its index, as follows:

document.forms["testform"]

Using name is useful, because in some cases, you might not know the index value of the form
you want to access, which happens sometimes when server-side or client-side code creates a
form dynamically, and you have to figure out (or worse, guess) the index value of the specific
form you need within the document. The most consistent way to ensure you can get a refer-
ence to the index value is to set the form’s id and then access it through that id. You can also
access the form directly in a nonstandard way, through the document object, but I wouldn’t
recommend it:

document.testform

This direct approach doesn’t work consistently across browsers, and it’s not that much more
effort to type it correctly anyway, like this:

document.forms["testform"]

Working with Form Information
You can access all individual elements of web forms through the DOM. The exact method for
accessing each element differs depending on the type of element. For text boxes and select
boxes (also known as drop-downs), the value property holds the text that a visitor types in or
selects. You use a somewhat different approach from value to determine the state of radio
buttons and check boxes, though, which this section explains.

Working with Select Boxes
A select box holds groups of options. Here’s an example of the HTML used to create a select
box (which you can find in the selectbox.txt file in the companion content).

<form id="starform" action="">

Select A Constellation:

<select name="startype" id="starselect">

<option selected="selected"> </option>

<option value="Aquila">Aquila</option>

<option value="Centaurus">Centaurus</option>

<option value="Canis Major">Canis Major</option>

<option value="Canis Minor">Canis Minor</option>

<option value="Corona Borealis">Corona Borealis</option>

<option value="Crux">Crux</option>

<option value="Cygnus">Cygnus</option>

<option value="Gemini">Gemini</option>

<option value="Lyra">Lyra</option>

<option value="Orion">Orion</option>

<option value="Taurus">Taurus</option>

280	 Part III  Integrating JavaScript into Design

<option value="Ursa Major">Ursa Major</option>

<option value="Ursa Minor">Ursa Minor</option>

</select>

</form>

This code produces a select box like the one shown in Figure 14-4.

Figure 14-4  A se ect box based on the HTML examp e.

When a user selects an option, the select box’s value property is set to the value of the
particular option chosen. For this example, the select box named startype holds in its value
property whatever the visitor selects. You can access this property as follows:

document.forms["starform"].startype.value

For this particular example, you need to connect an event handler to the change event of the
select box, which you can do with the help of the EHander event handler script developed
in Chapter 11. The change event triggers a function each time the selection in the select box
changes, such as when the user selects an option using the drop-down menu. The page at-
taches the change event to the <select> box with the help of the code in Listing 14-1, which
is added within the <body> section of the webpage.

Note  Don t forget to add the nk to the EHandler scr pt n the <head> e ement See Chapter 11
for more nformat on

 Chapter 14 Using JavaScript with Web Forms 281

LISTING	14-1	 Attach ng a change event to a <select> e ement us ng the EHandler scr pt from Chapter 11 .

This code uses the Ehandler.add() method to add a function to the change event of the
<select> element, which the code then retrieves through the <select> element s ID, starselect .
In this case, the function added to the change event is a user-defined function called display-
Value(), shown in Listing 14-2 .

LISTING	14-2	 The funct on ca ed when the Form s change event s fired .

This bit of JavaScript simply shows the value selected from the drop-down menu . For exam-
ple, choosing Ursa Minor from the drop-down menu causes the alert() dialog box in Figure
14-5 to be shown .

FIGURE	14-5	 Choos ng a conste at on through a form and then send ng an alert() d a og box .

Note The fin shed code for th s examp e s n the se htm fi e, wh ch s nc uded w th the Chapter
14 compan on code

The HTML for the select box includes an attribute named selected, which indicates which op-
tion is shown . The example selects an empty option so that the initial value of the select box
is blank:

<option selected="selected"> </option>

282	 Part III  Integrating JavaScript into Design

It’s also possible to select an option using JavaScript and the DOM. Programmatically select-
ing options is common on forms that have multiple inputs, where one choice automatically
causes other options to be selected.

In the following exercise, you build a web form that a pizza company might use to take or-
ders. The company makes just a few special pizzas: one with vegetables; one with a variety
of meats; and one that is Hawaiian style, with ham and pineapple toppings. The company
would like a webpage with three buttons to help their pizza makers keep track of the pizza
types ordered. The buttons preselect the main topping on the pizza.

Selecting an option with JavaScript

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file pizza.htm in the
Chapter14 sample files folder (in the companion content).

	 2.	 Within the page, add the code shown here in boldface type (this is in pizza.txt in the
companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Pizza</title>

 <script type="text/javascript" src="ehandler.js"></script>

 <script type="text/javascript">

 function flip(pizzatype) {

 if (pizzatype.value == "Veggie Special") {

 document.forms["pizzaform"].topping.value = "veggies";

 } else if (pizzatype.value == "Meat Special") {

 document.forms["pizzaform"].topping.value = "meat";

 } else if (pizzatype.value == "Hawaiian") {

 document.forms["pizzaform"].topping.value = "hampineapple";

 }

 }

 </script>

</head>

<body>

<form id="pizzaform" action="#">

<p>

<input id="vegbutton" type="button" name="veggiespecial" value="Veggie Special">

<input id="meatbutton" type="button" name="meatspecial" value="Meat Special">

<input id="hawbutton" type="button" name="hawaiian" value="Hawaiian">

</p>

Main Topping: <select name="topping">

<option value="cheese" selected="selected">Cheese</option>

<option value="veggies">Veggies</option>

<option value="meat">Meat</option>

<option value="hampineapple">Ham & Pineapples</option>

</select>

</form>

<script type="text/javascript">

	 Chapter 14  Using JavaScript with Web Forms	 283

var vegEl = document.getElementById("vegbutton");

var meatEl = document.getElementById("meatbutton");

var hawEl = document.getElementById("hawbutton");

EHandler.add(vegEl,"click",function() { flip(vegEl); });

EHandler.add(meatEl,"click",function() { flip(meatEl); });

EHandler.add(hawEl,"click",function() { flip(hawEl); });

</script>

</body>

</html>

	 3.	 View the page within a web browser. You’ll see a page like this:

	 4.	 Choose one of the buttons. (Notice that the select box for Main Topping changes
accordingly.)

The heart of the example is the flip() function:

function flip(pizzatype) {

 if (pizzatype.value == "Veggie Special") {

 document.forms["pizzaform"].topping.value = "veggies";

 } else if (pizzatype.value == "Meat Special") {

 document.forms["pizzaform"].topping.value = "meat";

 } else if (pizzatype.value == "Hawaiian") {

 document.forms["pizzaform"].topping.value = "hampineapple";

 }

}

This function examines the value of the pizzatype variable that gets passed into the func-
tion, and then, using the conditional, changes the value of the select box called topping
accordingly.

Again, the script in the <head> portion of the page links to the EHandler event handler
script, and uses its EHandler.add method to attach click events to the buttons, in the same
way the code you’ve seen throughout this and the previous three chapters does.

var vegEl = document.getElementById("vegbutton");

var meatEl = document.getElementById("meatbutton");

var hawEl = document.getElementById("hawbutton");

284	 Part III  Integrating JavaScript into Design

EHandler.add(vegEl,"click",function() { flip(vegEl); });

EHandler.add(meatEl,"click",function() { flip(meatEl); });

EHandler.add(hawEl,"click",function() { flip(hawEl); });

This example showed how to obtain information from a form and how to set information
within a form. Although the form doesn’t look like much, and the pizza company isn’t making
many pizzas right now, it’s growing because of the popularity of its pizzas. Future examples
in this chapter expand on this form.

Working with Check Boxes
The previous example showed select boxes, and you saw text boxes used earlier in this chap-
ter, too. Another type of box—a check box—allows users to select multiple items. The pizza-
ordering scenario introduced in the previous section serves as a good example for illustrating
the check box.

Recall that in the initial pizza ordering system, when the pizza order taker selected one of
three pizza types, the “Main Topping” select box changed to reflect the main ingredient of
the pizza. However, allowing more flexibility, such as more pizza types, would be nice.

Figure 14-6 shows a new pizza prep form. The order taker can now select from a variety of
ingredients, in any combination.

Figure 14-6  Chang ng the order prep form to nc ude check boxes.

	 Chapter 14  Using JavaScript with Web Forms	 285

Selecting the various ingredients and clicking the Prep Pizza button displays the selected
pizza toppings on the screen, as shown in Figure 14-7.

Figure 14-7 Order ng a p zza through the new form and add ng e ements by us ng the DOM.

The code for this functionality is shown in Listing 14-3 (listing14-3.htm in the companion
content).

Listing 14-3  Us ng check boxes w th the order form.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Pizza</title>

 <script type="text/javascript" src="ehandler.js"></script>

 <script type="text/javascript">

 function prepza() {

 var checkboxes = document.forms["pizzaform"].toppingcheck.length;

 var newelement = document.createElement("p");

 newelement.setAttribute("id","orderheading");

 document.body.appendChild(newelement);

 newelement.appendChild(document.createTextNode("This pizza will have:"));

 for (var i = 0; i < checkboxes; i++) {

 if (document.forms["pizzaform"].toppingcheck[i].checked) {

286	 Part III  Integrating JavaScript into Design

 var newelement = document.createElement("p");

 newelement.setAttribute("id","newelement" + i);

 document.body.appendChild(newelement);

 newelement.appendChild(document.createTextNode(

 document.forms["pizzaform"].toppingcheck[i].value));

 }

 }

 }

 </script>

</head>

<body>

<form id="pizzaform" action="#">

<p>Toppings:</p>

<input type="checkbox" id="topping1" value="Sausage"

 name="toppingcheck">Sausage

<input type="checkbox" id="topping2" value="Pepperoni"

 name="toppingcheck">Pepperoni

<input type="checkbox" id="topping3" value="Ham"

 name="toppingcheck">Ham

<input type="checkbox" id="topping4" value="Green Peppers"

 name="toppingcheck">Green Peppers

<input type="checkbox" id="topping5" value="Mushrooms"

 name="toppingcheck">Mushrooms

<input type="checkbox" id="topping6" value="Onions"

 name="toppingcheck">Onions

<input type="checkbox" id="topping7" value="Pineapple"

 name="toppingcheck">Pineapple

<p><input type="button" id="prepBtn" name="prepBtn" value="Prep Pizza"></p>

</form>

<script type="text/javascript">

var prepBtn = document.getElementById("prepBtn");

EHandler.add(prepBtn,"click",function() { prepza(); });

</script>

</body>

</html>

The heart of the page is the function prepza(), which starts by gathering the number of check
boxes contained within the form pizzaform. These are grouped together using the name attri-
bute toppingcheck, as follows:

var checkboxes = document.forms["pizzaform"].toppingcheck.length;

After setting up a <p> element with a heading, the script uses a for loop to walk through the
check boxes. Each check box is examined to see whether its checked property is set:

if (document.forms["pizzaform"].toppingcheck[i].checked) {

	 Chapter 14  Using JavaScript with Web Forms	 287

If the check box’s checked property has indeed been set, the script creates a new <p> ele-
ment and places it into the document. The result is the page you saw back in Figure 14-7.
(You saw examples of how to create and append elements in Chapter 10, “The Document
Object Model.”)

Keep this example in mind, because one of the exercises at the end of the chapter asks you
to combine it with functionality that automatically selects toppings when a user presses a
button, as in the select box example you saw earlier.

The Prep Pizza button has a click event attached to it using the EHandler.add() method from
Chapter 11.

Working with Radio Buttons
Radio buttons also create a group of options, but unlike check boxes, only one radio button
from the group can be selected at any given time. In the context of the pizza restaurant ex-
ample, visitors might use a radio button to select the type of crust for the pizza—thin, deep
dish, or regular. Because a pizza can have only one kind of crust, using radio buttons for this
selection type makes sense. Adding radio buttons to select a crust type results in a page like
that shown in Figure 14-8.

Figure 14-8  Add ng rad o buttons for se ect ng the crust type.

288	 Part III  Integrating JavaScript into Design

The HTML that adds these radio buttons and a simple table to hold them looks like this (also
in the file radiobuttonhtml.txt in the companion content):

<table>

<tr><td>Toppings</td><td>Crust</td></tr>

<tr>

 <td><input type="checkbox" id="topping1" value="Sausage"

 name="toppingcheck">Sausage</td>

 <td><input type="radio" name="crust" value="Regular"

 checked="checked" id="radio1">Regular</td>

</tr>

<tr>

 <td><input type="checkbox" id="topping2" value="Pepperoni"

 name="toppingcheck">Pepperoni</td>

 <td><input type="radio" name="crust" value="Deep Dish"

 id="radio2" />Deep Dish</td>

</tr>

<tr>

 <td><input type="checkbox" id="topping3" value="Ham"

 name="toppingcheck">Ham</td>

 <td><input type="radio" name="crust" value="Thin" id="radio3">Thin</td>

</tr>

<tr>

 <td><input type="checkbox" id="topping4" value="Green Peppers"

 name="toppingcheck">Green Peppers</td>

 <td></td>

</tr>

<tr>

 <td><input type="checkbox" id="topping5" value="Mushrooms"

 name="toppingcheck">Mushrooms</td>

 <td></td>

</tr>

<tr>

 <td><input type="checkbox" id="topping6" value="Onions"

 name="toppingcheck">Onions</td>

 <td></td>

</tr>

<tr>

 <td><input type="checkbox" id="topping7" value="Pineapple"

 name="toppingcheck">Pineapple</td>

 <td></td>

</tr>

</table>

The code that processes the radio buttons is similar to the code you saw that processed the
check boxes. The main difference is that radio buttons all share the same name and logical
grouping, meaning that they are grouped together and only one can be checked at a time.
The code for processing the radio buttons is added to the prepza() function, like this (in the
radiobuttonjs.txt file in the companion content):

	 Chapter 14  Using JavaScript with Web Forms	 289

var crusttype = document.forms["pizzaform"].crust;

var crustlength = crusttype.length;

for (var c = 0; c < crustlength; c++) {

 if (crusttype[c].checked) {

 var newelement = document.createElement("p");

 newelement.setAttribute("id","crustelement" + i);

 document.body.appendChild(newelement);

 newelement.appendChild(document.createTextNode(crusttype[c].value + " Crust"));

 }

}

Prevalidating Form Data
JavaScript is frequently used to validate that a given form field is filled in correctly. You saw
an example of this behavior earlier in this chapter, when a form asked you to fill in a name. If
you didn’t put anything in the field, an error alert appeared. JavaScript is good at prevalidat-
ing data to make sure that it resembles valid input. However, JavaScript is poor at actually
validating the data that makes it to your server.

You should never, at any time, assume that what gets to the server is valid. I can’t count the
number of web developers whom I’ve heard say, “We have a JavaScript validation on the
data, so we don’t need to check it on the server.” This assumption couldn’t be further from
the truth. People can and do have JavaScript disabled in their browsers; and people also can
send POST-formatted and GET-formatted data to the server-side program without having
to follow the navigation dictated by the browser interface. No matter how many client-side
tricks you employ, they’re just that—tricks. Someone will find a way around them.

The bottom line is that you can and should use JavaScript for prevalidation. Prevalidation is a
small sanity check that may be helpful for providing quick feedback to users when your code
notices something blatantly wrong with the input. But you must perform the actual valida-
tion of all input on the server side, after users have submitted their input completely.

This section looks at some ways to use JavaScript for prevalidation, but to frame that discus-
sion, I first illustrate the dangers of using JavaScript as the sole validator for your site.

Hacking JavaScript Validation
This section uses a server-side program to create a catalog order system that has three
simple elements: a product, a quantity, and a price. The items to be sold are blades of grass
from my lawn. My area has had an extremely dry summer, so there’s not much lawn left at
this point—lots of weeds and sand, but not much of what I would call proper lawn. Because
blades of grass from my lawn are so rare, orders are limited to three blades per household,
and the price is high. I limit the order quantity by using some JavaScript code.

290	 Part III  Integrating JavaScript into Design

I created a page to sell the blades of grass. When viewed in a browser, the page looks like
Figure 14-9.

Figure 14-9  A sma cata og order form.

Here’s the HTML and JavaScript to produce the page (also present in the validate.htm sample
file, in the companion content). Note the use of document.forms (shown in boldface type) to
access the quantity filled in within the form. Note also that you won’t be able to submit the
form because the form action, catalog.php, doesn’t actually exist. The action of the form isn’t
that important to this example.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Catalog Example</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

 function formValid(eventObj) {

 if (document.forms["catalogform"]["quantity"].value > 3) {

 alert("Limit 3 per Household.");

 if (eventObj.preventDefault) {

 eventObj.preventDefault();

 } else {

 window.event.returnValue = false;

 }

	 Chapter 14  Using JavaScript with Web Forms	 291

 return false;

 } else {

 return true;

 }

 }

</script>

</head>

<body>

<form name="catalogform" id="catalogform" action="catalog.php" method="POST">

<p>Order Blades of Grass From Steve Suehring's Lawn</p>

<div id="lawndiv"><img alt="steve suehring's lawn is dead" src="lawn.png"

id="lawnpic">
</div>

<p>Description: Steve is terrible at lawn care, therefore there's not much

 grass on his lawn. Quantities are extremely limited.</p>

<p>Price: $100.00 per blade</p>

<p>Quantity to order (Limit 3 per Household): <input type="text" name="quantity"></p>

<p><input type="submit" value="Place Order"></p>

</form>

<script type="text/javascript">

var formEl = document.getElementsByTagName("form")[0];

EHandler.add(formEl,"submit", function(eventObj) { formValid(eventObj); });

</script>

</body>

</html>

Note  One mprovement you cou d make to th s va dat on wou d be to ensure that the v s tor
doesn’t try to order fewer than one b ade of grass, e ther!

With JavaScript enabled in my browser, the user’s attempt to order a quantity of three or
fewer blades of grass is acceptable, so the form gets submitted to the server-side script,
which handles the request and returns an order total, shown in Figure 14-10.

Figure 14-10 Order ng a quant ty of three b ades of grass or fewer g ves the expected resu ts, nc ud ng
an order tota .

292	 Part III  Integrating JavaScript into Design

If the user goes back to the page, still with JavaScript enabled, and attempts to order a quan-
tity of four blades of grass, he or she sees an alert() dialog box, like the one shown in Figure
14-11.

Figure 14-11  An error occurs through JavaScr pt when attempt to order more than three b ades.

So far, so good. Now imagine that I disabled JavaScript in my browser. There’s no noticeable
change in the page when I go to the order form, so the page looks exactly like the one in
Figure 14-9. However, I’m now able to order a quantity of 1500. Simply entering 1500 into
the quantity and clicking Place Order results in the server-side web form happily receiving
and processing the order, as shown in Figure 14-12.

Figure 14-12  Because JavaScr pt s d sab ed, noth ng va dated th s order before t h t the server.

Because no validation existed on the server side, this input was perfectly valid, and the order
could be processed. The only problem is that I don’t have 1500 blades of grass on my lawn
(I counted), so I can’t possibly fulfill this order.

You might be tempted to dismiss this scenario as contrived, but it represents an all-too-
common occurrence in web applications. In fact, this example is relatively tame compared

	 Chapter 14  Using JavaScript with Web Forms	 293

to some situations in which a site actually lets a visitor change the price of an item during
the ordering process and never bothers to validate that input—because “no one will ever do
that.” Well, people have done that before, and they will again—if you don’t stop them.

You might be tempted to try to solve the problem by requiring that all visitors have
JavaScript enabled in their browsers before they can place an order—but that doesn’t work.
You can attempt to figure out if JavaScript is enabled, but you can never be 100 percent
certain.

The only correct way to solve this issue is to validate, and enforce valid rules on the server
side. The back-end script should check the business rule of the quantity limitation. Doing this
won’t be a problem the vast majority of the time, but it takes only that one time—and then
I’d be outside trying to dig up 1500 blades of grass for my customers.

This section showed how easy it is to bypass JavaScript validation by simply turning off
JavaScript in the browser. The next section shows you how to use JavaScript for prevalidation.
JavaScript should be used only for prevalidation and never as the sole means of ensuring that
input is valid.

Validating a Text Field
Back in the beginning of this chapter, you saw one example of how to validate a text field. If
the field wasn’t filled in, an alert() dialog box appeared. In this section, you see how to pro-
vide feedback inline, next to the form field, rather than use an alert() dialog box.

Here’s the code to achieve this (you can find this code in the sample file catalog.htm in the
companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Catalog Example</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

 function formValid(eventObj) {

 if (document.forms["catalogform"]["quantity"].value > 3) {

 var submitbtn = document.forms["catalogform"]["submitbutton"];

 var quantityp = document.getElementById("quantityp");

 var errorel = document.createElement("span");

 errorel.appendChild(document.createTextNode(" Limit 3 per Household"));

 quantityp.appendChild(errorel);

 if (eventObj.preventDefault) {

 eventObj.preventDefault();

 } else {

 window.event.returnValue = false;

 }

 return false;

294	 Part III  Integrating JavaScript into Design

 } else {

 return true;

 }

 }

</script>

</head>

<body>

<form name="catalogform" id="catalogform" action="catalog.php" method="POST">

<p>Order Blades of Grass From Steve Suehring's Lawn</p>

<div id="lawndiv"><img alt="steve suehring's lawn is dead" src="lawn.png"

id="lawnpic">
</div>

<p>Description: Steve is terrible at lawn care, therefore there's not much

 grass on his lawn. Quantities are extremely limited.</p>

<p>Price: $100.00 per blade</p>

<p id="quantityp">Quantity to order (Limit 3 per Household): <input type="text"

 name="quantity"></p>

<p id="submitp"><input id="submitbutton" type="submit" value="Place Order"></p>

</form>

<script type="text/javascript">

var formEl = document.getElementsByTagName("form")[0];

EHandler.add(formEl,"submit", function(eventObj) { formValid(eventObj); });

</script>

</body>

</html>

Tip  It’s worth not ng that the JavaScr pt va dat on n these ast examp es uses the submit event
to tr gger va dat on The submit event of the ent re form s preferred over the click event of the
Subm t button, because the form’s submit event fires regard ess of whether the v s tor c cks the
Subm t button or presses the Enter key on the keyboard We come to JavaScr pt programm ng!

Basically, this code doesn’t do anything that you haven’t already seen done. The code just
checks whether the form is valid. If the form is not valid, the code creates and appends an
HTML span element with the text “Limit 3 per Household”, as shown in Figure 14-13, rather
than shows an alert() dialog box.

	 Chapter 14  Using JavaScript with Web Forms	 295

Figure 14-13  Prov d ng n ne feedback on a webpage rather than an alert() d a og box.

Exercises
	 1.	 Create a web form that displays an alert() dialog box based on a select box input type.

	 2.	 Add a set of radio buttons to the pizza form exercise seen earlier in this chapter to
accept three pizza sizes: small, medium, and large. Display the results along with the
result of the pizza order.

	 3.	 Redesign the pizza order system to add the buttons from the original pizza example,
enabling the order taker to select the Veggie Special, Meat Special, or Hawaiian pizza
types. These buttons should then select the correct topping check boxes for the par-
ticular type of pizza to be made. For the Veggie Special pizza, select Green Peppers,
Mushrooms, and Onions. For the Meat Special pizza, select Sausage, Pepperoni, and
Ham; and for the Hawaiian pizza, select Pineapple and Ham.

	 	 297

Chapter 15

JavaScript and CSS
After reading this chapter, you’ll be able to:

n Understand the basics of Cascading Style Sheets (CSS) .

n Understand the relationship between JavaScript and CSS .

n Use JavaScript to change the style of an individual element .

n Use JavaScript to change the style of a group of elements .

n Use JavaScript to provide visual feedback on a web form using CSS .

What	Is	CSS?
Using CSS, you can specify the look and feel of a webpage: You can apply color, fonts, and
layout to the elements of a page .

Figure 15-1 shows a basic webpage . It’s fairly boring—or at least the layout is .

FIGURE	15-1	 A bas c webpage w th no sty es app ed .

By using CSS, you can add styling that improves the look of the page in Figure 15-1 without
altering the page’s content, for example, change the font for the heading and emphasize a
particular portion of the page using some boldface text markup, as shown in Figure 15-2 .

298	 Part III  Integrating JavaScript into Design

Figure 15-2  The same webpage from F gure 15 1 w th CSS sty es app ed to t.

Using Properties and Selectors
The basic structure for CSS is to list a CSS ofproperty name followed by a colon, and then
that property’s value, for example:

property: value

The style property is one of many different properties you can set. In Figure 15-2, for example,
the font-weight style property changed to boldface for the second line. You can find a full list
of properties and their acceptable values on the World Wide Web Consortium (W3C) website
at http://www.w3.org/TR/CSS21/propidx.html.

You can apply CSS style properties to a group of document elements based on the element
type (<p>, <h1>, <a>, and so on), or to individual elements by specifying the class or id attri-
bute values of the element. Collectively, these groupings are known as selectors.

A selector tells CSS to which element or elements the specified properties and values should
be applied. The basic structure for CSS statements with a selector is this:

selector { property: value; }

For example, the code to apply the Arial font to all <h1> elements within the document looks
like this (see the companion content file ex1.css in the sample code):

h1 { font-family: arial; }

Although applying a style to a whole element type is often useful, you will run across situa-
tions in which you want to style some elements of a certain type but not others, or you want
to style elements of the same type in different ways. You do this more selective styling by
using the class or id attributes of an element. These attributes enable granular control over

	 Chapter 15  JavaScript and CSS	 299

the display of any elements within the document. For example, the document might have
many <p> elements, but you want to give only certain <p> elements a boldface font. By us-
ing a class attribute with the appropriate CSS, you can give the <p> elements belonging to
that class a specific style. For example, to apply a boldface font to all elements with a class of
boldParagraphs you write the CSS like this:

.boldParagraphs { font-weight: bold; }

Note that class selectors start with a period. The boldface style is then applied to any HTML
element that includes a class attribute with the “boldParagraphs” value:

class="boldParagraphs"

Here’s a complete tag example:

<p class="boldParagraphs">This would be bold text.</p>

You can gain even more granular control with the id attribute, which enables you to select
a specific element with its particular ID and apply a style to it, as was done in the example
shown in Figure 15-2. Both the text “JavaScript Step by Step is a book by Steve Suehring, pub-
lished by Microsoft Press” and the text “The book emphasizes standards-based JavaScript that
works on multiple platforms through different browsers” are enclosed within <p> elements.
However, the first sentence is given an ID of tagline, which allows it to be given a boldface
font through a CSS.

Here’s the Hypertext Markup Language (HTML):

<p id="tagline">JavaScript Step by Step is a book by Steve Suehring, published by Microsoft

Press.</p>

And the CSS (in the ex2.css file in the companion content):

#tagline { font-weight: bold; }

Note that individual ID selectors start with a hash symbol (#).

Applying CSS
Several approaches exist for applying styles to a document using CSS. You can:

n	 Apply a style directly to an HTML element within the element itself.

n	 Include a <style> element within the <head> portion of a document.

n	 Link to a CSS in an external file, in much the same way you link to JavaScript in
external files.

300	 Part III  Integrating JavaScript into Design

By far the best approach is to use an external CSS file—just as the best practice with
JavaScript is to use an external JavaScript file. Using a CSS promotes reusability and greatly
simplifies ongoing maintenance of the site. Suppose that you manage a site with hundreds
of pages, and your boss calls telling you that the new design for the company now requires
the font to change for page headings. If the site uses a common external CSS file, the change
is quick and easy, and you can make the change by modifying only a single file. If the CSS is
contained in each document, such a change can be quite time-consuming.

There’s much more to the subject of CSS than a JavaScript book can realistically cover. If
you’re unfamiliar with CSS and would like more information, you can find more information
on the “CSS Overviews and Tutorials” page (http://msdn2.microsoft.com/en-us/library
/ms531212.aspx) on the Microsoft website.

The Relationship Between JavaScript and CSS
You can use JavaScript to manipulate many document styles dynamically using the Document
Object Model (DOM) 2 (which you encountered earlier in Chapter 11, “JavaScript Events and
the Browser”). Using the DOM, you can retrieve an element by its tag name or ID and then
set that element’s style property.

For example, the heading text shown in Figure 15-1 is contained in an <h1> element. If you
give that <h1> element a descriptive ID, such as heading, you can retrieve it using JavaScript’s
getElementById() method. You then use the style property of the element to retrieve a style
object, which is JavaScript’s way of altering the style of an element. Here’s an example that
changes the style to use a different font:

var heading = document.getElementById("heading");

heading.style.fontFamily = "arial";

Setting Element Styles by ID
Using getElementById() and the style object to set the style for an element, as you just saw, is
an easy and effective way to change a style. You set styles individually using their JavaScript
style name, which is usually similar to—but not always the same as—the corresponding CSS
property. In JavaScript, the style property name is usually the same as the official CSS style
name when the property is a single word, such as margin; however, when the CSS property
is a hyphenated word, such as text-align, the property name becomes textAlign. Notice the
hyphen was removed and an uppercase letter used to separate the main word from the sub-
ordinate words within name. Spelling a property name in this way is called camelCase.

Table 15-1 shows selected CSS properties and their JavaScript counterparts.

	 Chapter 15  JavaScript and CSS	 301

Table 15-1  CSS and JavaScript Property Names Compared
CSS Property JavaScript Property
background background

background-attachment backgroundAttachment

background-color backgroundColor

background-image backgroundImage

background-repeat backgroundRepeat

border border

border-color borderColor

color color

font-family fontFamily

font-size fontSize

font-weight fontWeight

height height

left left

list-style listStyle

list-style-image listStyleImage

margin margin

margin-bottom marginBottom

margin-left marginLeft

margin-right marginRight

margin-top marginTop

padding padding

padding-bottom paddingBottom

padding-left paddingLeft

padding-right paddingRight

padding-top paddingTop

position position

float 	styleFloat (n W ndows Internet Exp orer); cssFloat
(n other browsers)

text-align textAlign

top top

visibility visibility

width width

One common use of JavaScript is to validate form entries. Using CSS with JavaScript can help
you avoid using alert() dialogs and instead provide visual feedback directly in the page, right
next to the area of the form that is filled out incorrectly. The next exercise shows you how to
implement this feature.

302	 Part III  Integrating JavaScript into Design

Using CSS and JavaScript for form validation

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file form.html in the
Chapter15 sample files folder (in the companion content).

	 2.	 Within that page, replace the TODO comments with the boldface HTML shown here
(you can find the code in the form.txt file in the companion content sample code):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Form Validation</title>

</head>

<body>

<form name="formexample" id="formexample" action="#">

<div id="citydiv">City: <input id="city" name="city"></div>

<div><input id="submit" type="submit"></div>

</form>

</body>

</html>

	 3.	 View the page in a web browser. The page should look like this:

	 4.	 Create a JavaScript source file in the same folder where you saved the form.html file.
Name this new JavaScript source file form.js.

	 5.	 Within form.js, place the following code. If you like, you can change the value against
which cityField is being validated to a city other than Stevens Point (my hometown).
Save the file.

function checkValid(eventObj) {

 var cityField = document.forms[0]["city"];

 if (cityField.value != "Stevens Point") {

 var cityDiv = document.getElementById("citydiv");

 cityDiv.style.fontWeight = "bold";

 cityDiv.style.border = "1px solid black";

 if (eventObj.preventDefault) {

 eventObj.preventDefault();

	 Chapter 15  JavaScript and CSS	 303

 } else {

 window.event.returnValue = false;

 }

 return false;

 } else {

 return true;

 }

}

	 6.	 Reopen form.html and alter it to add a reference to the external JavaScript file, and to
add a submit event to the document. The form.html file should look like this (I high-
lighted the changes in boldface):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Form Validation</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript" src="form.js"></script>

</head>

<body>

<form name="formexample" id="formexample" action="#">

<div id="citydiv">City: <input id="city" name="city"></div>

<div><input id="submit" type="submit"></div>

</form>

<script type="text/javascript">

var formEl = document.getElementsByTagName("form")[0];

EHandler.add(formEl,"submit", function(eventObj) { checkValid(eventObj); });

</script>

</body>

</html>

	 7.	 Reload form.html in your browser. Within the City text field, type the word test and
click Submit Query. You should immediately see the label City change to boldface and
a border get added around the div.

	 8.	 Change the input for the City text field to Stevens Point (or whatever you used for
the value in step 5) and click Submit Query. The background changes, and the field is
empty. This is because the form continues along its submission path (in this case, the
form doesn’t do anything).

The code used in this example is merely a variation on code used earlier in the book with the
addition of an external JavaScript file to perform the validation and provide the feedback
through CSS. Inside the external JavaScript file is the validation code, which first retrieves the
text field object from the form. Next, this field is examined to see whether its value matches
Stevens Point. If the value isn’t Stevens Point, the code changes the font-weight style property
of the text field to boldface and adds a border property.

304	 Part III  Integrating JavaScript into Design

The problem with this approach is that the CSS styling for the element is now set within
the JavaScript code. Maintenance is far easier when you keep markup, styles, and behavior
separate. You can improve this example by setting a style with an element type selector, or
by creating a common error class in the CSS and then applying that error class using the
JavaScript code. The next sections examine each of these approaches in turn.

Setting Element Styles by Type
Although setting an element’s style by ID as is a common approach to changing styles in
JavaScript, you might also find it necessary to set properties on all the elements of a particu-
lar type.

Recall the screenshots shown earlier in this chapter, Figure 15-2 in particular. Listing 15-1
shows the HTML for that page.

Listing 15-1  The HTML for F gure 15 2.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>JavaScript Step by Step</title>

<style type="text/css">

h1 { font-family: arial; }

#tagline { font-weight: bold; }

</style>

</head>

<body>

<h1 id="heading">JavaScript Step by Step</h1>

<p id="tagline">JavaScript Step by Step is a book by Steve Suehring,

published by Microsoft Press.</p>

<p>The book emphasizes standards-based JavaScript that works on multiple

platforms through different browsers.</p>

</body>

</html>

Notice two <p> elements in Listing 15-1. The first <p> element has a style applied to it, font-
weight: bold. You can use JavaScript to apply additional styles to all <p> elements. Consider
the code in Listing 15-2, which adds some JavaScript code (shown in boldface type) to
change the <p> element’s font family.

	 Chapter 15  JavaScript and CSS	 305

Listing 15-2  Us ng JavaScr pt p us HTML to change e ement sty e.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>JavaScript Step by Step</title>

<style type="text/css">

h1 { font-family: arial; }

#tagline { font-weight: bold; }

</style>

</head>

<body>

<h1 id="heading">JavaScript Step by Step</h1>

<p id="tagline">JavaScript Step by Step is a book by Steve Suehring, published by

Microsoft Press.</p>

<p>The book emphasizes standards-based JavaScript that works on multiple platforms

through different browsers.</p>

<script type="text/javascript">

var pElements = document.getElementsByTagName("p");

for (var i = 0; i < pElements.length; i++) {

 pElements[i].style.fontFamily = "arial";

}

</script>

</body>

</html>

When viewed in a web browser, the page shows that the two <p> elements are in the Arial
font, as depicted in Figure 15-3.

The JavaScript used for this example is rather simple insofar as it uses functions that you’ve
already seen throughout the book. First, it retrieves the <p> elements using the DOM’s
getElementsByTagName() method and stores them in a variable called pElements. Then it
iterates over the pElements variable list using a for loop, changing each element’s style.font-
Family property to Arial.

306	 Part III  Integrating JavaScript into Design

Figure 15-3  Us ng JavaScr pt to change the font of severa e ements at once.

Setting CSS Classes with JavaScript
In keeping with the development guideline to separate content and markup from style
(the CSS) and behavior coding (JavaScript), an even better solution for changing styles of
elements is to create a class in the CSS markup, and then, where necessary, apply that class
using JavaScript rather than change specific attributes such as font-weight and size using
JavaScript. This section shows how to both add and remove CSS classes from elements.

Recall that you create a CSS class like this:

.errorClass {

 font-weight: bold;

 border: 1px solid black;

}

You can apply that class through JavaScript using the className property, like this:

var tagLineElement = document.getElementById("tagline"); //retrieve the tagline element

tagLineElement.className += "errorClass";

Note the use of the + operator within this code. The operator causes the class to be added
to any existing classes that the element may already belong to rather than overwrite classes
that were already applied classes.

Removing a class from an element involves the replace() method and regular expressions.
You retrieve the element as before, and then retrieve the list of classes that the element
belongs to by using the className property. Finally, you replace the class name you want
to remove using a regular expression:

	 Chapter 15  JavaScript and CSS	 307

var tagLineElement = document.getElementById("tagline"); //retrieve the tagline element

tagLineElement.className = tagLineElement.className.replace(/\berrorClass\b/,"");

This example removes the errorClass class name from the className property of the tag​
LineElement with the help of the regular expression. The regular expression looks for a word
boundary (\b), followed by the string errorClass, followed by another word boundary (\b). It
replaces any match with an empty string ("").

Retrieving Element Styles with JavaScript
The existing styles applied to a given element are also accessible using JavaScript; however,
the method for retrieving the styles differs between Internet Explorer and other browsers.
For W3C-compliant browsers, you retrieve the styles using the getComputedStyle() method;
for Internet Explorer, you use the currentStyle array property. The style retrieved is the final
style applied, because it is the composite style calculated from all possible CSS locations,
including external style sheet files and all CSS styles applied within the document.

Listing 15-3 shows an example of retrieving the computed CSS color property of an element
with the ID of heading. In this example, the heading is an <h1> element:

<h1 style="font-family: arial; color: #0000FF;" id="heading">JavaScript Step by Step</h1>

In Listing 15-3, an alert() dialog box displays the result.

Listing 15-3  Us ng JavaScr pt to retr eve a CSS color property.

var heading = document.getElementById("heading");

if (typeof heading.currentStyle != "undefined") {

 var curStyle = heading.currentStyle.color;

else if (typeof window.getComputedStyle != "undefined") {

 var curStyle =

 document.defaultView.getComputedStyle(heading,null).getPropertyValue("color");

}

alert(curStyle);

When you view through a web browser, you see an alert() dialog box, as shown in Figure 15-
4. The getComputedStyle() method accepts two parameters: the element to retrieve, and a
pseudo-element. In most cases, you use only the element itself, so you can ignore the second
parameter by setting it to null, as shown in the example.

308	 Part III  Integrating JavaScript into Design

Figure 15-4  The current y app ed sty e for an e ement.

Note  F refox returns rgb(0, 0, 255) for th s same code to represent the color va ue

Modifying Style Sheets with JavaScript
The examples given so far in this chapter show how to work with individual style elements
through the style object. However, you might find that you want to alter the entire style
applied to an element or elements—in other words, alter the style sheet as it applies to an
element or class of elements. Unfortunately, doing this isn’t quite as easy as the previously
shown approaches for manipulating document styles.

The first hurdle is to determine whether the visitor’s browser supports retrieval of the existing
styles at all. You accomplished this by checking the document.styleSheets property, as follows:

if (typeof document.styleSheets != "undefined") {

 // The browser supports retrieval of style sheets.

}

The document.styleSheets array contains the styles applied to a document, listed in the order
they’re applied. This means that external style sheets linked within the document are set in
the order in which they appear in the document, beginning with the index 0. Consider this
code:

<link rel="stylesheet" href="ex1.css" type="text/css" />

<link rel="stylesheet" href="ex2.css" type="text/css" />

These style sheets are indexed as document.styleSheets[0] and document.styleSheets[1],
respectively. Therefore, knowing the order in which style sheets appear in a document is
important if you would like to retrieve the styles applied to a given element within the
document.

After you determine whether the browser supports the retrieval of existing styles, you need
to overcome the differences between Internet Explorer and W3C-compliant browsers.

	 Chapter 15  JavaScript and CSS	 309

Internet Explorer retrieves the rules applied by the given style sheet using the rules array,
whereas W3C-compliant browsers retrieve the rules using the cssRules array. Just as you have
to code around the differences between browsers in the event model, you must code around
the differences between these browsers when dealing with style sheet retrieval. Suppose you
have a style rule like this:

h1 { font-family: arial; }

Listing 15-4 shows an example of retrieving the first style sheet from a document.

Listing 15-4  Retr ev ng the sty e sheet us ng JavaScr pt.

if (typeof document.styleSheets != "undefined") {

 var stylerules;

 if (typeof document.styleSheets[0].rules != "undefined") {

 stylerules = document.styleSheets[0].rules;

 } else {

 stylerules = document.styleSheets[0].cssRules;

 }

}

The following code, coupled with Listing 15-4, changes the font of each specified element
within that CSS to a different font:

stylerules[0].style.fontFamily = "courier";

Changing all the selectors within a style sheet to one setting isn’t common. Looping through
the style sheet to look for a specific selector is usually more useful, as shown in Listing 15-5.

Listing 15-5  Loop ng through sty e sheets to find an <h1> se ector.

for (var i = 0; i < stylerules.length; i++) {

 if (stylerules[i].selectorText.toLowerCase() == "h1") {

 stylerules[i].style.fontFamily = "courier";

 }

}

Here’s a more complete example of this functionality. Assume that you have a simple exter-
nal CSS style called ex1.css for this example:

h1 { font-family: arial; }

Listing 15-6 shows the HTML page that uses the ex1.css style sheet and another called
ex2.css.

310	 Part III  Integrating JavaScript into Design

Listing 15-6  Chang ng an e ement sty e through the styleSheets array.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>JavaScript Step by Step</title>

<link rel="stylesheet" href="ex1.css" type="text/css" />

<link rel="stylesheet" href="ex2.css" type="text/css" />

<script type="text/javascript">

if (typeof document.styleSheets != "undefined") {

 var stylerules;

 if (typeof document.styleSheets[0].rules != "undefined") {

 stylerules = document.styleSheets[0].rules;

 } else {

 stylerules = document.styleSheets[0].cssRules;

 }

 for (var i = 0; i < stylerules.length; i++) {

 if (stylerules[i].selectorText.toLowerCase() == "h1") {

 stylerules[i].style.fontFamily = "courier";

 }

 }

}

</script>

</head>

<body>

<h1 id="heading">JavaScript Step by Step</h1>

<p id="tagline">JavaScript Step by Step is a book by Steve Suehring,

published by Microsoft Press.</p>

<p>The book emphasizes standards-based JavaScript that works on multiple

platforms through different browsers.</p>

</body>

</html>

When viewed in a web browser, the page shows a heading styled with the Courier font. This
text was changed using the JavaScript inside the for loop in Listing 15-6. You can see the re-
sult in Figure 15-5.

	 Chapter 15  JavaScript and CSS	 311

Figure 15-5  Us ng the styleSheets array to access the se ector.

Exercises
	 1.	 Create a basic HTML document that uses a style sheet, either within the document itself

or through an external file. Make sure the page has at least two <p> elements and one
<h1> element. Give each of the elements ID attributes.

	 2.	 Use JavaScript to alter the style of one of the <p> elements, changing its color property
to blue.

	 3.	 Use JavaScript to alter the style of all the <p> elements to change their visibility to hid-
den (refer to Table 15-1 for assistance on the property for visibility).

	 4.	 Use JavaScript to retrieve the current style for the <p> element’s visibility, and display
the current visibility setting using an alert() dialog box.

	 	 313

Chapter 16

JavaScript Error Handling
After reading this chapter, you’ll be able to:

n	 Understand error handling using JavaScript methods: try/catch and onerror.

n	 Handle errors using try/catch statements.

n	 Use try/catch/finally statements.

n	 Handle the onerror event for window and image objects.

Introducing Two Ways to Handle Errors
This chapter looks at two primary, built-in ways of handling error conditions in JavaScript:
try/catch and onerror. Many other languages, including Microsoft Visual Basic .NET and
Microsoft Visual C#, also include try/catch to help you trap and handle error conditions. The
onerror event allows you to perform an action when encountering an error.

Using try/catch
The try portion of the try/catch set of statements encapsulates a block of JavaScript. When
the script executes, any exceptions that are thrown in the try block are caught by the catch
statement. You can then handle the error within the JavaScript placed in the catch block. The
code to do this follows this format:

try {

 // Execute some code

}

catch(errorObject) {

 // Error handling code goes here

}

As the code within the try clause executes, any errors encountered cause processing to be
immediately handed over to the catch clause. Listing 16-1 (in the file listing16-1.txt in the
companion content) shows a simple example.

314	 Part III  Integrating JavaScript into Design

Listing 16-1  A bas c try/catch examp e.

try {

 var numField = document.forms[0]["num"];

 if (isNaN(numField.value)) {

 throw "it's not a number";

 }

}

catch(errorObject) {

 alert(errorObject);

}

When the value of numField.value is not a number, the throw statement throws a programmer-
generated exception: the text “it’s not a number”. The catch clause then executes, and in this
case displays an alert() dialog box. Note the difference between a programmer-generated
exception (throw) and an exception generated by the JavaScript run-time engine, such as a
syntax error. A try/catch block won’t catch syntax errors, so it does not provide protection
against them.

When using a catch clause, it’s common to perform multiple tasks, such as call another func-
tion to log an error, or handle a condition using a general, or generic, approach. Using catch
is particularly helpful in problematic areas of code or in areas where the nature of the code
can lead to errors (such as in code that processes user input).

In the following exercise, you build a web form similar to the form that you built in Chapter
15, “JavaScript and CSS.” This time, in addition to providing visual feedback in the form’s text
field, you provide a bit of textual feedback.

Using try/catch with a web form

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file number.htm in the
Chapter16 sample files folder in the companion content.

	 2.	 Within the webpage, replace the TODO statement with the following code shown in
boldface type (you can find this in the number.txt file in the companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/

strict.dtd">

<html>

<head>

<title>Try/Catch</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript" src="number.js"></script>

</head>

<body>

	 Chapter 16  JavaScript Error Handling	 315

<form name="formexample" id="formexample" action="#">

<div id="citydiv">Enter a Number Between 1 and 100: <input id="num" name="num"> <span

id="feedback"> </div>

<div><input id="submit" type="submit"></div>

</form>

<script type="text/javascript">

var formEl = document.getElementsByTagName("form")[0];

EHandler.add(formEl,"submit", function(eventObj) { checkValid(eventObj); });

</script>

</body>

</html>

	 3.	 Create a JavaScript source file called number.js. (This file is in the companion content.)

	 4.	 Convert the error handling code from Chapter 15 to the try/catch style, and match the
content of this form. A try/catch statement isn’t really required for the Chapter 15 code,
but reworking it using try/catch illustrates how to use the statement. In the number.js
file, enter the following code. (Although much of this code could be condensed into a
single if statement, I wrote several if statements here because you will expand the code
later in this exercise.)

function checkValid(eventObj) {

 try {

 var numField = document.forms[0]["num"];

 if (isNaN(numField.value)) {

 throw numField;

 }

 else if (numField.value > 100) {

 throw numField;

 }

 else if (numField.value < 1) {

 throw numField;

 }

 return true;

 }

 catch(errorObject) {

 errorObject.style.background = "#FF0000";

 if (eventObj.preventDefault) {

 eventObj.preventDefault();

 } else {

 window.event.returnValue = false;

 }

 return false;

 }

}

	 5.	 View the page in a web browser. You should see this window:

316	 Part III  Integrating JavaScript into Design

	 6.	 Test the functionality of the new try/catch clauses. Enter a number greater than 100
into the field (for example, 350) and click Submit Query. You should see a page like this:

	 7.	 Type a phrase rather than a number, and click Submit Query again. The form field
should remain red.

	 8.	 Type a number in the field that is less than 1, such as -2, and click Submit Query again.
The field remains red.

	 9.	 Type the number 50 in the field, and click Submit Query again. This time, the form sub-
mits successfully, resulting in a blank form.

	 10.	 Modify the number.js file to add some textual feedback. The final number.js file should
look like this:

function checkValid(eventObj) {

 try {

 var numField = document.forms[0]["num"];

 if (isNaN(numField.value)) {

 var err = new Array("It's not a number",numField);

 throw err;

	 Chapter 16  JavaScript Error Handling	 317

 }

 else if (numField.value > 100) {

 var err = new Array("It's greater than 100",numField);

 throw err;

 }

 else if (numField.value < 1) {

 var err = new Array("It's less than 1",numField);

 throw err;

 }

 return true;

 }

 catch(errorObject) {

 var errorText = document.createTextNode(errorObject[0]);

 var feedback = document.getElementById("feedback");

 var newspan = document.createElement("span");

 newspan.appendChild(errorText);

 newspan.style.color = "#FF0000";

 newspan.style.fontWeight = "bold";

 newspan.setAttribute("id","feedback");

 var parent = feedback.parentNode;

 var newChild = parent.replaceChild(newspan,feedback);

 errorObject[1].style.background = "#FF0000";

 if (eventObj.preventDefault) {

 eventObj.preventDefault();

 } else {

 window.event.returnValue = false;

 }

 return false;

 }

}

	 11.	 Refresh the page in the browser so that a new version of the JavaScript executes. You
won’t notice any visible changes compared with the first time you loaded the form.

	 12.	 Within the form, type 350 and click Submit Query. Now you see a page like the follow-
ing, with textual feedback next to the form field:

318	 Part III  Integrating JavaScript into Design

	 13.	 Type -1 into the form, and click Submit Query again. You see this page:

	 14.	 Type a text phrase into the form, and click Submit Query again. You see a page like this:

	 15.	 Type a valid number between 1 and 100 (for example, 50) into the form, and click
Submit Query. The form submits without an error.

This exercise used some of the approaches explained in earlier chapters to create a new ele-
ment and place it into the document to provide feedback. The first portion of the exercise
converted the web form from Chapter 15 so that it used the try/catch style and new content.
The form in Chapter 15 asks the user to type a city name, whereas this form requests a spe-
cific range of numbers; in this way, the form demonstrates multiple conditions for feedback.

Each condition throws an error, with the numField object as its error object. Within the catch
statement, the background color of errorObject changes to red, and the function returns false
to indicate a failed, or invalid, form. The additional code uses an array to join both a textual
error and the form object (numField). This array object is then thrown to the catch statement.
Its first index (0) is the error text to display, and the second index (1) is the numField object,
as shown here (pay particular attention to the code in boldface):

	 Chapter 16  JavaScript Error Handling	 319

try {

 var numField = document.forms[0]["num"];

 if (isNaN(numField.value)) {

 var err = new Array("It's not a number",numField);

 throw err;

 }

 else if (numField.value > 100) {

 var err = new Array("It's greater than 100",numField);

 throw err;

 }

 else if (numField.value < 1) {

 var err = new Array("It's less than 1",numField);

 throw err;

 }

 else {

 return true;

 }

}

The catch statement performs several duties in this exercise. First, it retrieves the
element that will provide feedback to the user:

var feedback = document.getElementById("feedback");

Next, it creates a new text node by using the text of the error message found in the
errorObject:

var errorText = document.createTextNode(errorObject[0]);

It then creates a new span element that will be put into the document later. This span ele-
ment, known within the code as newspan, has the error text appended, and is styled with a
red text color and boldface font so that it stands out. This new span element is given an ID
of feedback, the same as the existing span element:

var newspan = document.createElement("span");

newspan.appendChild(errorText);

newspan.style.color = "#FF0000";

newspan.style.fontWeight = "bold";

newspan.setAttribute("id","feedback");

The code retrieves the feedback object’s parent node, so it can use the replaceChild() method
on the parent to replace the old span element with the new span element, as follows:

var parent = feedback.parentNode;

var newChild = parent.replaceChild(newspan,feedback);

The code then changes the background color of the form field to red:

errorObject[1].style.background = "#FF0000";

320	 Part III  Integrating JavaScript into Design

The final lines of the code, which you’ve seen in previous chapters, prevent the default form
action, which causes the browser to stay on the same page rather than proceed to submit the
form:

if (eventObj.preventDefault) {

 eventObj.preventDefault();

} else {

 window.event.returnValue = false;

}

return false;

Tip  Us ng try/catch statements as shown n th s examp e he ps to abstract the hand ng of ex-
cept ons w th n code However, th s approach does not prevent or prov de ass stance for syntax
errors n the code

Catching Multiple Exceptions
Certain browsers, including Firefox, enable you to handle multiple exceptions and mul-
tiple exception handlers easily. For example, consider this code:

if (isNaN(numField.value)) {

 throw "NotANumber";

}

else if (numField.value > 100) {

 throw "GreaterThan100";

}

else if (numField.value < 1) {

 throw "LessThan1";

}

The catch block looks like this:

catch(errorObject if errorObject == "NotANumber") {

 // Perform handling for NaN

}

catch(errorObject if errorObject == "GreaterThan100") {

 // Perform handling for > 100

}

catch(errorObject if errorObject == "LessThan1") {

 // Perform handling for < 1

}

catch(errorObject) {

 // Perform uncaught exception handling

}

In this code, each exception is caught and handled by its own exception handler block.
If none of the exceptions occurs, the block falls through to the generic exception han-
dler at the end of the catch block. Unfortunately, because Windows Internet Explorer
doesn’t support this functionality, it’s of limited use.

	 Chapter 16  JavaScript Error Handling	 321

And Finally...
An optional complementary statement in JavaScript, called finally, works with try/catch. The
finally statement contains code that gets executed regardless of whether the try statement’s
code succeeded or the catch handler executed. Typically, you use a finally block to make sure
that some code (such as cleanup code) executes every time.

Listing 16-2 (in the listing16-2.txt file in the companion content) shows the checkValid() func-
tion you saw in previous exercises in this chapter, but with the addition of a finally statement:

Listing 16-2  Add ng a finally statement onto the checkValid() funct on.

function checkValid(eventObj) {

 try {

 var numField = document.forms[0]["num"];

 if (isNaN(numField.value)) {

 var err = new Array("It's not a number",numField);

 throw err;

 }

 else if (numField.value > 100) {

 var err = new Array("It's greater than 100",numField);

 throw err;

 }

 else if (numField.value < 1) {

 var err = new Array("It's less than 1",numField);

 throw err;

 }

 return true;

 }

 catch(errorObject) {

 var errorText = document.createTextNode(errorObject[0]);

 var feedback = document.getElementById("feedback");

 var newspan = document.createElement("span");

 newspan.appendChild(errorText);

 newspan.style.color = "#FF0000";

 newspan.style.fontWeight = "bold";

 newspan.setAttribute("id","feedback");

 var parent = feedback.parentNode;

 var newChild = parent.replaceChild(newspan,feedback);

 errorObject[1].style.background = "#FF0000";

 if (eventObj.preventDefault) {

 eventObj.preventDefault();

 } else {

 window.event.returnValue = false;

 }

 return false;

 }

 finally {

 alert("This is called on both success and failure.");

 }

}

322	 Part III  Integrating JavaScript into Design

Using the onerror Event
You may see the onerror event used within programs to handle error events and conditions,
but programmers are using it much less commonly now because they can handle errors in
less obtrusive ways. The onerror event can be attached to the window and image objects.

Attaching onerror to the window Object
To use the onerror event, you assign it a function that gets called whenever a JavaScript error
occurs. The onerror event can be helpful during development, though the use of tools like
Firebug have reduced the need for it.

You attach the onerror event to the window object like this:

window.onerror = myErrorHandler;

The myErrorHandler variable refers to a user-defined function that handles the error condi-
tion. The JavaScript interpreter automatically sends three arguments to the error handler:

n	 A textual description of the error

n	 The Uniform Resource Locator (URL) where the error occurred

n	 The number of the line on which the error occurred

When an error handler function returns true, JavaScript won’t handle the error itself; it as-
sumes that the error has been taken care of by the error handler.

Listing 16-3 (in the companion content in the listing16-3.htm file) shows an example of
JavaScript and a user-defined handler.

Listing 16-3  An examp e of onerror n the window object.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.

dtd">

<html>

<head>

<title>onerror</title>

</head>

<body>

<div id="mydiv">Hi</div>

<script type="text/javascript">

function init() {

 doSomething();

}

function errorHandler() {

 alert(arguments[0] + " on line " + arguments[2]);

 return true;

}

	 Chapter 16  JavaScript Error Handling	 323

window.onload = init;

window.onerror = errorHandler;

</script>

</body>

</html>

When you load the code in Listing 16-3 into a web browser, you see an alert() dialog box like
the one in Figure 16-1.

Figure 16-1  An error hand er us ng the onerror event of the window object.

Listing 16-3 contains an intentionally undefined function within the init() function when the
window loads. The JavaScript interpreter throws the error when it finds the undefined func-
tion, and because a user-defined function called errorHandler is assigned to the onerror
event, the user-defined function gets called. The errorHandler function displays an alert()
dialog box and returns true so that no further error handling occurs. The alert() dialog box
displays the first and third indexes of the arguments array (arguments[0] and arguments[2]).
The arguments array contains the three arguments sent to the error handler described ear-
lier: the error message, the URL, and the line number of the error.

Avoid Handling Events Obtrusively
The example in Listing 16-3 handles a JavaScript error in a somewhat obtrusive man-
ner: by using an alert() dialog box. Handling errors in the background whenever pos-
sible is a better practice than using an alert dialog box. If the page has a lot of errors,
using alert dialog boxes quickly gets extremely annoying for visitors, who have to click
through each one.

When you anticipate that an error might occur, you can code around that error and
handle it to make the script degrade gracefully—for example, by substituting a differ-
ent function, or by presenting a friendly error message.

324	 Part III  Integrating JavaScript into Design

Ignoring Errors
Rather than handle errors with extra error-handling code, you can choose to ignore them
entirely. You accomplish this simply by returning true from the error handler. Whenever an
error-handling function returns true, the browser behaves as though the error has been han-
dled. So by returning true, you’re essentially just telling the interpreter to ignore the error.

Take a look at the code in Listing 16-4. It’s similar to the code in Listing 16-3; however, in
Listing 16-4, the errorHandler function returns true (shown in boldface type). This means that
when the undefined doSomething() function causes an error, that error is silently ignored.
You can find the code for Listing 16-4 in the companion content in the listing16-4.htm file.

Listing 16-4  Code that s ent y gnores an error.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/

strict.dtd">

<html>

<head>

<title>onerror</title>

</head>

<body>

<div id="mydiv">Hi</div>

<script type="text/javascript">

function init() {

 doSomething();

}

function errorHandler() {

 return true;

}

window.onload = init;

window.onerror = errorHandler;

</script>

</body>

</html>

You can see this behavior using Firefox with Firebug installed. First, load the code in Listing
16-4 as is. You won’t see any errors noted. Then, comment the return true; statement from
within the errorHandler function so that it looks like this:

function errorHandler() {

// return true;

}

When you reload the page, you’ll notice an error in the Firebug error console, as shown in
Figure 16-2.

	 Chapter 16  JavaScript Error Handling	 325

Figure 16-2  Comment ng out the return va ue from the error hand er causes a JavaScr pt error that can be
v ewed us ng F rebug.

Attaching onerror to the image Object
You can also attach an onerror event to image objects. When placed inline in the tag,
you can use these event handlers to handle images that aren’t found. For example, Figure
16-3 shows a page with a missing image.

Figure 16-3  A m ss ng mage that can be avo ded us ng JavaScr pt.

The code for this page is shown in Listing 16-5 (and is in the companion content in the
listing16-5.htm file).

326	 Part III  Integrating JavaScript into Design

Listing 16-5  A page w th a m ss ng mage.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/

strict.dtd">

<html>

<head>

<title>onerror</title>

</head>

<body>

<div id="mydiv">Hi</div>

</body>

</html>

Now consider the code with an inline onerror handler. The onerror handler redirects the
 element to an image that does exist. The content of the image isn’t important in this
case; the important point is that using the onerror handler in this way can help to prevent the
common ”Image Not Found” icon from appearing within your webpages. Listing 16-6 (in the
companion content in the listing16-6.htm file) shows the new code.

Listing 16-6  Add ng an onerror() hand er for the mage.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/

strict.dtd">

<html>

<head>

<title>onerror</title>

</head>

<body>

<div id="mydiv">Hi</div>

</body>

</html>

When you load this page into a web browser, the page won’t find the notfound.png image;
however, in its place, the browser retrieves and displays an image called logo.png, shown in
Figure 16-4.

 Chapter 16 JavaScript Error Handling 327

FIGURE	16-4	 The m ss ng mage has been rep aced, thanks to the onerror event hand er .

Exercises
	 1.	 Use an onerror event handler attached to the window object to handle errors when a

function is undefined . Note that you can use the code in Listing 16-3 as a basis for your
new code, but the error handler should present the error in a friendlier way than by
using an alert() .

	 2.	 Build a web form and use a try/catch block to catch the case when a city entered into a
text field is not “Stockholm” . Provide visual feedback that the city was incorrect .

	 3.	 Build a web form and use a try/catch/finally block to catch a case when a number is
greater than 100 . Be sure that visitors are thanked every time that they use the form,
no matter what they enter (either valid or invalid values) .

	 	 329

Part IV

AJAX and Server-Side Integration

Chapter 17: JavaScript and XML

Chapter 18: JavaScript Applications

Chapter 19: A Touch of AJAX

Chapter 20: A Bit Deeper into AJAX

	 	 331

Chapter 17

JavaScript and XML
After reading this chapter, you’ll be able to:

n	 Examine the functions for opening an Extensible Markup Language (XML) document
by using JavaScript.

n	 Display an XML document as a Hypertext Markup Language (HTML) table.

n	 View a Microsoft Office Excel 2007 XML spreadsheet by using JavaScript.

Using XML with JavaScript
XML is a language consisting almost completely of user-defined tags. Because the user-
defined tags make XML extremely customizable, XML is frequently used as a file format for
exchanging data. An important consideration for JavaScript programmers is that XML is the
X in the acronym AJAX (Asynchronous JavaScript and XML). AJAX has become a very popular
method for creating interactive web applications. You learn more about AJAX in the next two
chapters: Chapter 19, “A Touch of AJAX,” and Chapter 20, “A Bit Deeper into AJAX.”

XML is an open standard defined by the World Wide Web Consortium (W3C) and is currently
in its fourth edition. This section looks briefly at XML as it pertains to JavaScript. You can find
more information about XML on the XML Working Group’s website at http://www.w3.org
/XML/Core/, or on Microsoft’s website at http://msdn.microsoft.com/xml/.

Looking at an Example XML Document
XML documents consist of elements within a document structure. These elements have syn-
tax rules of their own, including that they need a start tag and an end tag. To the web pro-
grammer, the look of a document (defined in the text between tags) might be familiar. Here’s
an example XML document, also provided in the books.xml file in the Chapter17 folder in the
companion content:

<books>

<book>

 <title>MySQL Bible</title>

 <author>Steve Suehring</author>

 <isbn>9780764549328</isbn>

 <publisher>Wiley Publishing Inc.</publisher>

</book>

<book>

 <title>JavaScript Step by Step</title>

 <author>Steve Suehring</author>

332	 Part IV  AJAX and Server-Side Integration

 <isbn>9780735624498</isbn>

 <publisher>Microsoft Press</publisher>

</book>

</books>

The structure of the document as a whole needs to meet certain criteria to qualify as a well-
formed document. As you can see in the example, each element has its own start tag followed
by a corresponding end tag. Elements also can be nested within each other. Many of these
rules are similar to HTML rules.

XML documents can contain attributes as well, so the following is also valid:

<?xml version="1.0"?>

<book title="JavaScript Step by Step" author="Steve Suehring" isbn="9780735624498"

publisher="Microsoft Press" />

Loading an XML Document with JavaScript
You can load and manipulate XML documents using JavaScript. This section looks at doing
just that.

Importing the Document
You can import an XML document using one of two approaches, depending on the brows-
ers you’re supporting. For newer browsers, including Chrome, Firefox, and later versions
of Windows Internet Explorer, you can use the XMLHTTPRequest() object, whereas older
versions of Internet Explorer use the ActiveXObject object. The following code loads the
books.xml document in a cross-browser manner:

 if (window.XMLHttpRequest) {

 var httpObj = new XMLHttpRequest();

 } else {

 var httpObj = new ActiveXObject("Microsoft.XMLHTTP");

 }

 httpObj.open("GET","books.xml",false);

 httpObj.send();

 var xmlDocument = httpObj.responseXML;

	 Chapter 17  JavaScript and XML	 333

Displaying the Document
Often, XML data can best be visualized in a table or spreadsheet format. Figure 17-1 shows
the books.xml file in Excel 2007.

Figure 17-1  An XML fi e represented n a spreadsheet.

An HTML table is helpful for representing in a browser the same data shown in Figure 17-1. In
large part, displaying XML data using JavaScript requires some knowledge of the Document
Object Model (DOM), but no other special functions or methods beyond those needed to
load the document itself, which you already learned about.

The next example creates a function called displayData() that displays information in a
tabular manner.

334	 Part IV  AJAX and Server-Side Integration

The readyState Property
Previous versions of this book used the readyState property to determine when the
XML document was loaded. The readyState property is an integer that holds one of
five values indicating the current state of the document request being processed. Table
17-1 shows the values and corresponding descriptions of readyState.

Table 17-1  The readyState Property
Value Description
0 Un n t a zed Open but has yet to be ca ed

1 Open In t a zed but not yet sent

2 Sent The request has been sent

3 Rece v ng The response s act ve y be ng rece ved

4 Loaded The response has been fu y rece ved

You learn more about the readyState property and the onreadystatechange event in
Chapter 18, “JavaScript Applications.”

Displaying the nodes and child nodes within an XML document requires iterating through
the document’s levels and building the output document. The next function shown does
that by iterating through a hierarchical XML document to display that document’s data in an
HTML table. This code continues the example shown already, where a variable called xml-
Document is created and loaded with an XML document called books.xml:

function displayData(xmlDocument) {

 var xmlEl = xmlDocument.getElementsByTagName("book");

 var table = document.createElement("table");

 table.border = "1";

 var tbody = document.createElement("tbody");

 // Append the body to the table

 table.appendChild(tbody);

 // Create the table cells for the new row

 for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData =

 document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

	 Chapter 17  JavaScript and XML	 335

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

 }

 document.getElementById("xmldata").appendChild(table);

}

To put all the code together into a webpage, you attach to an event the functions that load
and display the XML file. Listing 17-1 (included in the listing17-1.html file in the companion
content) creates a new function called getXML and attaches it to the window object’s load
event. The code that attaches the event is in boldface type.

Listing 17-1  D sp ay ng XML data n an HTML tab e.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/

strict.dtd">

<html>

<head>

<title>Books</title>

<script type="text/javascript" src="ehandler.js"></script>

</head>

<body id="mainBody">

<div id="xmldata"></div>

<script type="text/javascript">

function displayData(xmlDocument) {

 var xmlEl = xmlDocument.getElementsByTagName("book");

 var table = document.createElement("table");

 table.border = "1";

 var tbody = document.createElement("tbody");

 // Append the body to the table

 table.appendChild(tbody);

 // Create table row

 for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData =

 document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

336	 Part IV  AJAX and Server-Side Integration

 }

 document.getElementById("xmldata").appendChild(table);

}

function getXML() {

 if (window.XMLHttpRequest) {

 var httpObj = new XMLHttpRequest();

 } else {

 var httpObj = new ActiveXObject("Microsoft.XMLHTTP");

 }

 httpObj.open("GET","books.xml",false);

 httpObj.send();

 var xmlDocument = httpObj.responseXML;

 displayData(xmlDocument);

}

var mainBody = document.getElementById("mainBody");

EHandler.add(mainBody, "load", function() { getXML(); });

</script>

</body>

</html>

When viewed through a web browser, the table displays the data much like a spreadsheet
would, as shown in Figure 17-2.

Figure 17-2  Represent ng books.xm n an HTML tab e.

Examining the code from Listing 17-1 reveals a large for loop that walks through the XML
hierarchy, building table rows as it goes. One item to note is that the loop looks only for
Element nodes within the XML document by using this bit of code:

	 Chapter 17  JavaScript and XML	 337

// Skip it if the type is not 1

if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

}

The nodeType of 1 represents an XML Element node. If the type of node currently being
examined in the loop is not an element, the code moves to the next part of the document.

One issue you may notice in the display in Figure 17-2 is that no column headings exist.
Adding column headings requires adding some code. The next procedure shows you how.

Adding column headings from an XML document

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file books.htm in the
Chapter17 sample files folder, which you can find in the companion content. (At this
point in the procedure, when viewed through a web browser, books.htm should resem-
ble Figure 17-2.)

	 2.	 Within books.htm, add the following code shown in boldface type to the displayData()
method (in the companion content in books.txt), replacing the TODO comment:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/

strict.dtd">

<html>

<head>

<title>Books</title>

<script type="text/javascript" src="ehandler.js"></script>

</head>

<body id="mainBody">

<div id="xmldata"></div>

<script type="text/javascript">

function displayData(xmlDocument) {

 var xmlEl = xmlDocument.getElementsByTagName("book");

 var table = document.createElement("table");

 table.border = "1";

 var tbody = document.createElement("tbody");

 // Append the body to the table

 table.appendChild(tbody);

 var row = document.createElement("tr");

 for (colHead = 0; colHead < xmlEl[0].childNodes.length; colHead++) {

 if (xmlEl[0].childNodes[colHead].nodeType != 1) {

 continue;

 }

 var tableHead = document.createElement("th");

 var colName = document.createTextNode(xmlEl[0].childNodes[colHead].nodeName);

 tableHead.appendChild(colName);

 row.appendChild(tableHead);

 }

 // Append the row to the body

338	 Part IV  AJAX and Server-Side Integration

 tbody.appendChild(row);

 // Create table row

 for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData =

 document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

 }

 document.getElementById("xmldata").appendChild(table);

}

function getXML() {

 if (window.XMLHttpRequest) {

 var httpObj = new XMLHttpRequest();

 } else {

 var httpObj = new ActiveXObject("Microsoft.XMLHTTP");

 }

 httpObj.open("GET","books.xml",false);

 httpObj.send();

 var xmlDocument = httpObj.responseXML;

 displayData(xmlDocument);

}

var mainBody = document.getElementById("mainBody");

EHandler.add(mainBody, "load", function() { getXML(); });

</script>

</body>

</html>

	 3.	 View the page in a web browser. It should look like this:

	 Chapter 17  JavaScript and XML	 339

Working with XML Data from Excel 2007
Excel 2007 has several features that make working with XML data rather easy. Both importing
and exporting XML data is possible with Excel. In fact, when exporting data from Excel, Excel
adds nothing proprietary to the XML document. Here’s what the books.xml file looks like
when exported from Excel 2007 (included in the companion content as newbooks.xml):

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <book>

 <title>MySQL Bible</title>

 <author>Steve Suehring</author>

 <isbn>9780764549328</isbn>

 <publisher>Wiley Publishing Inc.</publisher>

 </book>

 <book>

 <title>JavaScript Step by Step</title>

 <author>Steve Suehring</author>

 <isbn>9780735624498</isbn>

 <publisher>Microsoft Press</publisher>

 </book>

</books>

Because Excel 2007 is XML-friendly, the displayData() function already examined in this chap-
ter works with XML data exported from Excel 2007 without modification. For developers who
have worked with proprietary formats in the past, this comes as a welcome surprise.

340	 Part IV  AJAX and Server-Side Integration

A Preview of Things to Come
Though XML is indeed the X in the AJAX acronym, there’s much more to AJAX than just
JavaScript and XML. AJAX can work with data types other than XML, and in Chapter 19, you
work with AJAX, building upon the brief foundation introduced in this chapter.

In Chapter 20, you examine the integration of JavaScript, AJAX, and Cascading Style Sheets
(CSS) that allows you to present data retrieved with JavaScript.

Exercises
	 1.	 Use the code from the book display exercise in this chapter to display the table after a

link is clicked rather than when the page loads.

	 2.	 Use the code from the book display exercise in this chapter to display the table, but use
the DOM to alternate the colors for each row so that every other row has a gray back-
ground. Hint: #aaabba is the hexadecimal representation of this gray color.

	 	 341

Chapter 18

JavaScript Applications
After reading this chapter, you’ll be able to:

n	 Understand the components that go into a JavaScript-based application.

Components of JavaScript Applications
Building a browser-based application with the sophisticated look and feel of a desktop
application frequently involves using JavaScript. Such an application has some of the same
features and responsiveness of a desktop application, as though it were sitting on the local
computer rather than operating through a web browser.

This brief chapter provides an overview of the components that constitute an application
based on JavaScript. The goal is to help you understand the underlying architecture and
some of the complexity necessary to create this type of application at the enterprise level.

The Big Three: Display, Behavior, Data
Three primary components exist in a web application:

n	 Display  The look and feel of the page.

n	 Behavior  What the application interface does, that is, what happens when the user
clicks an element on the page or otherwise interacts with the page.

n	 Data  The server component that contains the data and performs the actions, the
results of which appear on the page.

JavaScript code typically handles the first two components in the preceding list—display
and behavior—to affect the interface or react when a user performs an action on a page.
JavaScript works with the data returned from the server as well, but usually only does so to
alter the display in some manner. For example, a call to a web service that returns the current
temperature or sky condition might use JavaScript to change an icon when the weather is
sunny. The following sections examine each of these three elements in a little more detail.

342	 Part IV  AJAX and Server-Side Integration

Display: Page Layout
The webpage display encompasses the page layout and anything related to the look and
feel of the page and site, including the color scheme, images, styling of menus (whether they
have rounded corners or square ones, and so on), the placement of buttons and content,
font colors, and use of images. JavaScript can affect all these items, as you’ve seen in previ-
ous chapters on Cascading Style Sheets (CSS) and form validation. These elements are the
primary focus of web design and receive the most attention from users, and you should
consider these elements when determining requirements for your site.

Behaviors: Controlling What Happens When
One of the most important factors in determining the user experience is also one of the most
often overlooked elements of a web application design: the behavior of the application inter-
face, which controls what happens when users interact with a given element. Consider these
two simple scenarios:

n	 When a visitor clicks the Submit button on a web form, does that Submit button stay
active or become disabled?

n	 When an input text field gains focus, should it change color or be highlighted?

Even these minor behaviors can greatly enhance the user experience when designed prop-
erly. However, when working through a design of a site, these behaviors are also frequently
forgotten, ignored, or discounted in favor of the look and feel or raw design of the site.

Data: Consume, Display, and Validate
JavaScript, at least its use as far as this book is concerned, doesn’t interact directly with a
database or server. Obviously, JavaScript does so through Asynchronous JavaScript and XML
(AJAX) and through web services, but those processes require server-side code to return data
back to the calling JavaScript.

Like the display portion of the site, the back-end server-side data components should receive
a fair share of attention when you design a web application. From database design to pro-
gramming the business logic, this back-end coding needs careful attention.

JavaScript and Web Interfaces
Programmers use JavaScript to create front ends that provide a quality user experience.
Microsoft Bing Maps (formerly Live Search Maps) is an example of a web application that re-
lies heavily on JavaScript. Figure 18-1 shows an example of Microsoft Bing Maps, which you
can find at http://www.bing.com/maps/.

 Chapter 18 JavaScript Applications 343

FIGURE	18-1	 The B ng Maps nterface uses JavaScr pt to prov de good nteract v ty .

Users can drag the map display around in much the same way they would when interacting
with a desktop application . The map is composed of tiles at various resolutions . When a user
drags the map, the browser sends several HTTP requests to the Virtual Earth web server re-
questing additional tiles that the browser then quickly displays .

The Bing search engine also uses a type-ahead search similar to that of other search engines
like Google . If you begin typing in the main text box on http://www.bing.com, the browser
immediately sends an HTTP request to the server to find similar searches, as shown in Figure
18-2 .

FIGURE	18-2	 The type ahead search capab ty uses JavaScr pt to obta n a match ng search st
from the server .

344	 Part IV  AJAX and Server-Side Integration

All of these elements from the Bing search engine use JavaScript. Countless other web inter-
faces rely on JavaScript to enhance the user experience by controlling the behavior layer of
the page. The remainder of this book starts you on the path toward building this type of ap-
plication with JavaScript. Chapter 19, “A Touch of AJAX,” and Chapter 20, “A Bit Deeper into
AJAX,” show how to build a simple type-ahead search interface using JavaScript. They also
introduce AJAX and show examples of working with data to build applications. Chapter 21,
“An Introduction to JavaScript Libraries and Frameworks,” and Chapter 22, “An Introduction
to jQuery,” introduce JavaScript libraries, concentrating on jQuery, which you can use to sim-
plify many of the tasks related to writing complex JavaScript applications.

	 	 345

Chapter 19

A Touch of AJAX
After reading this chapter, you’ll be able to:

n	 Understand the basics of the Asynchronous JavaScript and XML (AJAX) programming
paradigm.

n	 Understand the difference between synchronous and asynchronous AJAX calls.

n	 Use AJAX to retrieve data.

n	 Use AJAX with different Hypertext Transfer Protocol (HTTP) methods to retrieve
responses from a server.

Introduction to AJAX
AJAX describes the programming paradigm that combines JavaScript and a web server.
Developers use AJAX to create highly interactive web applications such as Microsoft Virtual
Earth.

Without AJAX, a web application might make the visitor wait while a response is gathered
from the web server. An AJAX-based application sends requests from the web browser to the
web server in the background (asynchronously) while the visitor is using the application. This
makes the application feel much more responsive to the user.

In an AJAX application, JavaScript processes the response and presents the data to users.
When combined with Cascading Style Sheets (CSS) and a good layout, an AJAX application
provides excellent usability and the portability that only a web application can.

As complex as some AJAX applications may seem, the actual process of sending a request
and handling the response are not terribly complicated. This chapter explores how you can
send requests and receive responses using a fundamental AJAX object: XMLHttpRequest.

One central concept in AJAX is that you call server-side applications to return data. In this
chapter, I give you a brief overview of how to create such an application using both ASP.NET
and PHP. (PHP is a recursive acronym for PHP Hypertext Preprocessor.) If you need additional
assistance in creating the server-side portion of an AJAX application, you can get help from
several sources.

If you’re creating a server-side application using Microsoft technologies, the Microsoft
Developer Network provides a great resource with many tutorials and an introductory
article on AJAX (http://msdn.microsoft.com/en-us/magazine/cc163363.aspx). Microsoft
Press also publishes several excellent books on building applications for the web. One

346	 Part IV  AJAX and Server-Side Integration

such title is Microsoft ASP.NET 3.5 Step By Step (Microsoft Press, 2008). For others, look at
http://www.microsoft.com/mspress for more information.

If you’re developing a server-side application using other technologies such as the LAMP
(Linux, Apache, MySQL, Perl/PHP/Python) stack, searching the web for tutorials is likely the
easiest way to get up to speed quickly on development on the platform. The book Learning
Perl (O’Reilly, 2005) is a great resource for learning the basics of the Perl programming
language.

Note  If you ke my wr t ng sty e, I wrote Beginning Perl Web Development (Apress, 2005), wh ch
focuses on us ng Per to work w th web app cat ons

PHP’s main website (http://www.php.net) is a good place to start for information on PHP, and
for Python, take a look at the Python website (http://www.python.org).

The XMLHttpRequest Object
The XMLHttpRequest object is central to building an AJAX application. Although implemen-
tations of JavaScript differ, the ECMAScript and the World Wide Web Consortium (W3C) have
standardized many aspects of it except the XMLHttpRequest object, which has never been
subject to a standardization process. Even so, since the release of Windows Internet Explorer
7, you use the XMLHttpRequest object in the same way across all major browsers.

Microsoft first implemented the XMLHttpRequest object in Microsoft Internet Explorer 5.0. If
a visitor is using a browser version earlier than that, applications using XMLHttpRequest won’t
work. In Internet Explorer versions prior to version 7, the XMLHttpRequest object was instan-
tiated as an ActiveXObject object, but other browsers implemented the XMLHttpRequest
object as a JavaScript object built into the browser. This means that if your applications need
to work with versions of Internet Explorer earlier than version 7, you need to instantiate the
XMLHttpRequest object for those browsers in a different way, as I show you later in the chap-
ter. The next section, “Instantiating the XMLHttpRequest Object,” shows how you can test for
the existence of XMLHttpRequest and how to instantiate it in all versions of Internet Explorer.

Instantiating the XMLHttpRequest Object
Internet Explorer 7 and later versions, and all other major browsers that support
XMLHttpRequest, instantiate the XMLHttpRequest object in the same way:

var req = new XMLHttpRequest();

	 Chapter 19  A Touch of AJAX	 347

For Internet Explorer versions earlier than version 7, you must instantiate an ActiveXObject
instead. However, the way you do this varies depending on the version of the XMLHTTP
library installed on the client. Therefore, you need to do a bit of code juggling to instantiate
an XMLHttpRequest object in these earlier versions of Internet Explorer.

The code in Listing 19-1 is a cross-browser function that instantiates an XMLHttpRequest
object across multiple browsers.

Listing 19-1  nstant at ng an XMLHttpRequest object across browsers.

function readyAJAX() {

 try {

 return new XMLHttpRequest();

 } catch(e) {

 try {

 return new ActiveXObject("Msxml2.XMLHTTP");

 } catch(e) {

 try {

 return new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 return "A newer browser is needed.";

 }

 }

 }

}

The function in Listing 19-1 uses multiple levels of try/catch blocks to instantiate an
XMLHttpRequest, regardless of whether the visitor is using Internet Explorer or another
browser. If the native call to XMLHttpRequest fails, that means that the visitor is using an
Internet Explorer browser older than version 7. In such a case, the error is caught and one
of the methods for instantiating XMLHttpRequest that is based on ActiveXObject is tried. If
none of these methods succeed, the likely reason is that the browser is too old to support
XMLHttpRequest.

The article “About Native XMLHTTP” on MSDN describes some of the version history and
security nuances of the XMLHttpRequest object in Internet Explorer. This article can be found
at http://msdn2.microsoft.com/en-us/library/ms537505.aspx.

You call the readyAJAX() function shown in Listing 19-1 like this:

var requestObj = readyAJAX();

The requestObj variable now contains the XMLHttpRequest object returned by the function,
or, if the function couldn’t create the object, the requestObj variable contains the string
“A newer browser is needed.”

348	 Part IV  AJAX and Server-Side Integration

Sending an AJAX Request
With a newly created XMLHttpRequest object in hand, you can send requests to the web
server and get responses. To send the request, you use a combination of the open() and
send() methods of the XMLHttpRequest object.

There are two fundamentally different ways to send AJAX requests: synchronously and asyn-
chronously. When sent in a synchronous manner, the requesting code simply waits for the
response—a process called blocking. So, for a synchronous request, the requesting code will
block, effectively preventing further processing or execution of other JavaScript while the
script waits for the response from the web server. This process has obvious disadvantages
when the request or response gets lost in transit or is just slow. With asynchronous requests,
the requesting code doesn’t block. Instead, the caller can check the request status to discover
when the request has completed. You see more about asynchronous requests later in this
chapter; it’s easier to work with synchronous requests first.

Before you can send a request, you have to build it. To do that, you use the open method,
which has three arguments: the request method (GET, POST, HEAD, or others), the Uniform
Resource Locator (URL) to which the request will be sent, and a Boolean true or false, indicat-
ing whether you want to send the request asynchronously or synchronously, respectively.

Assuming that your request object has been retrieved using the readyAJAX() function and
placed into a variable named requestObj, a typical asynchronous call to the open method
might look like this:

var url = "http://www.braingia.org/getdata.php";

requestObj.open("GET", url, true);

That same call, sent synchronously, looks like this:

var url = "http://www.braingia.org/getdata.php";

requestObj.open("GET", url, false);

You actually send the request with the send method, as follows:

requestObj.send();

Note  If the parameters sent w th the request have any spec a characters, such as spaces or oth-
er characters reserved by the URI RFC, you must first escape those characters us ng the % nota-
t on Th s s d scussed further n RFC 3986, wh ch you can find at ftp://ftp.rfc-editor.org/in-notes
/rfc3986.txt. You can a so find more nformat on at http://msdn2.microsoft.com/en-us/library
/aa226544(sql.80).aspx.

	 Chapter 19  A Touch of AJAX	 349

How the Web Works in 500 Words or Fewer
The Hypertext Transfer Protocol (HTTP) is the language of the web. HTTP is currently
defined by RFC 2616 and describes a protocol for exchanging information by using
requests from clients and responses from servers.

Requests from clients such as web browsers contain a specific set of headers that define
the method used for retrieval, the object to be retrieved, and the protocol version to be
used. Other headers contain the web server host name, languages requested, the name
of the browser, and other information that the client deems relevant to the request.

Here’s a basic HTTP version 1.1 request that shows only the most important of these
headers:

GET / HTTP/1.1

Host: www.braingia.org

This request specifies the GET method to retrieve the document located at the / (root)
directory location using HTTP version 1.1. The second line, commonly called the Host
header, is the URL http://www.braingia.org. This header tells the web server which web-
site is being requested. Several different methods can be used in a request; the three
most common are GET, POST, and HEAD. The client and server also exchange HTTP
cookies as part of the headers. Cookies are sent in the request, and others might be
received in the response.

When the web server for http://www.braingia.org receives a request like this, the web
server sends response headers that indicate how it has handled the request. In this
case, the web server sends response headers similar to these:

HTTP/1.1 200 OK

Date: Sat, 12 Mar 2011 01:04:34 GMT

Server: Apache/1.3.33 (Debian GNU/Linux) mod_perl/1.29 PHP/4.3.10-22

Transfer-Encoding: chunked

Content-Type: text/html; charset=iso-8859-1

The requested document follows the response headers. The first and most important
header indicates the status of the response. In the example, the response is 200, which
is synonymous with OK. Other common responses include 404 (which indicates that the
requested document was not found), 302 (which indicates a redirect), and 500 (which
indicates that a server error occurred).

Understanding these basics of HTTP is important for understanding how to build AJAX
requests and how to troubleshoot those requests when things go wrong. You can find
more information about HTTP, including the various response codes, in RFC 2616 at
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt.

350	 Part IV  AJAX and Server-Side Integration

Processing an AJAX Response
It’s easier to work with the response when the request is sent synchronously, because the
script’s execution stops while awaiting the response. The requestObj variable provides helpful
methods for processing a response, including giving access to the status codes and text of
the status sent from the server. Regardless of whether the request is synchronous or asyn-
chronous, you should evaluate the status code to ensure that the response was successful
(usually indicated by a status of 200).

The responseText method contains the text of the response as received from the web server.

For example, assume a server application returns the sum of two numbers. Calling the appli-
cation to add the numbers 2 and 56 looks like this:

http://www.braingia.org/addtwo.php?num1=2&num2=56

Here’s a synchronous call and response retrieval:

requestObj.open("GET", "http://www.braingia.org/addtwo.php?num1=2&num2=56", false);

requestObj.send();

if (requestObj.status == 200) {

 alert(requestObj.responseText);

} else {

 alert(requestObj.statusText);

}

In this example, assume that the requestObj was created using the readyAJAX() function that
you saw earlier. The preceding code then calls the open method using a GET request to the
specified URL (http://www.braingia.org/addtwo.php?num1 2&num2 56). The request is sent
synchronously because the last argument to the open method is false. Next, the code calls
the send method, which actually sends the request to the web server.

When the client receives the response from the web server, it calls the status method to
check the status value. If the response code is 200, indicating success, the code displays the
responseText, which holds the response from the server. If the response status code is any-
thing other than 200, the code displays the status text.

Processing an asynchronous response is a bit more complex. When a request is sent asyn-
chronously, script execution continues. Therefore, it is unpredictable when the script will be
notified that the response has been received. To know the response status, you can use the
onreadystatechange event to trigger code that checks the event’s readyState property to
determine the state of the request/response cycle. Recall from Chapter 17, “JavaScript and
XML,” that the readyState property has five states, as shown in Table 19-1.

	 Chapter 19  A Touch of AJAX	 351

Table 19-1  Values for the readyState Property
Value Description
0 Un n t a zed Open but has yet to be ca ed

1 Open In t a zed but not yet sent

2 Sent The request has been sent

3 Rece v ng The response s act ve y be ng rece ved

4 Loaded The response has been fu y rece ved

For practical purposes, the only state that matters to the JavaScript and AJAX programmer is
state 4—Loaded. Attempting to process a response that has a readyState value other than 4
results in an error.

You typically use an anonymous function to handle the onreadystatechange event for
asynchronous AJAX calls. The function checks to see whether the readyState property has
reached 4, and then checks to ensure that the status is 200, indicating success. The code
follows this format:

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 alert(requestObj.responseText);

 } else {

 alert(requestObj.statusText);

 }

 }

}

In this next exercise, you create an XMLHttpRequest object and send a request to a web
server to retrieve a book title based on its ISBN. You need a web server and web server
code to print the response, because requests sent using XMLHttpRequest are subject to the
JavaScript same-origin policy.

The same-origin policy requires that requests go only to servers within the same domain
from which the calling script was loaded. In other words, because I’m executing the script in
this exercise directly from my web server at http://www.braingia.org, my script is able to call
that server and retrieve a response. If you tried to call a URL on another web server, however,
the same-origin policy would prevent the script from retrieving the response.

Note  One way to get around the same-or g n secur ty feature s to use an HTTP proxy or to
wr te the server-s de program so that t sends a request on beha f of the ca ng program; how-
ever, earn ng how to do that s beyond the scope of th s book

For the upcoming exercise, the script or program running on the server needs to return the
phrase “JavaScript Step by Step” when it receives a GET request with a name/value argument
with the following value:

352	 Part IV  AJAX and Server-Side Integration

isbn=9780735624498

For example, at its most basic, the server-side program could look like this when implemented
inside an Active Server Pages (ASP) page based on VBScript:

<%

dim isbn

isbn=Request.QueryString("isbn")

If isbn<>"" Then

 If isbn=="9780735624498" Then

 Response.Write("JavaScript Step by Step")

 End If

End If

%>

A functionally similar program looks like this if written in PHP:

<?php

$isbn = $_GET[‘isbn'];

if (! $isbn) {

 print "That request was not understood.";

} else if ($isbn == "9780735624498") {

 print "JavaScript Step by Step";

}

?>

In the following exercise, the URL to which the request will be sent is predefined, but you
must replace that URL with the URL where your server-side program is located. Because of
the same-origin policy, the server-side program needs to be within the same domain as the
page that calls it.

Sending and receiving with XMLHttpRequest

	 1.	 Create your server-side program to return the book title when it receives the isbn argu-
ment shown earlier. You can do this in your choice of languages. (If you need to, look at
the two examples shown earlier.)

	 2.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file isbn.htm in the
Chapter19 sample files folder (in the companion content).

	 3.	 Within the webpage, replacing the TODO comment with the following code shown in
boldface (in the isbn.txt file in the companion content). Be sure to replace the url vari-
able with the appropriate URL for your server-side program:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>ISBN</title>

	 Chapter 19  A Touch of AJAX	 353

</head>

<body>

<div id="data"></div>

<script type="text/javascript">

function readyAJAX() {

 try {

 return new XMLHttpRequest();

 } catch(e) {

 try {

 return new ActiveXObject("Msxml2.XMLHTTP");

 } catch(e) {

 try {

 return new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 return "A newer browser is needed.";

 }

 }

 }

}

var requestObj = readyAJAX();

var url = "http://www.braingia.org/isbn.php?isbn=9780735624498";

requestObj.open("GET",url,true);

requestObj.send();

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 alert(requestObj.responseText);

 } else {

 alert(requestObj.statusText);

 }

 }

}

</script>

</body>

</html>

	 4.	 Save and view the page in a web browser. You should receive an alert like the one
shown here:

Congratulations! You’ve now processed your first XMLHttpRequest.

354	 Part IV  AJAX and Server-Side Integration

Processing XML Responses
The AJAX examples you’ve seen so far have all used plain Hypertext Markup Language
(HTML) and text responses from the web server, so you could retrieve them using the
XMLHttpRequest object’s responseText method. However, server applications can also re-
turn XML responses, which you can process natively using the responseXML method.

Earlier in this chapter, the sidebar titled “Describing How the Web Works in 500 Words
or Fewer” discussed an example web server response. The server response contained this
Content-Type header:

Content-Type: text/html; charset=iso-8859-1

To retrieve a response using the responseXML method, the web server needs to send a
Content-Type of text/xml or application/xml like this:

Content-Type: application/xml

When the XMLHttpRequest object receives native XML as the response, you can use
Document Object Model (DOM) methods to process the response.

The responseXML method has been somewhat quirky historically, and using it can result in
unexpected behavior, depending on the browser and operating system. In addition, responseXML
isn’t as widely supported as other JavaScript methods. Using responseXML means combining
the XMLHttpRequest techniques already seen in this chapter with the XML parsing techniques
described in Chapter 17. For example, consider this XML document (call it book.xml):

<?xml version="1.0" encoding="ISO-8859-1"?>

<book>

 <title>JavaScript Step by Step</title>

 <isbn>9780735624498</isbn>

</book>

Combining the XMLHttpRequest object and XML parsing leads to the following code, which
retrieves and displays the ISBN from the book.xml document:

var requestObj = readyAJAX();

var url = "http://www.braingia.org/book.xml";

requestObj.open("GET",url,false);

requestObj.send();

if (requestObj.status == 200) {

 var xmldocument = requestObj.responseXML;

 alert(xmldocument.getElementsByTagName("isbn")[0].childNodes[0].nodeValue);

} else {

 alert(requestObj.statusText);

}

	 Chapter 19  A Touch of AJAX	 355

When the request completes successfully, requestObj.responseXML contains the requested
XML document (book.xml). The xmldocument.getElementsByTagName(“isbn”) code retrieves
an array of the <isbn> tags in the document. There’s only one of those in this document;
the [0] indicates the first one. The .childNodes[0] portion of the code retrieves the first child
node from that <isbn> tag. In this case, that’s the text node, which contains the ISBN num-
ber. Finally, the .nodeValue portion of the code retrieves the value of that text node, the ISBN
itself, which the preceding code displays with an alert call.

Working with JSON
JavaScript Object Notation (JSON) is a way to pass data as native JavaScript objects and arrays,
rather than encode data within XML (or HTML) responses. JSON is a more efficient way to
pass data from server to client. Parsing XML using the DOM is more complex and thus slower,
whereas parsing JSON-encoded data is done directly in JavaScript.

Recall the book.xml document from an earlier example in this chapter. That same data in
JSON looks like this:

{

"book":

 {

 "title": "JavaScript Step by Step",

 "isbn": "9780735624498"

 }

}

Retrieving an individual element is somewhat easier with JSON than with XML. You use the
JavaScript eval() function to parse the JSON-formatted response. For example, here’s the
code to retrieve and display the book title:

var requestObj = readyAJAX();

var url = "http://www.braingia.org/json.php";

requestObj.open("GET",url,false);

requestObj.send();

if (requestObj.status == 200) {

 var xmldocument = eval(‘(‘ + requestObj.responseText + ‘)');

 alert(xmldocument.book.title);

} else {

 alert(requestObj.statusText);

}

Using JSON carries an inherent security risk, because it uses the eval() function to parse the
response. The eval() function essentially executes the JavaScript code received, so if that
code were malicious, it would execute in the context of the application being run. It is your
responsibility to ensure that the data your application is using with JSON is clean and free of
malicious code that could cause problems when executed using eval().

356 Part IV AJAX and Server-Side Integration

Using a JavaScript framework such as jQuery alleviates much of this concern, as does the ad-
dition of native JSON into ECMA-262 version 5 . You learn how to use jQuery and how to use
it for processing JSON in Chapter 22, “An Introduction to jQuery .”

Processing Headers
The HTTP HEAD method returns just the response headers from the server, rather than the
headers and the body in the way the GET method does . The HEAD method is sometimes
helpful for determining whether a given resource has been updated or changed .

One frequently-sent HTTP header is Expires, which indicates when the client should request a
refreshed copy of a document rather than read it from the client’s cache . If the server sends
the Expires header, the HEAD method is an efficient way to view and parse the Expires header
because the HEAD method retrieves only the response header rather than the entire body of
the requested resource .

To request only the response headers from a server, whether using a HEAD request or any
other type of request such as GET or POST, use the getAllResponseHeaders() method of the
XMLHttpRequest object, as follows:

requestObj.getAllResponseHeaders();

For example, Listing 19-2 shows how to retrieve the response headers from the default page
of my website .

LISTING	19-2	 Retr ev ng headers .

	 Chapter 19  A Touch of AJAX	 357

 }

 }

}

var requestObj = readyAJAX();

var url = "http://www.braingia.org/";

requestObj.open("HEAD",url,true);

requestObj.send();

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 alert(requestObj.getAllResponseHeaders());

 } else {

 alert(requestObj.statusText);

 }

 }

}

</script>

</body>

</html>

Troubleshooting  The same-or g n po cy that you came across dur ng the exerc se ear er n
the chapter app es equa y to the HEAD method n L st ng 19-2 When wr t ng L st ng 19-2, I for-
got about the same-or g n po cy and or g na y set the url var ab e to http://www.microsoft.com/,
th nk ng I’d get that s te’s defau t page. However, upon rece v ng an error, I rea zed the prob em
and changed the url var ab e to match the doma n on wh ch the scr pt was runn ng (my s te) You
are ke y to encounter the same prob em Remember to change the url var ab e to your server of
or g n when attempt ng to run the code n L st ng 19-2

Using the POST Method
Up to this point, the examples you’ve seen have used the GET and HEAD methods to retrieve
data from the server. To submit queries through HTTP, you often use the POST method.
Using the POST method with XMLHttpRequest is a bit more complex than using either the
GET or HEAD methods. However, the POST method offers two specific advantages over the
GET method. First, parameters you send with a POST request are contained in the body of
the request rather than in the URL, as they are with the GET method, and therefore are less
likely to be seen by the casual observer trying to find ways into your application. Second, the
POST method supports larger requests. Some servers limit the amount or size of a GET request
to a certain number of characters, and although those servers might also limit the size of a
POST request, the limitation for POST requests is almost always much greater.

The HTTP POST method requires an additional header to be set within the request. You set
that additional header with the setRequestHeader() method:

isting  

358	 Part IV  AJAX and Server-Side Integration

requestObj.setRequestHeader(header, value);

For example, to set the Content-Type header for a web form, as you would do for a POST
request, you could write:

requestObj.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

When you saw the AJAX requests sent earlier using the GET method, the URL included the
parameters or name/value pairs for the application, like so:

http://www.braingia.org/books/javascriptsbs/isbn.php?isbn=9780735624498

In the preceding example, the isbn parameter has the value 9780735624498. However, when
working with POST requests, the URL contains only the document or resource requested—
it doesn’t contain any parameters. Therefore, you must send the parameters as part of the
send() method.

Listing 19-3 presents an AJAX request using the POST method, shown in boldface type. It
uses two parameters—see whether you can spot them.

Listing 19-3  Construct ng a POST request.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Post</title>

</head>

<body>

<div id="xmldata"></div>

<script type="text/javascript">

function readyAJAX() {

 try {

 return new XMLHttpRequest();

 } catch(e) {

 try {

 return new ActiveXObject("Msxml2.XMLHTTP");

 } catch(e) {

 try {

 return new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 return "A newer browser is needed.";

 }

 }

 }

}

	 Chapter 19  A Touch of AJAX	 359

var requestObj = readyAJAX();

var url = "http://www.braingia.org/books/javascriptsbs/post.php";

var params = "num1=2&num2=2";

requestObj.open("POST",url,true);

requestObj.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

requestObj.send(params);

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 alert(requestObj.responseText);

 } else {

 alert(requestObj.statusText);

 }

 }

}

</script>

</body>

</html>

Listing 19-3 creates two parameters placed into a variable called params:

var params = "num1=2&num2=2";

After constructing the request object (requestObj), the parameters are passed as an argu-
ment to the send() method:

requestObj.send(params);

Case Study: Live Searching and Updating
There are many examples of type-ahead, or predictive, searching using JavaScript, such as
the one shown in Chapter 18, “JavaScript Applications.” One example is a form that searches
for email addresses that have been either whitelisted or blacklisted through a spam filter.

The whitelist/blacklist search uses AJAX to import an XML file and provides results based
on input from the administrator. You can easily adapt this application to provide live search
results or live bookmarks. Chapter 20, “A Bit Deeper into AJAX,” uses a portion of that appli-
cation from Chapter 18 to create a live search form, and the next section introduces an adap-
tation of the application to create a live searchable bookmark feed using XML.

I frequently find it necessary to access web browser bookmarks from multiple computers.
With that in mind, here’s an AJAX application that provides a Bookmarks page. The page
manages the bookmarks using an XML file that resides in a central location. The code re-
trieves the file and builds a web page that extracts the bookmarks and provides a search
interface.

360	 Part IV  AJAX and Server-Side Integration

The bookmark application is shown in Figure 19-1. Granted, it’s showing only 3 bookmarks,
but the application works the same with 3 bookmarks or 300, and providing just a few makes
demonstrating bookmarks easier.

Figure 19-1  A v ew of the ve bookmark app cat on.

The search box works by narrowing down the list of viewed bookmarks as a user types text
into the text box. For example, typing the letter m into the text box immediately changes
the pages so that it shows only those bookmarks that begin with the letter m, as depicted in
Figure 19-2.

Figure 19-2  Typ ng the etter m narrows down the d sp ayed bookmarks to those beg nn ng w th m.

Typing more—for example, typing i to make the characters mi—continues to narrow down
the available bookmarks, as shown in Figure 19-3.

	 Chapter 19  A Touch of AJAX	 361

Figure 19-3  Add ng add t ona characters to further narrow down the resu ts.

When a user deletes the text from the text box, the Bookmarks page changes back to its
default (shown in Figure 19-1).

Here’s the XML for this application (see the file bookmark.xml in the companion content):

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<bookmarks xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <bookmark>

 <title>Steve Suehring's Home Page</title>

 <url>http://www.braingia.org/</url>

 </bookmark>

 <bookmark>

 <title>MSDN</title>

 <url>http://msdn.microsoft.com/</url>

 </bookmark>

 <bookmark>

 <title>Microsoft Press</title>

 <url>http://www.microsoft.com/mspress</url>

 </bookmark>

</bookmarks>

The application, along with the webpage, is shown here and in the bookmark.htm file (in the
companion content):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Search</title>

</head>

<body>

<form name="nameform" id="nameform" action="" method="post">

Bookmark Search: <input id="textname" type="text" name="textname">

</form>

<div id="data"></div>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

362	 Part IV  AJAX and Server-Side Integration

function textSearch() {

 var textName = document.getElementById("textname");

 var dataNode = document.getElementById("data");

 while (dataNode.hasChildNodes()) {

 dataNode.removeChild(dataNode.firstChild);

 }

 listName(textName.value);

}

function readyAJAX() {

 try {

 return new XMLHttpRequest();

 } catch(e) {

 try {

 return new ActiveXObject("Msxml2.XMLHTTP");

 } catch(e) {

 try {

 return new ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 return "A newer browser is needed.";

 }

 }

 }

}

function listName(text) {

 var xmlEl = AJAXresponse.getElementsByTagName("bookmark");

 elLength = xmlEl.length;

 for (i = 0; i < elLength; i++) {

 var div = document.createElement("div");

 // Create the row elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 var url = new RegExp("http");

 if (! xmlEl[i].childNodes[j].firstChild.nodeValue.match(url)) {

 var pattern = "^" + text;

 var title = xmlEl[i].childNodes[j].firstChild.nodeValue;

 var nameRegexp = new RegExp(pattern, "i");

 var existDiv = document.getElementById(title);

 if (! existDiv) {

 if (title.match(nameRegexp)) {

 var anchor = document.createElement("a");

 var xmlData =

 document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

 var urls = AJAXresponse.getElementsByTagName("url");

 anchor.setAttribute("href", urls[i].firstChild.nodeValue);

 anchor.appendChild(xmlData);

 div.appendChild(anchor);

 }

 }

 }

 }

	 Chapter 19  A Touch of AJAX	 363

 document.getElementById("data").appendChild(div);

 }

}

var requestObj = readyAJAX();

var url = "http://www.braingia.org/books/javascriptsbs/bookmark.xml";

requestObj.open("GET",url,true);

requestObj.send();

var AJAXresponse;

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 AJAXresponse = requestObj.responseXML;

 listName("");

 } else {

 alert(requestObj.statusText);

 }

 }

}

var textEl = document.getElementById("textname");

EHandler.add(textEl,"keyup", function() { textSearch(); });

</script>

</body>

</html>

The JavaScript portion of the code is broken into several functions, which I discuss shortly.
First, the code brings in the event handler script ehandler.js, which you encountered in
Chapter 11, “JavaScript Events and the Browser”:

<script type="text/javascript" src="ehandler.js"></script>

The HTML for the page consists of only a few lines. Here’s the web form:

<form name="nameform" id="nameform" action="" method="post">

Bookmark Search: <input id="textname" type="text" name="textname">

</form>

And here’s the div that will hold the bookmarks:

<div id="data"></div>

The JavaScript portion of the code declares several functions and executes the following code
within the main block. This code is largely the same as the code you’ve seen throughout this
chapter already: It uses the readyAJAX() function and sends an AJAX request for a bookmark
XML file to the server. When the response is received, the code calls the listName() function.

In addition to the AJAX code, an event handler is attached to the web form’s text box. The
event to be handled is keyup, which detects when a key is pressed and released within the
text box. The code looks like this:

var requestObj = readyAJAX();

364	 Part IV  AJAX and Server-Side Integration

var url = "http://www.braingia.org/books/javascriptsbs/bookmark.xml";

requestObj.open("GET",url,true);

requestObj.send();

var AJAXresponse;

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 AJAXresponse = requestObj.responseXML;

 listName("");

 } else {

 alert(requestObj.statusText);

 }

 }

}

var textEl = document.getElementById("textname");

EHandler.add(textEl,"keyup", function() { textSearch(); });

The event handler that handles key presses in the search form resides in two functions: text​
Search and listName. The textSearch function is responsible for removing bookmarks from
the list. It calls the listName() function.

function textSearch() {

 var textName = document.getElementById("textname");

 var dataNode = document.getElementById("data");

 while (dataNode.hasChildNodes()) {

 dataNode.removeChild(dataNode.firstChild);

 }

 listName(textName.value);

}

Finally, the listName() function contains the code to display only those bookmarks that at
least partially match the text that’s been typed into the text box. If no text is in the text box,
it shows all the bookmarks:

function listName(text) {

 var xmlEl = AJAXresponse.getElementsByTagName("bookmark");

 elLength = xmlEl.length;

 for (i = 0; i < elLength; i++) {

 var div = document.createElement("div");

 // Create the row elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 var url = new RegExp("http");

 if (! xmlEl[i].childNodes[j].firstChild.nodeValue.match(url)) {

 var pattern = "^" + text;

 var title = xmlEl[i].childNodes[j].firstChild.nodeValue;

 var nameRegexp = new RegExp(pattern, "i");

 var existDiv = document.getElementById(title);

 if (! existDiv) {

 if (title.match(nameRegexp)) {

	 Chapter 19  A Touch of AJAX	 365

 var anchor = document.createElement("a");

 var xmlData =

 document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

 var urls = AJAXresponse.getElementsByTagName("url");

 anchor.setAttribute("href", urls[i].firstChild.nodeValue);

 anchor.appendChild(xmlData);

 div.appendChild(anchor);

 }

 }

 }

 }

 document.getElementById("data").appendChild(div);

 }

}

Exercises
	 1.	 Which of the HTTP request methods covered in this chapter is the most secure? Why?

	 2.	 Describe the differences among an XMLHttpRequest request/response using HTML,
XML, and JSON.

	 3.	 Construct a server-side program to return the sum of two numbers that the program
receives as parameters. Call the program using an asynchronous XMLHttpRequest
object.

	 	 367

Chapter 20

A Bit Deeper into AJAX
After reading this chapter, you’ll be able to:

n	 Understand how Asynchronous JavaScript and XML (AJAX) and Cascading Style Sheets
(CSS) can be used together.

n	 Understand more about the relationship between the Document Object Model (DOM),
AJAX, and CSS.

n	 Use AJAX and CSS to create and style a Hypertext Markup Language (HTML) table with
Extensible Markup Language (XML) data.

n	 Create an AJAX-based drop-down text box using CSS.

In the previous chapter, you saw how to use the XMLHttpRequest object to send, receive, and
process requests, and ultimately how to create an AJAX application. In this chapter, you see
how to use CSS to display data retrieved with AJAX.

The relationship between JavaScript and CSS was covered in Chapter 15, “JavaScript and CSS.”
In that chapter, you learned that you can change document styles programmatically using
JavaScript. In Chapter 17, “JavaScript and XML,” you learned how to display XML data as an
HTML table. And in Chapter 19, “A Touch of AJAX,” you saw how to create a live, searchable
bookmarks webpage using some CSS and a lot of the DOM. This chapter shows how you can
use CSS to style the table from Chapter 17 and expand and retool the bookmark application
from Chapter 19, again with the help of CSS and JavaScript.

Along the way, I hope to convey that AJAX is really pretty easy to use. Retrieving and parsing
the information using XMLHttpRequest is the simple part—it’s what you do with that data
that matters. That’s why CSS and the DOM matter! AJAX is where you bring together all the
JavaScript that you’ve learned throughout this book to create larger applications.

Creating an HTML Table with XML and CSS
Chapter 17 presented an example that retrieved XML and used its data as part of an HTML
table, as depicted in Figure 20-1. The code to create that table was developed in Chapter
17 and expanded to show not only the data but also the column headings. The result of the
code at the end of Chapter 17 was as follows:

368	 Part IV  AJAX and Server-Side Integration

Figure 20-1  D sp ay ng XML data n an HTML tab e.

The code from Chapter 17 uses XML methods to obtain the data directly. The next exercise
converts the code to retrieve the XML using XMLHttpRequest. Like the exercise in Chapter 19,
the following exercise requires the XML file to be stored on a web server.

Using XMLHttpRequest to retrieve and display XML data

	 1.	 Use the books.xml file that you created in Chapter 17, or—if you didn’t create one or
didn’t save the file—create a file now called books.xml with the following data (you can
get it from the books.xml file in the companion content). Place this file on the same
web server as the HTML file that you will create in the next step.

<books>

<book>

 <title>JavaScript Step by Step</title>

 <author>Steve Suehring</author>

 <isbn>9780735624498</isbn>

 <publisher>Microsoft Press</publisher>

</book>

<book>

 <title>MySQL Bible</title>

 <author>Steve Suehring</author>

 <isbn>9780764549328</isbn>

 <publisher>Wiley Publishing Inc.</publisher>

</book>

</books>

	 2.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file ajaxbooks.htm in
the Chapter20 sample files folder (in the companion content).

	 3.	 Within ajaxbooks.htm, add the following code shown in boldface type (and in the
ajaxbooks.txt file in the companion content), replacing the TODO comments. Be sure to
replace the Uniform Resource Locator (URL) placeholder YOUR SERVER HERE with the
correct URL for your web server. Note that you’re changing only the function definition
and the first line of the displayData() function from the original version in Chapter 18.

 Chapter 20 A Bit Deeper into AJAX 369

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.

dtd">

<html>

<head>

<title>Booksx</title>

</head>

<body>

<div id="xmldata"></div>

<script type="text/javascript">

function readyAJAX() {

 try {

 return new XMLHttpRequest();

 } catch(e) {

 try {

 return new ActiveXObject('Msxml2.XMLHTTP');

 } catch(e) {

 try {

 return new ActiveXObject('Microsoft.XMLHTTP');

 } catch(e) {

 return "A newer browser is needed.";

 }

 }

 }

}

var requestObj = readyAJAX();

var url = "http://YOUR SERVER HERE/books.xml";

requestObj.open("GET",url,true);

requestObj.send();

var AJAXresponse;

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 AJAXresponse = requestObj.responseXML;

 displayData(AJAXresponse);

 } else {

 alert(requestObj.statusText);

 }

 }

}

function displayData(response) {

 var xmlEl = response.getElementsByTagName("book");

 var table = document.createElement("table");

 table.border = "1";

 var tbody = document.createElement("tbody");

 // Append the body to the table

 table.appendChild(tbody);

 var row = document.createElement("tr");

 // Append the row to the body

 tbody.appendChild(row);

 for (colHead = 0; colHead < xmlEl[0].childNodes.length; colHead++) {

370	 Part IV  AJAX and Server-Side Integration

 if (xmlEl[0].childNodes[colHead].nodeType != 1) {

 continue;

 }

 var tableHead = document.createElement("th");

 var colName = document.createTextNode(xmlEl[0].childNodes[colHead].nodeName);

 tableHead.appendChild(colName);

 row.appendChild(tableHead);

 }

 tbody.appendChild(row);

 // Create table row

 for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData =

 document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

 }

 document.getElementById("xmldata").appendChild(table);

}

</script>

</body>

</html>

	 4.	 View the page in a web browser. You see a page like this:

	 Chapter 20  A Bit Deeper into AJAX	 371

This exercise combined code from each of the last two chapters to show how to retrieve
and display XML data with the xmlHttpRequest object associated with AJAX applications.
Although the original XML application shown in Chapter 18 was converted to use xmlHttp
Request, the table it displays is still rather ugly. This is where CSS styling comes into play.

Styling the Table with CSS
The main function that displays the table in the previous exercise is the displayData() func-
tion. Within this function, you can apply CSS styles to make the table look more like one
you’d see in a modern web application.

Note  The approach to work ng w th sty es n th s chapter makes changes to the sty e attr butes
d rect y w th n the JavaScr pt, but you shou d understand that th s approach s offered for edu-
cat ona purposes on y; t’s not preferred n rea -wor d code because t can make troub eshoot-
ng why a certa n sty e attr bute s app ed to a g ven e ement d fficu t, because nformat on can
change both n CSS and n the JavaScr pt code Another way to work w th CSS, shown n Chapter
22, “An Introduct on to jQuery,” app es sty e changes by a ter ng the CSS sty es app ed to HTML
e ements Th s s the preferred way to work w th CSS n JavaScr pt, because t keeps a separat on
between d sp ay (CSS) and behav or (JavaScr pt code)

Changing Style Attributes with JavaScript
One of the first tasks to accomplish is to remove the border by removing the following line
from near the top of the displayData() function:

table.border = "1";

Within the displayData() function are two primary loops: one to display the column headings
and one to display the data itself. The first loop displays the column headings, and looks like
this:

for (colHead = 0; colHead < xmlEl[0].childNodes.length; colHead++) {

 if (xmlEl[0].childNodes[colHead].nodeType != 1) {

 continue;

 }

 var tableHead = document.createElement("th");

 var colName = document.createTextNode(xmlEl[0].childNodes[colHead].nodeName);

 tableHead.appendChild(colName);

 row.appendChild(tableHead);

}

tbody.appendChild(row);

The second loop, which displays the actual data, looks like this:

for (i = 0; i < xmlEl.length; i++) {

372	 Part IV  AJAX and Server-Side Integration

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData = document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

}

Most of the changes made to the table’s display will be made within these loops. I highlight
the changes as they’re made.

Another item you might want to change is the font. (I’ve always been partial to the Arial font
myself.) You do this using the fontFamily style property in JavaScript. This change must be
made within each of the loops to style all the text in the table with the Arial font. After add-
ing that code, the loops now look like this (note the two new lines in boldface):

for (colHead = 0; colHead < xmlEl[0].childNodes.length; colHead++) {

 if (xmlEl[0].childNodes[colHead].nodeType != 1) {

 continue;

 }

 var tableHead = document.createElement("th");

 var colName = document.createTextNode(xmlEl[0].childNodes[colHead].nodeName);

 tableHead.style.fontFamily = "Arial";

 tableHead.appendChild(colName);

 row.appendChild(tableHead);

}

tbody.appendChild(row);

for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData = document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

 td.style.fontFamily = "Arial";

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

}

	 Chapter 20  A Bit Deeper into AJAX	 373

The results of these changes and the removal of the table border yields a table that looks like
the one shown in Figure 20-2.

Figure 20-2  Beg nn ng to sty e the tab e w th CSS.

Some color would certainly help make the table more readable, especially if several or even
several hundred or more rows of data were shown. Alternating the colors so that every other
row is a slightly different shade, and changing the table heading to an entirely different color,
might also help readability. Here’s what the two loops look like after adding some back-
groundColor style properties. Again, the changes are in boldface.

for (colHead = 0; colHead < xmlEl[0].childNodes.length; colHead++) {

 if (xmlEl[0].childNodes[colHead].nodeType != 1) {

 continue;

 }

 var tableHead = document.createElement("th");

 var colName = document.createTextNode(xmlEl[0].childNodes[colHead].nodeName);

 tableHead.style.fontFamily = "Arial";

 tableHead.style.backgroundColor = "#aaabba";

 tableHead.appendChild(colName);

 row.appendChild(tableHead);

}

tbody.appendChild(row);

for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData = document.createTextNode(xmlEl[i].childNodes[j].firstChild.nodeValue);

 if (i % 2) {

 td.style.backgroundColor = "#aaabba";

 }

374	 Part IV  AJAX and Server-Side Integration

 td.style.fontFamily = "Arial";

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

}

This code uses the modulo operator (%) to shade every other row of the table data with the
light gray background. There are only two data rows in this table, so only the second row
gets the gray shading. Figure 20-3 shows the results after adding the color. You can find the
finished version of this page in the CompletedCode directory in the Chapter20 sample code
for this book.

Figure 20-3  Add ng co or to the tab e us ng CSS.

Creating a Dynamic Drop-Down Box
You can use a variation of the bookmark application shown in Chapter 19 to create a live
drop-down box for any type of textual list data. Sometimes this is known as a suggest-as-
you-type drop-down box, because as you type, the user interface shows commonly entered
values in a drop-down box below the text box, making it easier for users to complete their
entries. Google Suggest is one such application.

Another implementation of this same principle is a drop-down box that shows common
items (such as U.S. states) as the visitor types. The key to this variation is that the subset of
data that can be retrieved to quickly populate the live drop-down box is manageable. For
example, it’s possible to retrieve a subset of states from a list of the 50 U.S. states as a visitor
is typing a query into a text box. In contrast, if you were working with 1,000,000 database
records, retrieving a subset would probably not be possible within a time that still appears
responsive to the end user. As another example, you might use an application like this in a
business to retrieve a list of employees for a company directory.

	 Chapter 20  A Bit Deeper into AJAX	 375

Here’s a demonstration of this application. Using the xmlHttpRequest object, the application
retrieves a list of the 50 states. When a user enters the letter w, the application retrieves all
the states that begin with that letter, as shown in Figure 20-4.

Figure 20-4  Retr ev ng a st of states that beg n w th the etter w.

Moving the mouse over the various states changes the states’ background color, as shown
in Figure 20-5, where I moved the mouse over Wisconsin (the mouse pointer is not visible in
this screenshot).

Figure 20-5 Mov ng the mouse over the states changes the r background co or.

Finally, clicking one of the state names causes that name to get copied into the text box. The
result of this action is shown in Figure 20-6. From here, the form might be submitted, taking
whatever action is appropriate for the application based on the input.

376	 Part IV  AJAX and Server-Side Integration

Figure 20-6 Mov ng a state nto the text box.

This code works the same way as the bookmark application code from Chapter 19, insofar as
the visitor can continue to type to narrow down, or focus, the search to a specific selection.
Consider the case where the visitor typed the letter n. Doing so would reveal the eight
states that begin with the letter n. Typing more—for example, typing the word new—
would narrow that search down to four states, and typing more letters would narrow the
results even more.

The code for this application is shown in Listing 20-1.

Listing 20-1  A search app cat on.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/

strict.dtd">

<html>

<head>

<title>State Search</title>

<script type="text/javascript" src="ehandler.js"></script>

</head>

<body>

<form name="nameform" id="nameform" action="" method="post">

Enter State: <input id="textname" type="text" name="textname">

</form>

<div id="data"></div>

<script type="text/javascript">

function textSearch() {

 var textName = document.getElementById("textname");

 var dataNode = document.getElementById("data");

 while (dataNode.hasChildNodes()) {

 dataNode.removeChild(dataNode.firstChild);

 }

 if (textName.value != "") {

 listName(textName.value);

 }

 Chapter 20 A Bit Deeper into AJAX 377

}

function readyAJAX() {

 try {

 return new XMLHttpRequest();

 } catch(e) {

 try {

 return new ActiveXObject('Msxml2.XMLHTTP');

 } catch(e) {

 try {

 return new ActiveXObject('Microsoft.XMLHTTP');

 } catch(e) {

 return "A newer browser is needed.";

 }

 }

 }

}

function listName(text) {

 var nameList = AJAXresponse.split(",");

 var pattern = "^" + text;

 var nameRegexp = new RegExp(pattern, "i");

 for (var i = 0; i < nameList.length; i++) {

 var existDiv = document.getElementById(nameList[i]);

 if (! existDiv) {

 if (nameList[i].match(nameRegexp)) {

 var displayDiv = document.getElementById("data");

 var newDiv = document.createElement("div");

 if (window.attachEvent) {

 newDiv.attachEvent("onclick",function(e) {

 document.forms["nameform"].textname.value =

 e.srcElement.firstChild.nodeValue;});

 newDiv.attachEvent("onmouseover",function(e) {

 e.srcElement.style.background = "#FFFFFF"; });

 newDiv.attachEvent("onmouseout",function(e) {

 e.srcElement.style.background = "#aaabba"; });

 } else {

 newDiv.addEventListener("click",function () {

 document.forms["nameform"].textname.value =

 this.firstChild.nodeValue; },false);

 newDiv.addEventListener("mouseover",function() {

 this.style.background = "#FFFFFF"; },false);

 newDiv.addEventListener("mouseout",function() {

 this.style.background = "#aaabba"; },false);

 }

 newDiv.setAttribute("id",nameList[i]);

 newDiv.style.background = "#aaabba";

 newDiv.style.color = "#000000";

 newDiv.style.border = "solid 1px";

 newDiv.style.display = "block";

 newDiv.style.width = "175px";

 newDiv.appendChild(document.createTextNode(nameList[i]));

 displayDiv.appendChild(newDiv);

 }

378	 Part IV  AJAX and Server-Side Integration

 }

 }

}

var requestObj = readyAJAX();

var url = "http://YOUR SERVER HERE/statelist.php";

requestObj.open("GET",url,true);

requestObj.send();

var AJAXresponse;

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 AJAXresponse = requestObj.responseText;

 } else {

 alert(requestObj.statusText);

 }

 }

}

var textEl = document.getElementById("textname");

EHandler.add(textEl,"keyup", function() { textSearch(); });

</script>

</body>

</html>

You already saw most of the code in Listing 20-1 in other places throughout this book, but I
explain it again briefly here.

The code retrieves the list of states by calling an external server-based file, statelist.php. This
file returns a simple comma-separated list of states, like this:

Alabama,Alaska,Arizona,California,Colorado,Delaware,Florida,Georgia, ...

The file splits this state list along the comma delimiter and puts the names into an array
called nameList, like this:

var nameList = AJAXresponse.split(",");

In the code are some additions to applications you saw in the last two chapters, to create
small clickable CSS-styled drop-down boxes. That code went into the listName() function that
you saw in Chapter 19. The code applies event listeners and CSS styles to these HTML DIV
elements in the listName function, shown here with the additional code in boldface:

function listName(text) {

 var nameList = AJAXresponse.split(",");

 var pattern = "^" + text;

 var nameRegexp = new RegExp(pattern, "i");

 for (var i = 0; i < nameList.length; i++) {

 var existDiv = document.getElementById(nameList[i]);

	 Chapter 20  A Bit Deeper into AJAX	 379

 if (! existDiv) {

 if (nameList[i].match(nameRegexp)) {

 var displayDiv = document.getElementById("data");

 var newDiv = document.createElement("div");

 if (window.attachEvent) {

 newDiv.attachEvent("onclick",function(e) {

 document.forms["nameform"].textname.value =

 e.srcElement.firstChild.nodeValue;});

 newDiv.attachEvent("onmouseover",function(e) {

 e.srcElement.style.background = "#FFFFFF"; });

 newDiv.attachEvent("onmouseout",function(e) {

 e.srcElement.style.background = "#aaabba"; });

 } else {

 newDiv.addEventListener("click",function () {

 document.forms["nameform"].textname.value =

 this.firstChild.nodeValue; },false);

 newDiv.addEventListener("mouseover",function() {

 this.style.background = "#FFFFFF"; },false);

 newDiv.addEventListener("mouseout",function() {

 this.style.background = "#aaabba"; },false);

 }

 newDiv.setAttribute("id",nameList[i]);

 newDiv.style.background = "#aaabba";

 newDiv.style.color = "#000000";

 newDiv.style.border = "solid 1px";

 newDiv.style.display = "block";

 newDiv.style.width = "175px";

 newDiv.appendChild(document.createTextNode(nameList[i]));

 displayDiv.appendChild(newDiv);

 }

 }

 }

}

Accepting Input from the User and AJAX
The next logical step in developing AJAX applications is to accept input from the user and do
something with that input. Building an AJAX application is all about providing a highly inter-
active application based on user actions. Unfortunately, to do justice to this subject, I would
need to delve into the creation of server-side applications that would handle that input, and
that is beyond the scope of this beginner-level book, which focuses primarily on JavaScript.
With some luck, I’ll write another book on intermediate JavaScript or building JavaScript
applications that will show both the JavaScript and the server aspects of AJAX.

380	 Part IV  AJAX and Server-Side Integration

But I hope that even with this limited coverage, I’ve been able to convey that the building
of AJAX applications is really nothing more than providing friendly, interactive ways for visi-
tors to use applications, and that a large part of this task involves the design around the
JavaScript, not the XMLHttpRequest alone. The XMLHttpRequest object is merely a carrier, or
delivery mechanism, for getting data into the program. The layer on which XMLHttpRequest
operates is well below the presentation layer upon which the page is built. Therefore, users
never see the XMLHttpRequest processing in the background; they see only the design that
you create on the front end of the application.

The remaining two chapters of this book build on everything you ve done so far, but they will
do so with the help of the jQuery JavaScript library.

Exercises
	 1.	 Create a submit event handler for the state example shown in this chapter such that the

state submitted is displayed back to the user when she or he submits the form.

	 2.	 Create an application that uses XMLHttpRequest to return a list of names (such as an
employee directory). You can use either plaintext or XML for the source data.

	 	 381

Part V

jQuery

Chapter 21: An Introduction to JavaScript 	
Libraries and Frameworks

Chapter 22: An Introduction to jQuery

Chapter 23: jQuery Effects and Plug-Ins

	 	 383

Chapter 21

An Introduction to JavaScript
Libraries and Frameworks

After reading this chapter, you'll be able to:

n	 Understand the role of JavaScript programming libraries and frameworks.

n	 Understand how to define your own library.

n	 Understand the role of third-party JavaScript libraries and frameworks and how to find
more information about them.

Understanding Programming Libraries
In programming terms, a library is a grouping of code that provides common or additional
functionality. Typically, libraries consist of one or more files that expose objects and functions.
Within a program, a developer includes or calls the library to use these additional objects
and functions. In this way, JavaScript libraries and frameworks are useful because they offload
the maintenance and development of additional and enhanced functions. They help make
common programming tasks easier and can also aid in smoothing out the differences and
nuances in cross-browser development.

This chapter explores libraries in JavaScript, including the process of defining your own
library, and takes a look at some of the more popular JavaScript libraries and frameworks
available.

Defining Your Own JavaScript Library
Developers working in any language find themselves performing common functions repeat-
edly in many of their coding tasks, so creating a personal library, or grouping, of common
functions that you can use in future projects is helpful.

The event handler script developed in Chapter 11, ehandler.js, shows how to create a library
by creating a namespace for it:

var EHandler = {};

Within that namespace, the EHandler library adds two functions. Here’s the first one:

EHandler.add = ...

384	 Part V  jQuery

And here’s the second:

EHandler.remove = ...

Although short, EHandler is a true library. As you can see, libraries don’t have to be large to
be useful. You’ve seen numerous examples of using EHandler earlier in this book. With the
EHandler library concept in mind, in this next example, you create your own library.

Creating a library

	 1.	 Using Microsoft Visual Studio, Eclipse, or the editor of your choice, open the library.js
file, which you can find in the Chapter21 folder of this book s companion content.

	 2.	 Within library.js, add the following code (replacing the TODO comment) to create a
namespace, and then add a function:

var MyLibrary = {};

MyLibrary.sendAlert = function(mesg, elm) {

 alert(mesg);

};

	 3.	 Save the file and close it.

	 4.	 Open the file librarypage.htm. Within librarypage.htm, add the boldface code shown
here (to replace of the TODO comment):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.

dtd">

<html>

<head>

<title>A Basic Example</title>

<script type="text/javascript" src="library.js"></script>

</head>

<body>

<script type="text/javascript">

MyLibrary.sendAlert("hello, this is the message");

</script>

</body>

</html>

	 5.	 Load the page librarypage.htm in a web browser. You should receive an alert like this:

	 Chapter 21  An Introduction to JavaScript Libraries and Frameworks	 385

Troubleshooting  If you don t rece ve an a ert ke the one just shown, be sure you
have spec fied the path to the brary js fi e correct y The examp e shown n the preced ng
brarypage htm code assumes that the JavaScr pt fi e brary js s n the same d rectory as

the HTML fi e

Take care when defining and using your own libraries so that you don’t overlap or collide
with existing functions and reserved words from the ECMA-262 specification. Additionally, if
you use an external library or framework such as jQuery or YUI, you need to make sure that
your library doesn’t collide with the naming conventions used for those.

Looking at Popular JavaScript Libraries and Frameworks
There are numerous publicly available libraries and frameworks for JavaScript. Their goal is to
take difficult tasks and make them easier for programmers developing JavaScript-centric web
applications.

Web developers spend a great deal of time trying to make pages look and act the same way
across browsers. A significant advantage to using many JavaScript libraries or frameworks
is that they remove the cross-browser compatibility headaches. All the popular JavaScript
libraries and frameworks include code to make their respective functions work across all the
browsers they support.

jQuery
jQuery provides a rich feature set, powerful options, extensibility, and excellent community
support. Using jQuery, which is contained in a single JavaScript file, you can add effects to your
web pages, enhance usability, and make processing of data with AJAX easier. Additionally,
Microsoft ships jQuery with Visual Studio 2010. Chapter 22, “An Introduction to jQuery,” and
Chapter 23, “jQuery Effects and Plug-Ins,” examine jQuery in greater detail. You can find
more information about jQuery at http://jquery.com.

Yahoo! User Interface
Yahoo! User Interface (YUI) provides both JavaScript and Cascading Style Sheets (CSS), which
simplifies developing web applications. Like jQuery, YUI includes features for enhancing usabil-
ity and improving the web application. As an added bonus, YUI s documentation is excellent.
You can find more information about YUI at http://developer.yahoo.com/yui/.

386	 Part V  jQuery

MooTools
MooTools is a very small, highly optimized library for JavaScript. MooTools differs from YUI
and jQuery because it concentrates on optimizing JavaScript processing, whereas YUI and
jQuery focus on effects, CSS, and direct user-experience interactions. That’s definitely not to
say that MooTools doesn’t have effects—MooTools also offers many of the same effects (such
as an accordion and a slider) that you find in YUI and jQuery. MooTools is recommended for
intermediate to advanced JavaScript programmers and is available from http://mootools.net/.

Other Libraries
There are numerous other libraries and frameworks available for JavaScript—too many
to cover, or even mention in this book. As a starting point, see http://en.wikipedia.org
/wiki/Comparison of JavaScript frameworks to find out more information about JavaScript
frameworks.

Exercises
	 1.	 Examine each of the libraries and frameworks shown in this chapter. Which do you

think is easiest for the new JavaScript programmer to learn? Why?

	 2.	 Create your own JavaScript library with an external JavaScript file. Include that file in an
HTML page and call it.

	 	 387

Chapter 22

An Introduction to jQuery
After reading this chapter, you'll be able to:

n Understand how to include jQuery in your HTML .

n Understand important jQuery concepts and syntax .

n Use jQuery with your webpages .

jQuery	Primer
jQuery is a popular and easy-to-use JavaScript framework . jQuery makes difficult JavaScript
tasks easy, often by taking the pain out of cross-browser JavaScript .

The entire jQuery library consists of only a single JavaScript file, which simplifies its inclusion
in your JavaScript . jQuery syntax is also easy to learn; it uses a simple namespace and con-
sistent functionality . Used together with the jQuery User Interface (UI) add-on (covered in
Chapter 23, “jQuery Effects and Plug-Ins”), you can create powerful, highly interactive web
applications .

This chapter provides an introduction to jQuery, including how to download and use it in
your JavaScript .

Using	jQuery
You can obtain jQuery from http://www.jquery.com/ . In this section, you’ll see how to down-
load jQuery and integrate it into a webpage .

The Two jQuery Downloads
On the jQuery home page, two downloads are available: a production version and a devel-
opment version . Unless you’re planning to develop jQuery plug-ins, or need to look at the
internals of jQuery, you should download and use the minified production version .

As another viable option, especially for working through this chapter, you could use a con-
tent delivery network (CDN) to access a hosted version of jQuery . Google hosts jQuery and
other libraries through its API website . This means that you can include jQuery in your web-
pages and JavaScript programs without having to host the file locally on your server . See
http://code.google.com/apis/libraries/devguide.html for more information .

388	 Part V  jQuery

Note  For a most a scenar os n wh ch you are work ng w th jQuery, I recommend down oad ng
and host ng the jQuery fi e oca y Us ng the oca vers on can be faster and more re ab e than
us ng the CDN vers on For examp e, f you use a CDN-hosted vers on and the CDN server goes
down, anyth ng on your s te that uses the brary won’t work! However, for deve opment tasks n
th s chapter, us ng a CDN-hosted fi e s perfect y acceptab e

Performing the exercises and following along in this chapter requires that you have jQuery
downloaded to your local development computer or are connected to it from a CDN.

Including jQuery
You include jQuery in a webpage in the same manner as you would any other external
JavaScript file—with a <script> tag pointing to the source file. Consider the code in Listing
22-1.

Listing 22-1  nc ud ng jQuery n a webpage.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/

strict.dtd">

<html>

<head>

<title>Adding jQuery</title>

<script type="text/javascript" src="jquery-1.4.3.min.js"></script>

</head>

<body>

</body>

</html>

Now that you have jQuery downloaded or referenced from a CDN site, and you’ve looked at
the preceding example showing how to include jQuery in a file, it’s time to move into learn-
ing jQuery syntax.

Important  Vers on 1 4 3 s the atest as of th s wr t ng However, that vers on w a most certa n-
y be d fferent by the t me you read th s, so you’ need to change the src attr bute appropr ate y
for the vers on of the jQuery scr pt that you down oad

Basic jQuery Syntax
When you include the jQuery library in a page, jQuery adds a function called jquery(). You
might think that you’d make all calls to jQuery functions through this jquery() function inter-
face, but there’s a shortcut to the jquery() function: $(). Rather than typing jquery each time,
you access the jQuery library using a dollar sign followed by parentheses, as shown in the
examples in Table 22-1.

	 Chapter 22  An Introduction to jQuery	 389

Table 22-1 A Few jQuery Selectors

Syntax Description
$(“a”) 	A <a> e ements n the document.

$(document) 	The ent re document, frequent y used to access the ready() funct on
shown ater n th s chapter

$(“#elementID”) 	The e ement dent fied by ID elementID

$(“.className”) 	The e ement or e ements that have the className c ass

You see more selectors and related functions later in this chapter.

Like JavaScript code, jQuery statements should end with a semi-colon. It is also worth noting
that you can use either single or double quotation marks as selectors within jQuery. For example,
both of these statements are equally valid:

$("a")

$('a')

When you see examples of jQuery usage in the real world (not that this book isn’t in the real
world), both single and double quotation marks are used. Examples throughout this chapter
use a mix of the two to get you familiar with seeing both cases; however, in your real-world
programming, it’s best to choose one style and stick with it.

Connecting jQuery to the Load Event
One of the most common ways to work with jQuery is by connecting to elements during
the load (or onload) event of the page. (This chapter discusses events and functions in more
detail later.) In jQuery, you do this through the .ready() utility function of the document
element.

Recall from the brief example shown in the previous section that jQuery accesses elements
with the $() syntax. Keeping that in mind, you can access the document element like this:

$(document)

And you can then access the ready() function like this:

$(document).ready()

The following exercise requires that you either have jQuery downloaded to your local devel-
opment computer or that you use a CDN. The example shows version 1.4.3 of jQuery, but this
version number will likely be different when you perform the exercise.

390	 Part V  jQuery

Using Document Ready

	 1.	 Using Microsoft Visual Studio, Eclipse, or another editor, edit the file docready.html in
the Chapter22 sample files folder (in the companion content).

	 2.	 Within that file, add the following code shown in boldface in place of the TODO
comment:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Document Ready</title>

<script type="text/javascript" src="jquery-1.4.3.min.js"></script>

</head>

<body>

<script type="text/javascript">

$(document).ready(alert('hi'));

</script>

</body>

</html>

	 3.	 Save the file and view the page in a web browser. You’ll see an alert like this one:

The code in this step-by-step exercise combines jQuery through the $(document).ready()
function and also regular, plain old JavaScript, represented by the alert() function in this ex-
ample. This mixture of jQuery and JavaScript is an important concept to understand: you use
jQuery to supplement normal JavaScript. jQuery makes many of the difficult and sometimes
mundane tasks easy—so easy, in fact, that you can spend your time building features rather
than worrying about cross-browser nuances.

The $(document).ready() function removes the need for you to use the browser’s load event
or to insert a function call into the load event. With $(document).ready(), all the elements of
the Document Object Model (DOM) are available before the .ready() function.

Tip  The $(document).ready() funct on s centra to much of the programm ng that you do w th
jQuery

	 Chapter 22  An Introduction to jQuery	 391

Using Selectors
Selectors are key to working with jQuery and the DOM. You use selectors to identify and
group the elements on which a jQuery function is executed. As shown in Table 22-1, you use
selectors to gather all the elements of a certain tag, of a certain ID, or with a certain class
applied to them. You can also use selectors in much more powerful ways, such as to select a
specified number of elements; or to select only elements with a particular ancestry, for example,
only those <p> tags that follow a <div> tag. This section introduces selectors in more detail.

Tip  Selectors and the way they work n jQuery are based on se ectors n CSS If you are comfort-
ab e w th us ng them n CSS (d scussed n Chapter 15, “JavaScr pt and CSS”), you w fee r ght at
home w th th s mode

Selecting Elements by ID
The example in Table 22-1 showed the general syntax for selecting an element by its ID
attribute:

$("#elementID")

For example, consider this bit of HTML:

Link

With normal JavaScript, you access this element like so:

getElementById("linkOne")

With jQuery, you access the element using this:

$("#linkOne")

Selecting Elements by Class
You select elements by class by prefixing a dot (.) to the class name. The syntax is this:

$(".className")

For example, here’s a div with a class applied:

<div class="specialClass">

392	 Part V  jQuery

You would access that element through jQuery like this:

$(".specialClass")

Bear in mind that you might not be accessing a single element; the class selector accesses
all elements for which the specified class is applied. In other words, if several elements in the
page have the "specialClass" class applied, jQuery accesses all of them using the $(".special-
Class") selector. You see more on this later when working with functions that iterate through
each element retrieved with such a selector.

Selecting Elements by Type
You can also use selectors to access elements by type, such as all <div> elements, all <a> ele-
ments, and so on. For example, you would access all <div> elements in a document like this:

$('div')

Similarly, to access all the <a> elements, you would write:

$('a')

Using a type selector provides access to all the elements of the specified type on a page. Like
the class selector, type selectors can return multiple elements.

Selecting Elements by Hierarchy
As mentioned earlier, you can select elements by their position in relation to other elements
on the page. For example, to select all the <a> elements that are within <div> elements, you
use this syntax:

$("div a")

You can get more specific than that as well. For example, if you want all the anchors that fol-
lowed only a specific div, you combine the type selector with the ID selector syntax. Consider
this HTML:

<div id="leftNav">

Link 1

Link 2

</div>

Here’s the jQuery selector syntax to retrieve the two anchor elements within the leftNav div:

$("#leftNav a")

More generically, if you want only the direct descendants of an element, use the greater-than
sign:

	 Chapter 22  An Introduction to jQuery	 393

$("div > p")

This syntax yields all the <p> elements that are direct descendents of a div but does not
include any <p> elements within the selected <p> elements.

You can also choose the nth child in a set with the :nth-child() selector. This example chooses
the third child:

$("p:nth-child(3)")

Several other hierarchical selectors exist. You can find more in the jQuery selector reference
documentation at http://api.jquery.com/category/selectors/.

Selecting Elements by Position
As you’ve seen, the selectors in jQuery are greedy. For example, the $('a') syntax selects all
anchor tags. jQuery offers several ways to select more specific elements within a group. One
such method is to use the first and last selectors. The following code selects the first <p>
within the page:

$("p:first")

Likewise, the last element is selected like this:

$("p:last")

You can also select elements by their direct position. As another example, consider this
HTML:

<p>First P</p>

<p>Second P</p>

<p>Third P</p>

To select the second <p> element, you use this syntax:

$("p")[1]

Note that the array index begins with 0 for this type of selector, so the first element is index
0, the second is index 1, and so on. Using this syntax is a little dangerous because it relies on
the strict positioning of the elements within the hierarchy. If someone adds another <p> tag
to the page before the element you’re trying to select, the addition causes the array index to
change, so the selector chooses the wrong element. When possible, it’s better to use an ID
selector to choose an individual or specific element than to rely on an element’s position.

An alternative way of selecting by index is to use the :eq syntax. For example, to choose the
third paragraph, you could write:

$("p:eq(3)")

394	 Part V  jQuery

Finally, another sometimes useful set of positional selectors are even and odd, which select
every other element in a set:

$("p:even")

The even and odd selectors are quite helpful when working with tabular data to alternate
row colors. Listing 22-2 shows an example that uses the odd selector to differentiate the
background color of alternating rows in a table.

Note  The code from L st ng 22-2 uses two tems that haven’t yet been forma y ntroduced a
user-defined funct on and the .css() funct on Don’t worry about that now You exam ne each of
these tems n more deta ater n the chapter

Listing 22-2  Tabu ar data and jQuery.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.

dtd">

<html>

<head>

<title>Table Test</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

</head>

<body>

<table>

 <tr>

 <td>Row 1 Column 1 of the table</td>

 <td>Row 1 Column 2 of the table</td>

 </tr>

 <tr>

 <td>Row 2 Column 1 of the table</td>

 <td>Row 2 Column 2 of the table</td>

 </tr>

 <tr>

 <td>Row 3 Column 1 of the table</td>

 <td>Row 3 Column 2 of the table</td>

 </tr>

 <tr>

 <td>Row 4 Column 1 of the table</td>

 <td>Row 4 Column 2 of the table</td>

 </tr>

 <tr>

 <td>Row 5 Column 1 of the table</td>

 <td>Row 5 Column 2 of the table</td>

 </tr>

 <tr>

 <td>Row 6 Column 1 of the table</td>

 <td>Row 6 Column 2 of the table</td>

 </tr>

</table>

	 Chapter 22  An Introduction to jQuery	 395

<script type="text/javascript">

$(document).ready(function() {

 $('tr:odd').css("background-color", "#abacab");

});

</script>

</body>

</html>

This main portion of this code is contained in the JavaScript section within the body of the
HTML:

$(document).ready(function() {

 $('tr:odd').css("background-color", "#abacab");

});

The code uses the $(document).ready() function along with the :odd selector to set the back-
ground color to hexadecimal #abacab—a light gray color. Figure 22-1 shows an example of
the output.

Figure 22-1  A tab e co or zed w th the he p of jQuery.

You’ve seen some of the most common positional selectors, but there are many more positional
selectors available. Refer to http://api.jquery.com/category/selectors/ for more information.

396	 Part V  jQuery

Selecting Elements by Attribute
As you might suspect from the class selector you’ve already seen, jQuery lets you select
elements that merely contain an attribute or those that contain an attribute with a specific
value. For example, to select all images that have an alt attribute, you write this:

$("img[alt]")

Selecting only images that have an alt attribute set to a certain value looks like this:

$("img[alt='alternate text']")

The preceding code selects an image only if the alt text is the word alternate text. Note the
use of alternating single and double quotation marks within this example. The selector is
wrapped in double quotation marks whereas the internal alt attribute selector is wrapped in
single quotation marks, but the examples could just as easily have been in the reverse, single
quotation marks used on the img selector and double quotation marks used on the alt attri-
bute selector:

$('img[alt="alternate text"]')

You could also use the same quotation mark scheme for both, but if you do that, you need to
escape the internal quotation marks, as follows:

$("img[alt=\"alternate text\"]")

It’s important to note that this type of selector expects an exact match. In this example, the
alt attribute needs to be the string "alternate text". Any variation of that, such as "alternate
text 2" or " alternate text " would not match.

jQuery includes wildcard selectors that don’t require an exact match on attributes. Consider
the examples in Table 22-2.

Table 22-2 Attribute Selector Matching

Syntax Description
attribute*=value Se ects e ements that conta n the attr bute for wh ch the attr bute va ue

conta ns the spec fied va ue as a substr ng

attribute~=value Se ects e ements that conta n the attr bute for wh ch the attr bute va ue
conta ns the spec fied va ue as a who e word

attribute!=value Se ects e ements that e ther do not conta n the attr bute or for wh ch the
attr bute va ue does not match the spec fied va ue

attribute$=value 	Se ects e ements that conta n the spec fied attr bute for wh ch the attr -
bute’s va ue ends w th the spec fied str ng

attribute^=value 	Se ects e ements that conta n the attr bute for wh ch the attr bute’s va ue
beg ns w th the spec fied str ng

	 Chapter 22  An Introduction to jQuery	 397

Selecting Form Elements
jQuery contains native selectors related to web forms. Table 22-3 lists some of these selec-
tors, some of which are used in remainder of this chapter.

Table 22-3  Form-related Selectors

Selector Description
:checkbox 	Se ects a check boxes

:checked 	Se ects a e ements that are checked, such as check boxes

:input 	Se ects a nput e ements on a page

:password 	Se ects a password nputs

:radio 	Se ects a rad o button nputs

:reset 	Se ects a nput types of reset

:selected 	Se ects a e ements that are current y se ected

:submit 	Se ects a nput types of submit

:text 	Se ects a nput types of text

More Selectors
There are many more selectors in jQuery, such as those that select all hidden elements
(:hidden) or all visible elements (:visible) as well as enabled elements, disabled elements, and
others. See http://api.jquery.com/category/selectors/ for a complete and up-to-date list of
selectors in jQuery.

Tip  Rather than dev s ng a comp ex and frag e se ector syntax to get at a certa n e ement, refer
to the jQuery se ector reference (http://api.jquery.com/category/selectors/) to see whether some-
one has a ready so ved the se ector prob em

Functions
So far, you’ve seen a lot of examples that select elements with jQuery, but only a couple of
examples that show what you can do with those elements after selecting them. jQuery uses
functions to perform actions on selected elements. Functions can be built-in to jQuery or
user-defined. You almost always end up using both at the same time.

398	 Part V  jQuery

Traversing the DOM
The nature of programming on the web using JavaScript and now jQuery frequently requires
looping or iterating through several elements—for example, the .each() function takes a list
of selected elements and iterates over each of them, doing something (or nothing) to each as
it loops through the list. jQuery contains numerous functions for looping and iterating. This
process is known in jQuery parlance as traversing. You can find more information about the
traversing-related functions at http://api.jquery.com/category/traversing/.

When using traversal functions, you almost always do so with the help of a user-defined
wrapper function along with the $(this) selector. Like the this keyword in object-oriented
programming, the $(this) selector refers to the current object—in this case, the item currently
being traversed.

An example might be useful here. The following HTML builds a standings page for a fictitious
volleyball league:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Iteration Test</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

</head>

<body>

<table>

 <th>Team Name</th>

 <th>W-L Record</th>

 <th>Win Percentage</th>

 <tr>

 <td>Team 1</td>

 <td>12-8</td>

 <td class="percentage">.600</td>

 </tr>

 <tr>

 <td>Team 5</td>

 <td>11-9</td>

 <td class="percentage">.550</td>

 </tr>

 <tr>

 <td>Team 4</td>

 <td>10-10</td>

 <td class="percentage">.500</td>

 </tr>

 <tr>

 <td>Team 2</td>

 <td>9-11</td>

 <td class="percentage">.450</td>

 </tr>

 <tr>

 <td>Team 6</td>

 <td>6-14</td>

 <td class="percentage">.300</td>

	 Chapter 22  An Introduction to jQuery	 399

 </tr>

 <tr>

 <td>Team 3</td>

 <td>2-18</td>

 <td class="percentage">.100</td>

 </tr>

</table>

<script type="text/javascript">

$(document).ready(function() {

 $('tr:odd').css("background-color", "#abacab");

});

</script>

</body>

</html>

When viewed in a web browser, the page looks like Figure 22-2.

Figure 22-2  Stand ngs page for a fict t ous vo eyba eague.

This example iterates through all the elements that contain a class attribute matching
percentage—a class that’s applied to the cells in the Win/Loss Percentage column in the
table. For any team whose Win/Loss percentage is at or above .500 (meaning they’ve won
at least half of their games), this example applies a boldface font to their field. You can
accomplish this with the following jQuery code, added just below the other jQuery code
already in the page:

$('.percentage').each(function() {

 if ($(this).text() >= .5) {

 $(this).css('font-weight', 'bold');

 }

});

400 Part V jQuery

This code uses a selector to gather all the elements that have the percentage class applied to
them . It then accesses each of these elements using the .each() function in jQuery . Within the
.each() function, a user-defined function performs a conditional to determine whether the
value in the Win Percentage column is greater than or equal to .5 . If it is, the code calls the
.css() function to add a font-weight property set to bold for that element . After adding this
code to the page, the result looks like Listing 22-3 .

LISTING	22-3	 Add ng jQuery to the vo eyba eague page .

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.

dtd">

<html>

<head>

<title>Iteration Test</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

</head>

<body>

<table>

 <th>Team Name</th>

 <th>W-L Record</th>

 <th>Win Percentage</th>

 <tr>

 <td>Team 1</td>

 <td>12-8</td>

 <td class="percentage">.600</td>

 </tr>

 <tr>

 <td>Team 5</td>

 <td>11-9</td>

 <td class="percentage">.550</td>

 </tr>

 <tr>

 <td>Team 4</td>

 <td>10-10</td>

 <td class="percentage">.500</td>

 </tr>

 <tr>

 <td>Team 2</td>

 <td>9-11</td>

 <td class="percentage">.450</td>

 </tr>

 <tr>

 <td>Team 6</td>

 <td>6-14</td>

 <td class="percentage">.300</td>

 </tr>

 <tr>

 <td>Team 3</td>

 <td>2-18</td>

 <td class="percentage">.100</td>

 </tr>

</table>

	 Chapter 22  An Introduction to jQuery	 401

<script type="text/javascript">

$(document).ready(function() {

 $('tr:odd').css("background-color", "#abacab");

 $('.percentage').each(function() {

 if ($(this).text() >= .5) {

 $(this).css('font-weight', 'bold');

 }

 });

});

</script>

</body>

</html>

When you view this page in a browser, you see that the Win Percentage column is now bold-
face for those teams who have won at least half of their games, as depicted in Figure 22-3.

Figure 22-3  The W n Percentage co umn s now bo dface w th the he p of jQuery.

Looking at the output from Figure 22-3, you see that it would be even nicer to apply the
boldface font weight to the entire table row rather than to just the Win Percentage column.
Doing that might seem difficult, because logically the code is already past that HTML table
row by the time the test is applied to find out the win percentage. Fortunately, jQuery has a
function that can help: the .parent() function. (Actually, there are several ways to accomplish
this. The .parent() function is just one way.)

Applying the parent() function essentially moves up the DOM tree to find the <tr> tag that
encloses this particular <td> element. By applying the CSS style change to the <tr> element,
you can make the entire row boldface. The new code looks like this, with the change high-
lighted in boldface:

402	 Part V  jQuery

 $('.percentage').each(function() {

 if ($(this).text() >= .5) {

 $(this).parent().css('font-weight', 'bold');

 }

 });

When added to the code from Listing 22-3, the output becomes similar to that in Figure
22-4.

Figure 22-4  App y ng CSS sty e at the tab e row eve .

Note  Th s rev sed code s ava ab e n the st ng22-4 htm fi e n the compan on content

The use of the .parent() function introduces a new concept called chaining. Chaining is a
powerful construct in jQuery because it enables additional levels of selection as well as multilevel
application of functions. In this example, the $(this) selector is chained to the .parent() func-
tion, which further selects the parent of $(this). Only then does the code execute the .css()
function.

With the power of chaining comes a bit of danger. It’s quite possible to chain your way into
difficult-to-read and difficult-to-maintain code. In addition, chaining can create fragile code
when the elements in a chained selector change. Chaining is powerful—and I recommend
using it when possible—but not at the expense of readability or maintainability.

The examples shown so far in the chapter have all accessed and changed the CSS directly,
using JavaScript. As stated in Chapter 15, changing the style or presentational aspects of a
webpage through JavaScript is not recommended. It’s better practice to apply or remove

	 Chapter 22  An Introduction to jQuery	 403

styles through CSS rather than change attributes directly. Several methods exist to work with
CSS style classes using jQuery, including .hasClass(), .addClass(), .removeClass(), and .toggle-
Class(). See http://api.jquery.com/category/css/ for more information about working with
classes by using these and other functions.

Working with Attributes
In addition to the class-related attribute functions, jQuery has functions to work with attri-
butes of the DOM. The most generic of these is the .attr() function, although others, such as
.html() and .val(), are useful as well. This section looks at the .attr() function, saving .html(),
.val(), and others for a later section.

You use the .attr() function to both retrieve and set attributes. For example, you can both
retrieve and set an image’s alt attribute using this syntax:

// Get the alt attribute:

$("#myImageID").attr("alt")

// Set the alt attribute:

$("#myImageID").attr("alt", "new text")

Note  Retr ev ng the va ue of the e ement before sett ng t s unnecessary

Changing Text and HTML
You can completely rewrite a page using functions such as .text(), and .val(). Of course, just
because it’s possible doesn’t mean it’s a good idea. However, you sometimes find that you
need to rewrite portions of HTML within a page or change text or values.

The .html() function retrieves or changes the entire HTML within a selected element. For
example, consider this HTML:

<div id="myDiv">Here is a div, it's quite nice</div>

And here’s the jQuery:

$("#myDiv").html('This is the new content of the div');

The outcome of this bit of jQuery is that the <div> identified by myDiv would now contain a
 element with new text in it, as shown in the code example. This is a rather simplistic
example, but imagine if <div> contained an entire content section. Using jQuery, you can
essentially rewrite that entire section, HTML and all.

Like the .html() function, the text() function supports both retrieval and setting of the text
within a selected element. Unlike HTML, the .text() function changes only the text, so it’s not
possible to alter the HTML within the selected element.

404	 Part V  jQuery

<div id="myDiv">Here is a div, it's quite nice</div>

$("#myDiv").text('This is the new content of the div');

In the preceding example, only the text changed; the code didn’t add a span or apply styling.

Inserting Elements
You can easily use jQuery to add elements to a page. Two primary functions for doing this
are the :after() and :before() functions. As their names suggest, they add elements either after
or before a selected element, respectively.

For example, here’s that div again:

<div id="myDiv">Here is a div, it's quite nice</div>

And here’s some jQuery that inserts another div before it:

$("#myDiv").before("<div>This is a new div</div>");

The :after() function works in a similar fashion:

$("#myDiv").after("<div>This is a new div, it appears after myDiv</div>");

When run, the page containing this code would have three <div> elements:

<div>This is a new div</div>

<div id="myDiv">Here is a div, it's quite nice</div>

<div>This is a new div, it appears after myDiv</div>

The examples shown insert additional <div> elements—but of course you could use any valid
element within these functions.

Callback Functions
Sometimes you need to run a function when another function or part of a function com-
pletes, a construct called a callback function. A callback function executes after its parent
function completes. jQuery uses of callback functions heavily, especially in AJAX. You already
saw an example of a callback function when iterating using the .each() function.

For more information about callback functions, see
http://docs.jquery.com/Tutorials:How jQuery Works.

You see examples of callback functions used throughout the remainder of this chapter. For
those of you who are beginner or intermediate JavaScript programmers, it s important that
you don’t over think callback functions. They’re merely a grouping of code that gets called
within another function.

	 Chapter 22  An Introduction to jQuery	 405

Events
You ve now seen several examples of selectors and scratched the surface of functions in
jQuery. The final piece of your initial look at jQuery involves events. Just like the event han-
dling you already saw in JavaScript, jQuery enables your programs to respond to mouse
clicks, form submissions, keystrokes, and more. Unlike JavaScript, cross-browser event han-
dling in jQuery is quite easy. jQuery thrives in a cross-browser environment. This is especially
true in event handling, which saves you the hassle of trying to figure out how each browser
will respond to certain functions.

Binding and Unbinding
The .bind() function connects an event handler to an event, such as a mouse click:

.bind(event, data, handler)

In this instance, event is the event to which you want to respond, data is an optional object
containing additional data to be passed into the event handler, and handler is the function
that you want to run in response to this event.

For example:

A link

$(“#myLink”).bind(“click”, function() {

alert(“clicked the link”);

});

The result of this code is that after the click event is captured for the anchor tag, the page
displays an alert. Notice that this example didn’t use the optional data parameter within the
call to .bind().

You can bind the following events with the .bind() function:

n	 beforeunload n	 hover n	 mouseout
n	 blur n	 keydown n	 mouseover
n	 change n	 keypress n	 mouseup
n	 click n	 keyup n	 resize
n	 dblclick n	 load n	 scroll
n	 error n	 mousedown n	 select
n	 focus n	 mouseenter n	 submit
n	 focusin n	 mouseleave n	 toggle
n	 focusout n	 mousemove n	 unload

406	 Part V  jQuery

In previous chapters, you captured events using the ehandler.js script developed in Chapter
11, “JavaScript Events and the Browser.” The ehandler.js script provided a somewhat cross-
browser–capable generic event handler. That’s essentially what jQuery’s .bind() function is
doing. The difference is that jQuery’s .bind() function is much better at cross-browser event
handling and much more powerful than the ehandler.js script.

Although you can use .bind() for event handling, jQuery also provides shortcut functions that
perform the same way as .bind(). Instead of writing .bind(“click”, function())… you can simply
write .click(function()…. For example, you could rewrite the earlier .bind() example as:

$(“#myLink”).click(function() {

alert(“clicked the link”);

});

Not only can you respond to events such as clicking a link, but you can also trigger events.
For example, consider the code in Listing 22-5:

Listing 22-5  Respond ng to events.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Trigger Test</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

</head>

<body>

<div id="myDiv">

Here is some text.

It goes inside this div

</div>

<p>

Steve Suehring

</p>

<script type="text/javascript">

$(document).ready(function() {

$('#braingiaLink').click(function() {

 alert("hello");

 return true;

});

$('#myDiv').click(function() {

 $('#braingiaLink').click();

});

});

</script>

</body>

</html>

	 Chapter 22  An Introduction to jQuery	 407

When this page is loaded into a web browser, clicking anywhere within the <div> triggers
the click event for the anchor as if you had clicked the anchor itself.

To stop responding to events, you can unbind them using the .unbind() function, which
accepts two arguments:

.unbind(event, function)

The event argument is the event you want to stop responding to, whereas the function argu-
ment is the function currently bound to the event.

Note  You can b nd mu t p e event hand ers to the same event by ca ng .bind() mu t p e t mes
for that event

Mouse Events and Hover
You already saw how to bind and handle the click event in the preceding examples, but you
can also work with mouse events such as mouseover and mouseout. One fun thing to do is to
make items disappear when a user moves the mouse over them (although doing so can lead
to user frustration, so you shouldn’t use it on a live site). Listing 22-6 shows some code that
makes an anchor disappear when the mouse moves over its containing paragraph.

Listing 22-6 Work ng w th mouse events.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Trigger Test</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<style type="text/css">

#braingiaLink {

 border: solid 1px black;

 padding: 3px;

}

#wrapperP {

 padding: 50px;

}

</style>

</head>

<body>

<div id="myDiv">

Here is some text.

It goes inside this div

</div>

<p id="wrapperP">

Steve Suehring

</p>

408	 Part V  jQuery

<script type="text/javascript">

$(document).ready(function() {

$('#braingiaLink').click(function() {

 alert("hello");

 return true;

});

$('#myDiv').click(function() {

 $('#braingiaLink').click();

});

$('#wrapperP').mouseover(function() {

 $('#braingiaLink').hide();

});

$('#wrapperP').mouseout(function() {

 $('#braingiaLink').show();

});

});

</script>

</body>

</html>

The keys to this code are the .mouseover() and .mouseout() event handlers, which in turn use
two additional jQuery functions, .hide() and .show(). The .mouseover() and .mouseout() events
are connected to the paragraph with ID wrapperP. When the mouse enters this paragraph,
the anchor identified by braingiaLink disappears, only to reappear when the mouse leaves
the paragraph area. It s worth noting that the link can still be activated using keyboard navi-
gation. Always keep in mind that there s more than one way around a webpage.

jQuery also has a .hover() function that performs much like the .mouseover() and .mouseout()
events. See http://api.jquery.com/hover/ for more information about the .hover() function.

Many More Event Handlers
As the list earlier shows, there are numerous other event handlers in jQuery—too many to
cover in a single introductory chapter on jQuery. I recommend the excellent documentation
on jQuery events available at http://api.jquery.com/category/events/.

	 Chapter 22  An Introduction to jQuery	 409

AJAX and jQuery
The previous two chapters showed how to write and use AJAX. As you might expect after
reading the previous sections of this chapter, jQuery has its own methods for working with
AJAX. And just like many other JavaScript-related tasks, jQuery makes using AJAX easier, too.
This section shows how to use AJAX with jQuery.

jQuery offers several functions for working with data from and sending data to a server.
Among these are the .load() function, the .post() function, and the .get() function. jQuery
also includes a specific AJAX function, aptly titled .ajax().

Using the .ajax() function, you can set several parameters, including which HTTP method the
call should use (GET or POST), the timeout, and what to do when an error occurs (as well as
when the code succeeds, of course).

More Information  See http://api.jquery.com/jQuery.ajax/ for a fu st of the ava ab e param-
eters for use w th the ajax() funct on

The basic syntax of the ajax() function is:

$.ajax({

 parameter: value

});

You can pass a number of parameter: value pairs to the .ajax() function, but you typically
specify the method, the URL, and a callback function. It’s also quite common to specify the
data type to be returned, whether to cache the response, the data to be passed to the server,
and what to do when an error occurs.

Note  The .ajaxSetup() funct on ets you set defau ts for AJAX-re ated parameters, such as for
cach ng, methods, and error hand ng, among others

Here’s a real-world example of the .ajax() function in action:

$.ajax({

 url: "testajax.aspx",

 success: function(data) {

 alert("Successful load");

 }

});

410	 Part V  jQuery

jQuery also includes a function called .getJSON() that performs the same essential function
as the other AJAX-related functions, but it works specifically with JSON-encoded data from
the server. The .getJSON() function is the equivalent of calling the .ajax() function with the
additional parameter dataType: 'json'.

For example, consider this JSON-encoded list of a few states:

["Wisconsin","California","Colorado","Illinois","Minnesota","Oregon","Washington","New

York","New Jersey","Nevada","Alabama","Tennessee","Iowa","Michigan"]

For this example, assume that the JSON-encoded data is returned when the file json.php is
called on the local server. The following use of the .ajax() function retrieves the data and calls
a function named showStates when successful:

$.ajax({

 type: "GET",

 url: "json.php",

 dataType: "json",

 success: showStates

});

The function showStates creates a list and adds it to a form s <select> drop-down box.

Using AJAX with jQuery

To complete this step-by-step exercise, you need to have a file called json.php available in
the same directory as the file you ll use in this exercise (a json.php file is included with the
book’s companion content). Like the examples from the previous chapters on AJAX, the
json.php file must reside in the same domain as the file that’s making the AJAX request.

	 1.	 Edit the file ajax.html file (also included with this book s companion content) using your
editor of choice.

	 2.	 Within the file, place the code shown in boldface (and in ajax.txt, in the companion
content), replacing the TODO comment:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.

dtd">

<html>

<head>

<title>AJAX Test</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

 Chapter 22 An Introduction to jQuery 411

</head>

<body>

<div id="states">

</div>

<script type="text/javascript">

$(document).ready(function() {

$.ajax({

 type: "GET",

 url: "json.php",

 dataType: "json",

 success: showStates

});

function showStates(data,status) {

 $.each(data, function(item) {;

 $("#states").append("<div>" + data[item] + "</div>");

 });

}

});

</script>

</body>

</html>

	 3.	 Save the file and view it in a web browser . You see a list of states, like the one shown
here:

412	 Part V  jQuery

AJAX Errors and Timeouts
The .ajax() function lets you handle errors and timeouts gracefully. In addition to the success
handler, you can specify an error handler with the error parameter. The value of the error pa-
rameter is usually a callback function. Here s an example, with the newly added error parameter
in boldface:

$.ajax({

 type: "GET",

 url: "json.php",

 dataType: "json",

 success: successFunction,

 error: errorFunction

});

The callback function used for error handling (errorFunction in the previous code example)
receives three arguments: the XMLHTTPRequest object; a string representing the error
encountered; and an exception object, if an exception occurred. Therefore, an error handler
function should accept these three arguments and then do something with the results. This
example shows an alert:

function errorFunction(xhr, statusMessage, exceptionObj) {

 alert("An error was encountered " + statusMessage);

}

You may find it necessary to set a timeout for an AJAX request. You can set a generic AJAX
timeout value through the default $.ajaxSetup, but you can also specify a timeout value for
any individual call using the timeout parameter. Here s an example:

$.ajax({

 type: "GET",

 url: "json.php",

 dataType: "json",

 success: successFunction,

 error: errorFunction,

 timeout: 5000

});

It’s important to realize that the timeout is in milliseconds. Therefore, the example shown sets
the timeout at 5 seconds.

Sending Data to the Server
You not only need to receive data from a server in an AJAX call, but also to send data to a
server and receive a response. You use the data parameter to the .ajax() function for this,
sending data using either GET or POST.

	 Chapter 22  An Introduction to jQuery	 413

You can format the data as ampersand-separated key value pairs (key1 value1&key2 value2)
or as mapped pairs {key1: value1, key2: value2}. The example here uses the key value option,
also known as the query string option.

This example calls a server-side program titled statefull.php, which, given a two-letter state
abbreviation, returns the full name of the state.

 $.ajax({

 type: "POST",

 url: "statefull.php",

 dataType: "json",

 success: successFunction,

 data: "state=WI"

});

Other Important Options
There are numerous options to the .ajax() function. You ve seen how to use many of them
already, but I d like to highlight two more options:

n	 async

n	 cache

The async option, which is set to true by default, informs the script whether it should wait
(and block further input in the browser) while the AJAX transaction is sent, received, and
processed. When set to true, the AJAX transaction is done asynchronously, so it does not
block.

The cache setting, which defaults to true in most instances, controls whether jQuery will
cache the AJAX transaction. This is useful when the data being received doesn’t change of-
ten, because caching speeds up the transaction, but caching can cause problems when your
application is using older cached data that has changed on the server. I ve found it helpful
to set this option to false so that the response is not cached, especially in cases where you
encounter problems when data is apparently not refreshing.

More jQuery
You’ve seen only a small portion of what jQuery can do. As you learn more about JavaScript
and how it can help activate your websites, consider using jQuery or another JavaScript library
to help you with those development efforts.

For more jQuery learning and reference material, see the resources at http //www jquery com

414	 Part V  jQuery

Exercises
	 1.	 Using the code in ajax.html (from the exercise titled “Using Ajax with jQuery”) as a base,

add a CSS style to make the background color of the state s individual <div> turn blue
when the mouse hovers over one of the states in the list. Hint: There are multiple ways
to do this.

	 2.	 Create a server-side program to return data when you pass in parameters using the
$.ajax() function. Process this data somehow, using an alert or writing to the page. For
instance, you could implement a server-side program to return the sum of two num-
bers or, like the example shown, return the full state name if the program receives the
state’s abbreviation.

	 	 415

Chapter 23

jQuery Effects and Plug-Ins
After reading this chapter, you’ll be able to:

n	 Understand and use native jQuery effects.

n	 Understand jQuery UI.

n	 Use jQuery UI.

Core Features for Enhancing Usability
Effects and usability enhancements such as dragging and dropping, fading elements in
and out, and sliding elements are easy to implement with the help of jQuery. And if those
features aren’t enough to make you love the product, jQuery is extensible and has a healthy
community supporting it.

Among the features the jQuery community contributes are plug-ins. jQuery plug-ins provide
additional functionality not included in the core jQuery package. You can obtain more infor-
mation about plug-ins and a list of those currently available at the jQuery Plugins website:
http://plugins.jquery.com/.

This chapter provides an overview of some effects included in the jQuery core product as
well as in jQuery UI.

Native Effects
As mentioned in the introduction to this chapter, jQuery includes several functions that can
enhance the usability of a web application, such as showing and hiding elements, and fading
elements in and out. This section examines a few of the native effects included with jQuery.
It s worth noting that as of this writing, jQuery and jQuery UI are being updated to work with
Windows Internet Explorer 9, so some of the examples shown in this chapter don t work with
the current beta of Internet Explorer 9. However, there’s a great chance that by the time you
read this chapter, jQuery and jQuery UI will be updated and Internet Explorer 9 released.

Show, Hide, and Toggle
The .show() and .hide() functions show and hide elements of a page, respectively. These
functions set the Cascading Style Sheets (CSS) display property. To hide an element, you set
the display property to none. Note that setting display to none does not remove the element

416	 Part V  jQuery

from the DOM, so you can still show the element using the .show() function. Listing 23-1
provides an example of the .hide() function.

Listing 23-1 H d ng an e ement.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hide</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<style type="text/css">

.removeBtn {

 color: #0000CC;

}

</style>

</head>

<body>

<li id="option1">Option 1 (x)

<li id="option2">Option 2 (x)

<li id="option3">Option 3 (x)

<li id="option4">Option 4 (x)

<script type="text/javascript">

$(document).ready(function() {

$('#option1').click(function() {

 $('#option1').hide();

});

$('#option2').click(function() {

 $('#option2').hide();

});

$('#option3').click(function() {

 $('#option3').hide();

});

$('#option4').click(function() {

 $('#option4').hide();

});

});

</script>

</body>

</html>

Unfortunately, the example in Listing 23-1 is poorly optimized because it requires adding
handling for each element individually. (You wouldn’t expect to see this type of programming
in a live production program; however, it’s useful for illustrative purposes.) A better solution is
to handle the options by using their functions. Listing 23-2 shows a better way to accomplish
the same functionality by using jQuery and without the hardcoded options.

	 Chapter 23  jQuery Effects and Plug-Ins	 417

Listing 23-2 H d ng an e ement, mproved w th jQuery.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hide</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<style type="text/css">

.removeBtn {

 color: #0000CC;

}

</style>

</head>

<body>

<li id="option1">Option 1 (x)

<li id="option2">Option 2 (x)

<li id="option3">Option 3 (x)

<li id="option4">Option 4 (x)

<script type="text/javascript">

$(document).ready(function() {

$('.removeBtn').each(function(elm) {

 $(this).click(function() {

 $(this).parent().hide();

 });

});

});

</script>

</body>

</html>

The only change in the code in Listing 23-2 is within the JavaScript:

$('.removeBtn').each(function() {

 $(this).click(function() {

 $(this).parent().hide();

 });

});

This JavaScript applies a function to each element with the removeBtn class, which sets the
click event on that element. It calls the .hide() function, but because when the event fires,
$(this) refers to the removeBtn element (in this case, the element), you need to walk
up the hierarchy to find the parent node, which in this case is the .

The .toggle() function shows or hides an element based on its current state. For example,
when an element is currently visible, calling .toggle() hides it. Likewise, when an element is
hidden, the element becomes visible when you call .toggle().

418	 Part V  jQuery

All three functions, .show(), .hide(), and .toggle(), accept two arguments: a duration and a call-
back function. Notice in the code from Listings 23-1 and 23-2, when the element is hidden,
it disappears instantaneously. Adding a duration to the .hide() function causes the element
to disappear at that specified rate. Like other functions in jQuery, you specify the duration in
milliseconds. Alternatively, you can use the strings "fast" and "slow", which represent 200 and
600 milliseconds, respectively.

The callback function performs an action after the showing or hiding of the element is com-
plete. One possible use of the callback is to display an Undo button after hiding an element,
to enable users to reshow the element that they just hid.

Adding a duration

	 1.	 Using an editor such as Microsoft Visual Studio, Eclipse, or a text editor, open the file
duration.html, which you can find in the Chapter23 folder in this book s companion
content.

	 2.	 Within the file, add the following code shown in boldface:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hide</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<style type="text/css">

.removeBtn {

 color: #0000CC;

}

</style>

</head>

<body>

<li id="option1">Option 1 (x)

<li id="option2">Option 2 (x)

<li id="option3">Option 3 (x)

<li id="option4">Option 4 (x)

<script type="text/javascript">

$(document).ready(function() {

$('.removeBtn').each(function(elm) {

 $(this).click(function() {

 $(this).parent().hide(500);

 });

});

});

</script>

</body>

</html>

	 Chapter 23  jQuery Effects and Plug-Ins	 419

	 3.	 Save the file and view the page in a web browser. You see a page similar to this:

	 4.	 Now click the (x) next to any of the elements. The element disappears from the page,
and you see a page like this:

	 5.	 If you’re using a browser with a debugger, such as Firefox with Firebug, you can right-
click one of the other options and choose Inspect Element to see that the display
property has been set to none on the hidden element.

Fade In and Fade Out
Adding a duration to the .show(), .hide(), and .toggle() functions changes their opacity until
they’re visible or hidden. Similar functionality is available through the .fadeIn() and .fadeOut()
functions. See http://api.jquery.com/category/effects/fading/ for more information about
these as well as the .fadeTo() function.

420	 Part V  jQuery

Sliding
Another method for setting the display property to none is available through the .slideUp()
and .slideDown() functions. These functions create a slide effect that makes the element
appear to move before disappearing, or to move before appearing. Use the .slideUp() func-
tion to make an element disappear and .slideDown() to make it reappear.

Changing the base code that you saw earlier in this chapter so that it uses .slideUp() instead
of hide looks like this:

$('.removeBtn').each(function(elm) {

 $(this).click(function() {

 $(this).parent().slideUp();

 });

});

Note  Don’t be confused nto th nk ng that you have a cho ce of wh ch way to s de the e e-
ments—up or down—based on the names of the funct ons The .slideUp() funct on a ways makes
e ements d sappear, whereas .slideDown() a ways makes them appear

jQuery UI
jQuery UI is built on top of the jQuery core and provides extended functionality tied to the
user interface. Several components in jQuery UI provide specific widgets or actions, including
a date chooser, an accordion function, and autocomplete. This section examines some of the
jQuery UI widgets.

More Information  See http://jqueryui.com/ for more nformat on about a the ava ab e
w dgets w th jQuery UI

Using jQuery UI
jQuery UI requires you to include a separate JavaScript file in your code. You can obtain this
file from http://jqueryui.com/, where you can download the full stable release or build a cus-
tom download with only the components that you need for your site. This chapter uses the
full release of jQuery UI, but for most sites, I recommend that you customize the jQuery UI
download to your individual needs, including only those specific components necessary for
the effects on your site.

	 Chapter 23  jQuery Effects and Plug-Ins	 421

The jQuery UI download is a zip file containing both the jQuery core and jQuery UI code
along with CSS files related to jQuery UI. You need to unzip this file into a location where it is
available for the web server, such as the httpdocs or public html directory. In essence, the files
need to be in the same place as the rest of the JavaScript and HTML that you’ve been work-
ing with throughout this book.

Note  Us ng the jQuery UI funct ons may have access b ty mp cat ons un ess you prov de an
a ternat ve means to perform the same funct ona ty

Drag and Drop
jQuery UI includes functions for moving elements by dragging and dropping, called
.draggable() and .droppable(), respectively. Calling .draggable() lets users use the mouse
to move an element around the page. Consider the code in Listing 23-3.

Listing 23-3  The .draggable() funct on n act on.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Drag</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<script type="text/javascript" src="js/jquery-ui-1.8.4.custom.min.js"></script>

<style type="text/css">

#container span {

 border: solid 1px black;

 padding: 3px;

}

</style>

</head>

<body>

<div id="container">

Drag me around

</div>

<script type="text/javascript">

$(document).ready(function() {

$('#container > span').draggable();

});

</script>

</body>

</html>

422	 Part V  jQuery

This code establishes a <p> element that is then able to be dragged with the call to the
.draggable() function:

$('#container > span').draggable();

Note  The code n L st ng 23-3 assumes that you have jQuery down oaded a ready and that the
jQuery UI fi es are down oaded to your current work ng d rectory—the same d rectory where the
HTML for L st ng 23-3 res des The jQuery UI code s then oaded from a js/ subd rectory

Try the code from Listing 23-3 in a browser. You’ll see that it’s possible to click and drag the
element around.

You can use the .droppable() function in conjunction with .draggable() to create a target for a
dragged element, to enable someone to use a drag-and-drop operation to work with items
visually on the screen. Listing 23-4 expands on the .draggable() example from Listing 23-3 to
provide a <div> as a droppable target:

Listing 23-4  The .droppable() funct on n act on.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Drop</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<script type="text/javascript" src="js/jquery-ui-1.8.4.custom.min.js"></script>

<style type="text/css">

#container span {

 border: solid 1px black;

 padding: 3px;

}

#targetContainer {

 height: 200px;

 width: 200px;

 border: solid 1px black;

 background-color: #abacab;

 margin: 50px;

}

</style>

</head>

<body>

<div id="container">

Drag me and drop me

</div>

<div id="targetContainer">

</div>

<script type="text/javascript">

$(document).ready(function() {

$('#container > span').draggable();

	 Chapter 23  jQuery Effects and Plug-Ins	 423

$('#targetContainer').droppable({

 drop: function(event,ui) {

 alert("Dropped Element: " + ui.draggable.text());

 }

});

});

</script>

</body>

</html>

The key to this code is the use of the .droppable() function set on the <div> with ID
targetContainer:

$('#targetContainer').droppable({

 drop: function(event,ui) {

 alert("Dropped Element: " + ui.draggable.text());

 }

});

The .droppable() function handles several events, enabling you to respond when an item is
dragged over the top of the droppable element (over), is moved out of the droppable ele-
ment (out), when an element is dropped in (drop, shown in the example), and when a valid
draggable element is picked up or let go of (activate and deactivate). See http://jqueryui.com
/demos/droppable/ for examples of these events.

Accordion
Creating an accordion effect, where options appear to roll up and down into each other,
is possible using jQuery UI. The key to getting an accordion working properly is using well-
formed HTML along with a layout that lends itself to being in an accordion. A good candi-
date for an accordion is a group of similar items or options.

Listing 23-5 shows the HTML and JavaScript to create a simple accordion.

424	 Part V  jQuery

Listing 23-5  A jQuery accord on.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Accordion</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<script type="text/javascript" src="js/jquery-ui-1.8.4.custom.min.js"></script>

<style type="text/css">

#container {

 border: solid 1px black;

 padding: 3px;

}

.optionHead {

 border: solid 1px black;

 background-color: #abacab;

}

.optionDiv {

 border-bottom: dotted 1px black;

}

</style>

</head>

<body>

<div id="container">

<h3 class="optionHead">Option 1</h3>

<div class="optionDiv" id="option1">

<p>Text of option 1</p>

</div>

<h3 class="optionHead">Option 2</h3>

<div class="optionDiv" id="option2">

<p>Text of option 2</p>

</div>

<h3 class="optionHead">Option 3</h3>

<div class="optionDiv" id="option3">

<p>Text of option 3</p>

</div>

</div>

<script type="text/javascript">

$(document).ready(function() {

$('#container').accordion();

});

</script>

</body>

</html>

	 Chapter 23  jQuery Effects and Plug-Ins	 425

Loading the code in Listing 23-5 into a web browser results in a page similar to that shown in
Figure 23-1.

Figure 23-1  A bas c jQuery accord on.

When using a jQuery accordion, you’ll notice that the first option is always expanded on
page load. Depending on the needs of the layout and how the accordion is being used, you
may find that you need to have a different option expanded on page load, or have all the
options collapsed on load. The .accordion() function includes several options that control its
behavior. The active option, when used in conjunction with collapsible set to true, starts the
accordion in a collapsed state or with a certain option selected.

In this next step-by-step exercise, you use an accordion within a webpage and set a default
state for the accordion.

Setting default state for an accordion

	 1.	 Open the file accordion.html using your editor such as Microsoft Visual Studio or
Eclipse. (You can find this file in the companion content.)

	 2.	 Within accordion.html, add the following code shown in boldface:

426	 Part V  jQuery

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Accordion</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<script type="text/javascript" src="js/jquery-ui-1.8.4.custom.min.js"></script>

<style type="text/css">

#container {

 border: solid 1px black;

 padding: 3px;

}

.optionHead {

 border: solid 1px black;

 background-color: #abacab;

}

.optionDiv {

 border-bottom: dotted 1px black;

}

</style>

</head>

<body>

<div id="container">

<h3 class="optionHead">Option 1</h3>

<div class="optionDiv" id="option1">

<p>Text of option 1</p>

</div>

<h3 class="optionHead">Option 2</h3>

<div class="optionDiv" id="option2">

<p>Text of option 2</p>

</div>

<h3 class="optionHead">Option 3</h3>

<div class="optionDiv" id="option3">

<p>Text of option 2</p>

</div>

</div>

<script type="text/javascript">

$(document).ready(function() {

$('#container').accordion({

 collapsible: true,

 active: false

});

});

</script>

</body>

</html>

 Chapter 23 jQuery Effects and Plug-Ins 427

	 3.	 Save the file and view the page in a browser . Notice that the accordion is started in a
collapsed form, as shown here:

	 4.	 Change the active option to 2 instead of false . The code should look like this:

$('#container').accordion({

 collapsible: true,

 active: 2

});

	 5.	 Reload the page in your browser . Notice that the third option on the screen appears
expanded . This occurs because the index begins with 0, thus making the first option
(seen as Option 1 on the screen) really index 0 .

See http://jqueryui .com/demos/accordion/ for additional information about the available
options and events with the accordion widget.

More jQuery UI
There is much, much more to jQuery UI than part of a chapter in one book can cover, such
as sophisticated CSS theme capabilities that let you choose color schemes for the effects
and widgets used through jQuery UI . Entire books have been written on jQuery UI alone .
See http://jqueryui.com/themeroller/ for information about CSS themes and jQuery UI .
Additionally, see http://jqueryui.com for more information and tutorials on jQuery UI .

428	 Part V  jQuery

Exercises
	 1.	 Using the code from Listing 23-2 as a base, add a link or button that restores all the

options using .show() function.

	 2.	 Using what you learned from this and previous chapters, create a jQuery accordion that
includes dynamically created options loaded through AJAX.

	 	 429

Appendix

Answer Key to Exercises
This appendix shows the answers and explanations for the exercises that have appeared
throughout the book. In many cases, there is more than one way to solve a problem.
Therefore, unless the question specified a particular way to solve the problem, any working
implementation is acceptable. It’s also expected that your function names could differ from
the ones in this appendix.

Chapter 1
	 1.	 False. Although JavaScript is indeed defined by a standards body, ECMA International,

it is not supported on all web browsers. And the support that does exist varies (some-
times widely) among browsers.

	 2.	 False. There are many reasons why a visitor to your website might have JavaScript
disabled. The browser they’re using might not support it, they might have special
software installed that doesn’t support it, or they simply might have JavaScript disabled
as a personal preference. You should strive to make your site work without JavaScript,
or at least have it fail gracefully for those visitors who don’t have JavaScript enabled.

	 3.	 A typical JavaScript definition block looks like this:

<script type="text/javascript">

// JavaScript code goes here

</script>

	 4.	 False. The version of JavaScript isn’t placed within the DOCTYPE definition. In fact, it’s
quite uncommon to declare the version of JavaScript being used at all.

	 5.	 True. JavaScript code can appear in both the head and the body of a Hypertext Markup
Language (HTML) document.

430	 Appendix  Answer Key to Exercises

Chapter 2
	 1.	 The code of mysecondpage.htm looks similar to this, though yours may differ slightly

(and of course will contain your name instead of mine!):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>My Second Page</title>

<script type="text/javascript">

alert("Steve Suehring");

</script>

</head>

<body>

<p>My Second Page</p>

</body>

</html>

	 2.	 Here’s the new code, with the changes shown in bold type:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>My Second Page</title>

<script type="text/javascript">

function callAlert() {

 alert("Steve Suehring");

}

</script>

</head>

<body>

<script type="text/javascript">

callAlert();

</script>

<p>My Second Page</p>

</body>

</html>

	 3.	 I created a file called 3.htm and a file called 3.js, which are shown below. (The reference
in 3.htm to 3.js is shown in boldface type.)

3.js:

function callAlert() {

 alert("Steve Suehring");

}

3.htm:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

	 Appendix  Answer Key to Exercises	 431

<head>

<title>My Second Page</title>

<script type="text/javascript" src="3.js"> </script>

</head>

<body>

<script type="text/javascript">

callAlert();

</script>

<p>My Second Page</p>

</body>

</html>

Chapter 3
	 1.	 The valid statements are a, b, c, and d. The only invalid statement is e, because it uses a

reserved word, case, as a variable name.

	 2.	 False. Not all JavaScript statements require a semicolon at the end. In fact, semicolons
are usually optional.

	 3.	 The orderTotal variable is changed after the visitor is alerted to how many of each item
were ordered, but before the value is returned from the function. The lesson here is
that you must be careful not to alter the value or contents of variables unexpectedly.
The visitor is expecting to order a certain quantity, but the code clearly changes that
quantity after telling the visitor how many he or she ordered!

Chapter 4
	 1.	 Variable declarations:

var first = 120;

var second = "5150";

var third = "Two Hundred Thirty";

	 2.	 Array (your values will probably be different, but the data types and syntax are the
important part):

var newArray = new Array(10, 20, 30, "first string", "second string");

	 3.	 Escaped string:

alert("Steve's response was \"Cool!\"");

	 4.	 This exercise is for the reader to follow. There is no right or wrong answer.

432	 Appendix  Answer Key to Exercises

Chapter 5
	 1.	 Alerts (your values will probably be different, but the data types and syntax are the

important part.):

var num1 = 1;

var num2 = 1;

var num3 = 19;

var fourthvar = "84";

var name1 = "Jakob";

var name2 = "Edward";

alert(num1 + num2);

alert(num3 + fourthvar);

alert(name1 + name2);

	 2.	 Postfix:

var theNum = 1;

alert(theNum);

alert(theNum++);

alert(theNum);

Prefix:

var theNum = 1;

alert(theNum);

alert(++theNum);

alert(theNum);

	 3.	 Code:

var num1 = 1;

var num2 = 1;

var num3 = 19;

var fourthvar = "84";

var name1 = "Jakob";

var name2 = "Edward";

alert(typeof num1);

alert(typeof num2);

alert(typeof num3);

alert(typeof fourthvar);

alert(typeof name1);

alert(typeof name2);

This should result in three alerts with the word number followed by three others with
the word string.

	 4.	 False. Unary operators appear fairly often in JavaScript, especially within for loops that
increment a variable using the ++ postfix operator.

	 5.	 False. Even though saving a few bytes is helpful, especially for web applications, it’s
almost always preferable to spend those same few bytes making the code readable and
maintainable. This is largely a matter for your style and coding standards, however. In a
later chapter, you are introduced to jQuery. That library’s typical “minimized” version is
an example of taking the byte saving to an extreme.

	 Appendix  Answer Key to Exercises	 433

Chapter 6
	 1.	 Replace YOUR NAME in the following code with the appropriate content:

var inputName = prompt("Please enter your name:");

switch(inputName) {

 case "YOUR NAME":

 alert("Welcome " + inputName);

 break;

 case "Steve":

 alert("Go Away");

 break;

 default:

 alert("Please Come Back Later " + inputName);

}

	 2.	 Here’s the code:

var temp = prompt("Please enter the current temperature");

if (temp > 100) {

 alert("Please cool down");

} else if (temp < 20) {

 alert("Better warm up");

}

Note that it would also be a good idea to provide a default action in case the tempera-
ture is between 20 and 100!

	 3.	 This exercise is actually impossible to accomplish as specified. Because ternary opera-
tors expect a single test condition and Exercise 2 required two conditions, a ternary
operator cannot be used to accomplish exactly the same task. The following code cre-
ates an alert that tells the visitor to cool down when the temperature is above 100 and
to warm up when the temperature is less than or equal to 100:

var temp = prompt("Please enter the current temperature");

temp > 100 ? alert("Please cool down") : alert("Better warm up");

	 4.	 Here’s the code:

for (var i = 1; i < 101; i++) {

 if (i == 99) {

 alert("The number is " + i);

 }

}

Note that because the variable i began counting at 1 (as was called for in the exercise),
the counter needs to go to 101 to meet the requirement of counting from 1 to 100.

	 5.	 Here’s the code:

var i = 1;

while (i < 101) {

 if (i == 99) {

 alert("The number is " + i);

434	 Appendix  Answer Key to Exercises

 }

 i++;

}

Note the placement of the postfix increment of the i variable within the loop. You could
also use i i+1, but the postfix operator is preferred.

Chapter 7
	 1.	 It’s important to note that this code uses the isNaN function to check whether the input

was a number. This is a best practice that may not always be obvious. Another way to
accomplish the ultimate return value here is to use return theNumber++; as the final
return, rather than as shown. Here’s the code:

<head>

 <title>Chapter 7 Exercise 1</title>

<script type = "text/javascript" >

function incrementNum(theNumber) {

 if (isNaN(theNumber)) {

 alert("Sorry, " + theNumber + " isn't a number.");

 return;

 }

 return theNumber + 1;

}

</script>

</head>

<body>

<script type = "text/javascript" >

alert(incrementNum(3));

</script>

</body>

	 2.	 Here’s the code:

function addNums(firstNum,secondNum) {

 if ((isNaN(firstNum)) || (isNaN(secondNum))) {

 alert("Sorry, both arguments must be numbers.");

 return;

 }

 else if (firstNum > secondNum) {

 alert(firstNum + " is greater than " + secondNum);

 }

 else {

 return firstNum + secondNum;

 }

}

	 3.	 This exercise is meant to show variable scoping problems. Note how the value of the
result variable changes outside the function—even though the change is made only
within the function. The two locations for alerts are shown in boldface in the following
code:

	 Appendix  Answer Key to Exercises	 435

function addNumbers() {

 firstNum = 4;

 secondNum = 8;

 result = firstNum + secondNum;

 return result;

}

result = 0;

alert(result);

result = addNumbers();

alert(result);

	 4.	 Here’s the code:

<head>

<title>Chapter 7 Exercise 4</title>

<script type="text/javascript">

var stars = ["Polaris","Aldebaran","Deneb","Vega","Altair","Dubhe","Regulus"];

var constells = ["Ursa Minor","Taurus","Cygnus","Lyra","Aquila","Ursa Major","Leo"];

function searchStars(star) {

 var starLength = stars.length;

 for (var i = 0; i < starLength; i++) {

 if (stars[i] == star) {

 return constells[i];

 }

 }

 return star + " Not Found.";

}

</script>

</head>

<body>

<script type = "text/javascript" >

var inputStar = prompt("Enter star name: ");

alert(searchStars(inputStar));

</script>

<p>Stars</p>

</body>

Chapter 8
	 1.	 Here’s the code:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

var starLength = star.length;

for (var i = 0; i < starLength; i++) {

 alert(star[i]);

}

	 2.	 Here’s one way:

function Song(artist,length,title) {

 this.artist = artist;

 this.length = length;

 this.title = title;

436	 Appendix  Answer Key to Exercises

}

song1 = new Song("First Artist","3:30","First Song Title");

song2 = new Song("Second Artist","4:11","Second Song Title");

song3 = new Song("Third Artist","2:12","Third Song Title");

	 3.	 Assuming you are using the code given in the exercise, this code in the body would
concatenate all the names into one long string, as follows:

var names = new Array;

for (var propt in star) {

 names += propt;

}

alert(names);

The code to comma-delimit the names would look like this:

var names = new Array;

for (var propt in star) {

 if (names != "") {

 names += "," + propt;

 } else {

 names = propt;

 }

}

alert(names);

Chapter 9
	 1.	 Here’s the code:

if (screen.availHeight < 768) {

 alert("Available Height: " + screen.availHeight);

}

if (screen.availWidth < 1024) {

 alert("Available Width: " + screen.availWidth);

}

	 2.	 The full code is shown here, including the code from the exercise. The additional code for
this exercise is shown in boldface. Note the use of the unescape() function to remove
the URL–encoded %20 (space) character from the country name. This is necessary because
the country name “Great Britain” specified in this exercise must be URL-escaped for
HTTP GET requests.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

 <title>Location, Location, Location</title>

</head>

	 Appendix  Answer Key to Exercises	 437

<body>

 <script type="text/javascript">

 var body = document.getElementsByTagName("body")[0];

 for (var prop in location) {

 var elem = document.createElement("p");

 var text = document.createTextNode(prop + ": " + location[prop]);

 elem.appendChild(text);

 body.appendChild(elem);

 }

 if (location.search) {

 var querystring = location.search.substring(1);

 var splits = querystring.split('&');

 for (var i = 0; i < splits.length; i++) {

 var splitpair = splits[i].split('=');

 var elem = document.createElement("p");

 var text = document.createTextNode(splitpair[0] + ": " + splitpair[1]);

 if (splitpair[0] == "country") {

 switch(unescape(splitpair[1])) {

 case "Brazil":

 alert("Obrigado");

 break;

 case "Great Britain":

 alert("Thank You");

 break;

 }

 }

 elem.appendChild(text);

 body.appendChild(elem);

 }

 }

 </script>

</body>

</html>

	 3.	 This exercise doesn’t have an answer in the answer key. You can install the User Agent
Switcher to complete the exercise.

Chapter 10
	 1.	 Here’s the code:

var newelement = document.createElement("p");

newelement.setAttribute("id","pelement");

document.body.appendChild(newelement);

newelement.appendChild(document.createTextNode("This is a paragraph, albeit a short

one."));

var anchorelem = document.createElement("a");

anchorelem.setAttribute("id","aelement");

anchorelem.setAttribute("href","http://www.braingia.org/");

document.body.appendChild(anchorelem);

anchorelem.appendChild(document.createTextNode("Go To Steve Suehring's Web Site."));

438	 Appendix  Answer Key to Exercises

	 2.	 Here’s the code:

// create the initial elements (if you use an existing HTML file, you won’t

need to do this)

var newelement = document.createElement("p");

newelement.setAttribute("id","pelement");

document.body.appendChild(newelement);

newelement.appendChild(document.createTextNode("This is a paragraph, albeit a

short one."));

var anchorelem = document.createElement("a");

anchorelem.setAttribute("id","aelement");

anchorelem.setAttribute("href","http://www.braingia.org/");

document.body.appendChild(anchorelem);

anchorelem.appendChild(document.createTextNode("Click Here"));

// make the change

var existingp = document.getElementById("pelement");

existingp.firstChild.nodeValue="This is the new text.";

var newanchor = document.getElementById("aelement");

newanchor.setAttribute("href","http://www.microsoft.com/");

	 3.	 Here’s the code:

<head>

<title>Chapter 10 Exercises</title>

</script>

</head>

<body>

<div id="thetable"></div>

<script type = "text/javascript" >

var table = document.createElement("table");

table.border = "1";

var tbody = document.createElement("tbody");

// Append the body to the table

table.appendChild(tbody);

var row = document.createElement("tr");

// Create table row

for (i = 1; i < 3; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 1; j < 3; j++) {

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var data = document.createTextNode("Hello - I'm Row " + i + ", Column " + j);

 td.appendChild(data);

 row.appendChild(td);

 }

 tbody.appendChild(row);

}

document.getElementById("thetable").appendChild(table);

</script>

</body>

	 Appendix  Answer Key to Exercises	 439

Chapter 11
	 1.	 Here’s the code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Onclick</title>

<script type="text/javascript">

function handleclick() {

 alert("You Clicked Here");

 return false;

}

</script>

</head>

<body>

<p>Click Here</p>

</body>

</html>

	 2.	 Here’s the code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Onclick</title>

<script type="text/javascript" src="ehandler.js"></script>

<script type="text/javascript">

function handleclick() {

 alert("You Clicked Here");

 return false;

}

</script>

</head>

<body>

<p>Click Here</p>

<script type="text/javascript">

var aLink = document.getElementById("clickMe");

EHandler.add(aLink, "click", function() { handleclick(); });

</script>

</body>

</html>

	 3.	 No JavaScript is necessary for this exercise. The HTML code looks as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>New Tab</title>

</head>

<body>

440	 Appendix  Answer Key to Exercises

<p>Go To Microsoft

</p>

</body>

</html>

Chapter 12
	 1.	 A variation on an example in the chapter:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hello Cookie</title>

<script type = "text/javascript">

var cookName = "cookie1";

var cookVal = "testvalue";

var date = new Date();

date.setTime(date.getTime()+86400000); // one day, in milliseconds

var expireDate = date.toGMTString();

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate;

document.cookie = myCookie;

</script>

</head>

<body>

<p>Hello</p>

</body>

</html>

	 2.	 This code is basically the same as the code in Exercise 1, with the changed lines shown
in boldface:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hello Cookie</title>

<script type = "text/javascript">

var cookName = "cookie2";

var cookVal = "testvalue";

var date = new Date();

date.setTime(date.getTime()+86400000); // one day, in millseconds

var expireDate = date.toGMTString();

var myCookie = cookName + "=" + cookVal + ";expires=" + expireDate + ";secure";

document.cookie = myCookie;

</script>

</head>

<body>

<p>Hello</p>

</body>

</html>

	 3.	 Unless you’re using a Secure Sockets Layer (SSL) connection, you won’t be able to read
a cookie with the secure flag set.

	 Appendix  Answer Key to Exercises	 441

	 4.	 In Exercise 1, I set a cookie named cookie1; therefore, that’s the only one I want to
display for this exercise. The code is:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Reading Cookie</title>

<script type = "text/javascript">

var incCookies = document.cookie.split(";");

for (var c = 0; c < incCookies.length; c++) {

 var splitCookies = incCookies[c].split("=");

 if (splitCookies[0] == "cookie1") {

 alert(incCookies[c]);

 }

}

</script>

</head>

<body>

<p>Hello</p>

</body>

</html>

Chapter 13
	 1.	 See Listing 13-2 in Chapter 13 for an example of this exercise.

	 2.	 See Listing 13-2 in this chapter for an example of preloading images. You would apply
that same code logic to the image map that you make for this exercise.

Chapter 14
	 1.	 See the section titled “Working with Select Boxes” in Chapter 11 for an example solu-

tion for this exercise.

	 2.	 Based on the pizza.htm example, the <head> portion of code now looks like this, with
the additions shown in boldface:

<head>

 <title>Pizza</title>

 <script type = "text/javascript">

 function prepza() {

 var checkboxes = document.forms["pizzaform"].toppingcheck.length;

 var crusttype = document.forms["pizzaform"].crust;

 var size = document.forms["pizzaform"].size;

 var crustlength = crusttype.length;

 var sizelength = crusttype.length;

 var newelement = document.createElement("p");

 newelement.setAttribute("id","orderheading");

 document.body.appendChild(newelement);

442 Appendix Answer Key to Exercises

 newelement.appendChild(document.createTextNode("This pizza will have:"));

 for (var c = 0; c < crustlength; c++) {

 if (crusttype[c].checked) {

 var newelement = document.createElement("p");

 newelement.setAttribute("id","crustelement" + i);

 document.body.appendChild(newelement);

 newelement.appendChild(document.createTextNode(

 crusttype[c].value + " Crust"));

 }

 }

 for (var s = 0; s < sizelength; s++) {

 if (size[s].checked) {

 var newelement = document.createElement("p");

 newelement.setAttribute("id","sizeelement" + i);

 document.body.appendChild(newelement);

 newelement.appendChild(document.createTextNode(size[s].value + " Size"));

 }

 }

 for (var i = 0; i < checkboxes; i++) {

 if (document.forms["pizzaform"].toppingcheck[i].checked) {

 var newelement = document.createElement("p");

 newelement.setAttribute("id","newelement" + i);

 document.body.appendChild(newelement);

 newelement.appendChild(document.createTextNode(

 document.forms["pizzaform"].toppingcheck[i].value));

 }

 }

 }

 </script>

</head>

The HTML follows . This particular solution uses a three-column table, though that’s not
technically required for this answer to be correct—that is just one way to do it . The addi-
tions are again shown in boldface:

<form id="pizzaform" action="#">

<table>

<tr><td>Toppings</td><td>Crust</td><td>Size</td></tr>

<tr>

<td><input type="checkbox" id="topping1" value="Sausage" name="toppingcheck"

/>Sausage</td>

<td><input type="radio" name="crust" value="Regular" checked="checked" id="radio1"

/>Regular</td>

<td><input type="radio" name="size" value="Small" checked="checked" id="radiosize1"

/>Small</td>

</tr>

<tr>

<td><input type="checkbox" id="topping2" value="Pepperoni" name="toppingcheck"

/>Pepperoni</td>

<td><input type="radio" name="crust" value="Deep Dish" id="radio2" />Deep Dish</td>

<td><input type="radio" name="size" value="Medium" id="radiosize2" />Medium</td>

</tr>

	 Appendix  Answer Key to Exercises	 443

<tr>

<td><input type="checkbox" id="topping3" value="Ham" name="toppingcheck" />Ham</td>

<td><input type="radio" name="crust" value="Thin" id="radio3" />Thin</td>

<td><input type="radio" name="size" value="Large" id="radiosize3" />Large</td>

</tr>

<tr>

<td><input type="checkbox" id="topping4" value="Green Peppers" name="toppingcheck"

/>Green Peppers</td>

<td></td>

<td></td>

</tr>

<tr>

<td><input type="checkbox" id="topping5" value="Mushrooms" name="toppingcheck"

/>Mushrooms</td>

<td></td>

<td></td>

</tr>

<tr>

<td><input type="checkbox" id="topping6" value="Onions" name="toppingcheck" />Onions

</td>

<td></td>

<td></td>

</tr>

<tr>

<td><input type="checkbox" id="topping7" value="Pineapple"

name="toppingcheck">Pineapple</td>

<td></td>

<td></td>

</tr>

</table>

<p><input type="submit" id="prepBtn" name="prepBtn" value="Prep Pizza"></p>

</form>

	 3.	 Add the following code to the <head> portion of the pizza application from the
previous exercise:

 function flip(pizzatype) {

 if (pizzatype == "veggiespecial") {

 document.getElementById("peppers").checked = "true";

 document.getElementById("onions").checked = "true";

 document.getElementById("mushrooms").checked = "true";

 } else if (pizzatype == "meatspecial") {

 document.getElementById("sausage").checked = "true";

 document.getElementById("pepperoni").checked = "true";

 document.getElementById("ham").checked = "true";

 } else if (pizzatype == "hawaiian") {

 document.getElementById("ham").checked = "true";

 document.getElementById("pineapple").checked = "true";

 }

 }

Use the following HTML form. (Note the addition of the three buttons and the change
to each ingredient’s id attribute.)

444	 Appendix  Answer Key to Exercises

<form id="pizzaform" action="#">

<p>

<input type="button" id="veggiespecial" name="veggiespecial" value="Veggie Special" />

<input type="button" id="meatspecial" name="meatspecial" value="Meat Special" />

<input type="button" id="hawaiian" name="hawaiian" value="Hawaiian" />

</p>

<table>

<tr><td>Toppings</td><td>Crust</td><td>Size</td></tr>

<tr>

<td><input type="checkbox" id="sausage" value="Sausage" name="toppingcheck"

/>Sausage</td>

<td><input type="radio" name="crust" value="Regular" checked="checked" id="radio1"

/>Regular</td>

<td><input type="radio" name="size" value="Small" checked="checked" id="radiosize1"

/>Small</td>

</tr>

<tr>

<td><input type="checkbox" id="pepperoni" value="Pepperoni" name="toppingcheck"

/>Pepperoni</td>

<td><input type="radio" name="crust" value="Deep Dish" id="radio2" />Deep Dish</td>

<td><input type="radio" name="size" value="Medium" id="radiosize2" />Medium</td>

</tr>

<tr>

<td><input type="checkbox" id="ham" value="Ham" name="toppingcheck" />Ham</td>

<td><input type="radio" name="crust" value="Thin" id="radio3" />Thin</td>

<td><input type="radio" name="size" value="Large" id="radiosize3" />Large</td>

</tr>

<tr>

<td><input type="checkbox" id="peppers" value="Green Peppers" name="toppingcheck"

/>Green Peppers</td>

<td></td>

<td></td>

</tr>

<tr>

<td><input type="checkbox" id="mushrooms" value="Mushrooms" name="toppingcheck"

/>Mushrooms</td>

<td></td>

<td></td>

</tr>

<tr>

<td><input type="checkbox" id="onions" value="Onions" name="toppingcheck" />Onions</

td>

<td></td>

<td></td>

</tr>

<tr>

<td><input type="checkbox" id="pineapple" value="Pineapple" name="toppingcheck"

/>Pineapple</td>

<td></td>

<td></td>

</tr>

</table>

<p><input type="submit" id="prepBtn" name="prepBtn" value="Prep Pizza"

onclick="prepza();" /></p>

</form>

	 Appendix  Answer Key to Exercises	 445

Add handlers to the JavaScript section found within the <body> of the page:

var veggieBtn = document.getElementById("veggiespecial");

EHandler.add(veggieBtn,"click",function() { flip("veggiespecial"); });

var meatBtn = document.getElementById("meatspecial");

EHandler.add(meatBtn,"click",function() { flip("meatspecial"); });

var hawaiiBtn = document.getElementById("hawaiispecial");

EHandler.add(hawaiiBtn,"click",function() { flip("hawaiian"); });

Chapter 15
	 1.	 Here’s an example page; there are many ways to complete this exercise correctly:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>CSS</title>

<link href="exercise1.css" rel="stylesheet" type="text/css">

</head>

<body>

<h1 id="h1element">The Title</h1>

<p id="firstelement">The first element.</p>

<p id="secondelement">The second element.</p>

</body>

</html>

Here is the stylesheet exercise1.css:

#h1element {

background-color: #abacab;

}

#firstelement {

color: red;

}

#secondelement {

 color: blue;

}

	 2.	 This code changes the element named firstelement so that its font color is blue:

<script type="text/javascript">

var element1 = document.getElementById("firstelement");

element1.style.color = "#0000FF";

</script>

	 3.	 This code hides all the <p> elements using the Cascading Style Sheets (CSS) visibility
property:

<script type="text/javascript">

var pelements = document.getElementsByTagName("p");

var pelmLength = pelements.length;

446	 Appendix  Answer Key to Exercises

for (var i = 0; i < pelmLength; i++) {

 pelements[i].style.visibility = "hidden";

}

</script>

	 4.	 This code shows the visibility setting both before and after it has been set within the
script. When you run the code, notice that the alert is empty before the property is set.

<script type="text/javascript">

var pelements = document.getElementsByTagName("p");

var pelmLength = pelements.length;

for (var i = 0; i < pelmLength; i++) {

 alert(pelements[i].style.visibility);

 pelements[i].style.visibility = "hidden";

 alert(pelements[i].style.visibility);

}

</script>

Chapter 16
	 1.	 Listing 16-3 in Chapter 16 provides a solution for this exercise.

	 2.	 An alert provides visual feedback, and that works as a solution to this problem. You can
find better ways to provide visual feedback in the solution to Exercise 5 in Chapter 15,
shown previously, which used a new element. Here’s the basic solution to this problem:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Try/Catch</title>

<script type="text/javascript">

</script>

</head>

<body>

<form name="formexample" id="formexample" action="#">

<div id="citydiv">Enter a City: <input id="city" name="city"></div>

<div><input id="submit" type="submit"></div>

</form>

<script type="text/javascript">

function checkValid() {

 try {

 var cityField = document.forms[0]["city"];

 if (cityField.value != "Stockholm") {

 throw "It's not Stockholm";

 }

 }

 catch(errorObject) {

 alert(errorObject);

 }

}

	 Appendix  Answer Key to Exercises	 447

function init() {

 document.forms[0].onsubmit = function() { return checkValid() };

}

window.onload = init;

</script>

</body>

</html>

	 3.	 This is one method for accomplishing this exercise. Other methods exist, including
using the ehandler.js script:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Try/Catch</title>

<script type="text/javascript">

</script>

</head>

<body>

<form name="formexample" id="formexample" action="#">

<div id="citydiv">Enter a Number Between 1 and 100: <input id="num" name="num"></div>

<div><input id="submit" type="submit"></div>

</form>

<script type="text/javascript">

function checkValid() {

 try {

 var numField = document.forms[0]["num"];

 if (isNaN(numField.value)) {

 throw "it's not a number";

 }

 if ((numField.value > 100) || (numField.value < 1)) {

 numField.style.background = "#FF0000";

 return false;

 }

 else {

 numField.style.background = "#FFFFFF";

 return true;

 }

 }

 catch(errorObject) {

 alert(errorObject);

 }

 finally {

 alert("Thank you for playing.");

 }

}

function init() {

 document.forms[0].onsubmit = function() { return checkValid() };

}

window.onload = init;

</script>

</body>

</html>

448	 Appendix  Answer Key to Exercises

Chapter 17
	 1.	 This solution requires the books.htm and books.xml files that are used within Chapter

17. This solution changes only books.htm. The few changes to this file are highlighted
in boldface.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<script type="text/javascript" src="ehandler.js"></script>

<title>Books</title>

</head>

<body>

<div id="xmldata"></div>

<p>Display Table</p>

<script type="text/javascript">

function displayData() {

 var xmlEl = docObj.getElementsByTagName("book");

 var table = document.createElement("table");

 table.border = "1";

 var tbody = document.createElement("tbody");

 // Append the body to the table

 table.appendChild(tbody);

 var row = document.createElement("tr");

 for (colHead = 0; colHead < xmlEl[0].childNodes.length; colHead++) {

 if (xmlEl[0].childNodes[colHead].nodeType != 1) {

 continue;

 }

 var tableHead = document.createElement("th");

 var colName = document.createTextNode(xmlEl[0].childNodes[colHead].nodeName);

 tableHead.appendChild(colName);

 row.appendChild(tableHead);

 }

 tbody.appendChild(row);

 // Create table row

 for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData = document.createTextNode(xmlEl[i].childNodes[j].firstChild.

nodeValue);

	 Appendix  Answer Key to Exercises	 449

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

 }

 document.getElementById("xmldata").appendChild(table);

}

function getXML()

{

 tablelink.style.visibility = "hidden";

 if (typeof document.implementation.createDocument != "undefined")

 {

 docObj = document.implementation.createDocument("", "", null);

 docObj.onload = displayData;

 }

 else if (window.ActiveXObject)

 {

 docObj = new ActiveXObject("Microsoft.XMLDOM");

 docObj.onreadystatechange = function () {

 if (docObj.readyState == 4) displayData()

 };

 }

 docObj.load("books.xml");

}

var tablelink = document.getElementById("displaytable");

EHandler.add("tablelink","click",function() { getXML(); });

</script>

</body>

</html>

Bonus: The following code adds a “Display Table” link, and then, when the table is dis-
played, it adds a “Hide Table” link. This wasn’t part of the exercise.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<script type="text/javascript" src="ehandler.js"></script>

<title>Books</title>

</head>

<body>

<div id="xmldata"></div>

<p>Display Table</p>

<script type="text/javascript">

function displayData() {

 var xmlEl = docObj.getElementsByTagName("book");

 var table = document.createElement("table");

 table.setAttribute("id","bookstable");

 table.border = "1";

 var tbody = document.createElement("tbody");

 // Append the body to the table

 table.appendChild(tbody);

450	 Appendix  Answer Key to Exercises

 var row = document.createElement("tr");

 for (colHead = 0; colHead < xmlEl[0].childNodes.length; colHead++) {

 if (xmlEl[0].childNodes[colHead].nodeType != 1) {

 continue;

 }

 var tableHead = document.createElement("th");

 var colName = document.createTextNode(xmlEl[0].childNodes[colHead].nodeName);

 tableHead.appendChild(colName);

 row.appendChild(tableHead);

 }

 tbody.appendChild(row);

 // Create table row

 for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 var xmlData = document.createTextNode(xmlEl[i].childNodes[j].firstChild.

nodeValue);

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

 }

 var tableanchor = document.createElement("a");

 var tableanchortext = document.createTextNode("Hide Table");

 tableanchor.setAttribute("id","hidetable");

 tableanchor.setAttribute("href","#");

 tableanchor.appendChild(tableanchortext);

 if (typeof window.addEventListener != "undefined") {

 tableanchor.addEventListener("click",hideTable,false);

 } else {

 tableanchor.attachEvent("onclick",hideTable);

 }

 document.getElementById("xmldata").appendChild(tableanchor);

 document.getElementById("xmldata").appendChild(table);

}

function hideTable() {

 var bookstable = document.getElementById("bookstable");

 bookstable.style.display = "none";

 tablelink.style.display = "";

 var tableanchor = document.getElementById("hidetable");

 tableanchor.style.display = "none";

}

	 Appendix  Answer Key to Exercises	 451

function getXML()

{

 tablelink.style.display = "none";

 if (typeof document.implementation.createDocument != "undefined")

 {

 docObj = document.implementation.createDocument("", "", null);

 docObj.onload = displayData;

 }

 else if (window.ActiveXObject)

 {

 docObj = new ActiveXObject("Microsoft.XMLDOM");

 docObj.onreadystatechange = function () {

 if (docObj.readyState == 4) displayData()

 };

 }

 docObj.load("books.xml");

}

var tablelink = document.getElementById("displaytable");

EHandler.add("tablelink","click",function() { getXML(); });

</script>

</body>

</html>

	 2.	 This solution requires the books.xml file as well. Most of the code is the same as the
final books.htm code in Chapter 17, with the differences shown in boldface:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Books</title>

</head>

<body>

<div id="xmldata"></div>

<script type="text/javascript">

window.onload = getXML;

function displayData() {

 var xmlEl = docObj.getElementsByTagName("book");

 var table = document.createElement("table");

 table.border = "1";

 var tbody = document.createElement("tbody");

 // Append the body to the table

 table.appendChild(tbody);

 var row = document.createElement("tr");

 for (colHead = 0; colHead < xmlEl[0].childNodes.length; colHead++) {

 if (xmlEl[0].childNodes[colHead].nodeType != 1) {

 continue;

 }

 var tableHead = document.createElement("th");

452	 Appendix  Answer Key to Exercises

 var colName = document.createTextNode(xmlEl[0].childNodes[colHead].nodeName);

 tableHead.appendChild(colName);

 row.appendChild(tableHead);

 }

 tbody.appendChild(row);

 // Create table row

 for (i = 0; i < xmlEl.length; i++) {

 var row = document.createElement("tr");

 // Create the row/td elements

 for (j = 0; j < xmlEl[i].childNodes.length; j++) {

 // Skip it if the type is not 1

 if (xmlEl[i].childNodes[j].nodeType != 1) {

 continue;

 }

 // Insert the actual text/data from the XML document.

 var td = document.createElement("td");

 if (i % 2) {

 td.style.background = "#aaabba";

 }

 var xmlData = document.createTextNode(xmlEl[i].childNodes[j].firstChild.

nodeValue);

 td.appendChild(xmlData);

 row.appendChild(td);

 }

 tbody.appendChild(row);

 }

 document.getElementById("xmldata").appendChild(table);

}

function getXML()

{

 if (typeof document.implementation.createDocument != "undefined")

 {

 docObj = document.implementation.createDocument("", "", null);

 docObj.onload = displayData;

 }

 else if (window.ActiveXObject)

 {

 docObj = new ActiveXObject("Microsoft.XMLDOM");

 docObj.onreadystatechange = function () {

 if (docObj.readyState == 4) displayData()

 };

 }

 docObj.load("books.xml");

}

</script>

</body>

</html>

	 Appendix  Answer Key to Exercises	 453

Chapter 18
There are no exercises for Chapter 18.

Chapter 19
	 1.	 None of the Hypertext Transfer Protocol (HTTP) methods discussed in the chapter offer

more security than any of the others. Only the addition of Secure Sockets Layer (SSL)
provides a layer of security on top of the HTTP methods. It should be noted that using
the POST method does not hide the input data, and only the POST method should
be used with SSL because the GET method places the parameters directly on the URL,
where they could be seen regardless of SSL.

	 2.	 Responses using standard HTML are retrieved with the responseText method and can
contain just about anything that could be obtained through HTTP. Extensible Markup
Language (XML) responses must be obtained with the responseXML method and must
be served as an XML content type by the server. JavaScript Object Notation (JSON)
responses are JavaScript responses; therefore, they offer some performance advantages
over the other methods.

	 3.	 This solution was discussed in the chapter itself, but here is the asynchronous call
(replace YOUR SERVER appropriately for your environment):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Async</title>

</head>

<body>

<div id="xmldata"></div>

<script type="text/javascript">

function readyAJAX() {

try {

 return new XMLHttpRequest();

} catch(e) {

 try {

 return new ActiveXObject('Msxml2.XMLHTTP');

 } catch(e) {

 try {

 return new ActiveXObject('Microsoft.XMLHTTP');

 } catch(e) {

 return "A newer browser is needed.";

 }

 }

}

}

var requestObj = readyAJAX();

var url ="http://YOUR SERVER/sum.php?num1=2&num2=2";

454 Appendix Answer Key to Exercises

requestObj.open("GET",url,true);

requestObj.send();

requestObj.onreadystatechange = function() {

 if (requestObj.readyState == 4) {

 if (requestObj.status == 200) {

 alert(requestObj.responseText);

 } else {

 alert(requestObj.statusText);

 }

 }

}

</script>

</body>

</html>

The file sum .php is a woefully small and inadequately secured server-side program in
PHP that looks like this:

<?php

print $_GET['num1'] + $_GET['num2'];

?>

Chapter	20
	 1.	 This solution uses Listing 19-1 and requires the addition of a submit button to the form .

The form now looks like this:

<form name="nameform" id="nameform" action="" method="GET">

Enter State: <input id="textname" type="text" name="textname">

<input type="submit" name="submit" id="statesubmit">

</form>

Aside from including ehandler .js, an event handler and new function are all that’s
required for this solution . These are added within the existing JavaScript .

var formSubmit = document.getElementById("nameform");

EHandler.add("formSubmit","submit",function() { showstate(); });

function showstate() {

 alert(document.forms[0].textname.value);

}

	 2.	 This solution is a variation of the previous solution and others shown in Chapter 19 . The
server-side program will need to return the comma-delimited list of people for the
company directory, much as the state example returned a list of U .S . states .

	 Appendix  Answer Key to Exercises	 455

Chapter 21
	 1.	 Both jQuery and MooTools offers a small learning curve, though PrototypeJS is also

fairly easy to learn. Dojo doesn t aim for the beginner-level JavaScript programmer,
and I’ve encountered more than one developer confused by YUI, even though it has
extensive documentation. However, everyone learns differently, so I d recommend
trying each one yourself rather than taking my word for it!

	 2.	 The exercise in this chapter provides an example of creating your own library and
including it in a page.

Chapter 22
	 1.	 One method for achieving this is using the .hover() function together with the .css()

function to change the background color. That happens within the showStates function.
Here is the altered showStates function from ajax.html:

function showStates(data,status) {

 $.each(data, function(item) {

 $("#states").append("<div>" + data[item] + "</div>");

 $('#states').children().hover(

 function() {

 $(this).css('background-color','blue');

 },

 function() {

 $(this).css('background-color','');

 }

);

 });

}

	 2.	 Here is the server-side code written in PHP. This code returns “Wisconsin” when the
abbreviation WI is passed in:

<?php

$stateAbbrev = trim($_POST['state']);

if ($stateAbbrev == "WI") {

 print json_encode("Wisconsin");

}

?>

456	 Appendix  Answer Key to Exercises

	 3.	 Here is the HTML, JavaScript, and jQuery to produce output based on the AJAX call:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>AJAX Data Test</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

</head>

<body>

<div id="state">

</div>

<script type="text/javascript">

$(document).ready(function() {

$.ajax({

 type: "POST",

 url: "statefull.php",

 dataType: "json",

 success: showStateFull,

 data: "state=WI"

});

function showStateFull(data,status) {

 $("#state").text(data);

}

});

</script>

</body>

</html>

Chapter 23
	 1.	 You can add functionality to show all options in multiple ways. This example adds an

anchor element with an ID of showAll. That ID is then tied to a function in the jQuery
/JavaScript code. The function loops through each of the option items and, if the dis-
play property for an option is set to none, the code executes the .show() function for
it. Another—and arguably better—option would be to add a class called hidden to the
 element when the .hide() function is originally executed. Then, finding the hidden
element would be much easier, because you could just search for any elements
that are hidden within the tag. There’s also a way to do this with the jQuery
:hidden selector; however, I’ve encountered a few difficulties in getting the :hidden
selector to work in a cross-browser manner, which is why I chose to show the other
approaches for accomplishing this task. Regardless, here’s the code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

	 Appendix  Answer Key to Exercises	 457

<html>

<head>

<title>Hide</title>

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<style type="text/css">

.removeBtn {

 color: #0000CC;

}

</style>

</head>

<body>

<li id="option1">Option 1 (x)

<li id="option2">Option 2 (x)

<li id="option3">Option 3 (x)

<li id="option4">Option 4 (x)

Show All

<script type="text/javascript">

$(document).ready(function() {

 $('.removeBtn').each(function(elm) {

 $(this).click(function() {

 $(this).parent().hide();

 });

 });

 $('#showAll').click(function() {

 $('.removeBtn').each(function(elm) {

 if ($(this).parent().attr("display","none")) {

 $(this).parent().show();

 }

 });

 });

});

</script>

</body>

</html>

	 2.	 The key to this exercise is the use of the async option in jQuery’s .ajax() function.
Without async, the .accordion() function tends to fire prior to the options for the accordion
being received and processed by AJAX. This code sample uses a JSON call to retrieve
the list of states used in Chapter 22. This list is then placed into the accordion. The code
sets async to false within the call to .ajax() and then adds a bit of processing to the
showStates function from Chapter 22. Otherwise, this is a variation of the accordion
example from Chapter 23.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Accordion</title>

458	 Appendix  Answer Key to Exercises

<script type="text/javascript" src="jquery-1.4.2.min.js"></script>

<script type="text/javascript" src="js/jquery-ui-1.8.4.custom.min.js"></script>

<style type="text/css">

#container {

 width: 350px;

 height: 700px;

 border: solid 2px black;

 padding: 3px;

}

.optionHead {

 border: solid 1px black;

 background-color: #abacab;

}

.optionDiv {

 border-bottom: dotted 1px black;

}

</style>

</head>

<body>

<div id="container">

</div>

<script type="text/javascript">

$(document).ready(function() {

 $.ajax({

 type: "GET",

 url: "json.php",

 dataType: "json",

 success: showStates,

 async: false

 });

 function showStates(data,status) {

 $.each(data, function(item) {;

 $("#container").append(

 "<h3 class=\"optionHead\">" +

 data[item] +

 "</h3>" +

 "<div class=\"optionDiv\">" +

 "Option text goes here</div>");

 });

 }

 $('#container').accordion({

 collapsible: true,

 active: false

 });

});

</script>

</body>

</html>

	 	 459

Symbols
$(document).ready() funct on (jQuery),  390, 395
$ (do ar s gn) character n regu ar express ons,  92
$(th s) se ector (jQuery),  398
+ add t on operators,  99 100
& (ampersand) character

as b tw se operator,  101
n XHTML,  8

/* and */ mu t ne comments, beg nn ng
and end ng,  51

\ (backs ash)
character n regu ar express ons,  92

/body tags
p acement of JavaScr pt w th n,  7

(̂) (caret) character
as b tw se operator,  101
n regu ar express ons,  92

{ } (cur y braces)
creat ng objects w th,  72
n f statement,  52

/ (d v s on) operator,  100
. (dot) notat on,  68
. (dot s gn)

character n regu ar express ons,  92
operator, access ng methods,  155

“ “ (doub e quotes)
escap ng,  67 68
n jQuery statements,  389
str ngs enc osed n,  66
to des gnate JavaScr pt fi e n Notepad,  45

== equa ty tests,  102 103
! (exc amat on po nt)

operator (unary),  106, 107
/ (forward s ashes), de neat ng regu ar express ons,  131
> (greater than) operator,  104
>= (greater than or equa to) operator,  104
/head tags

p acement of JavaScr pt w th n,  7
.js fi e extens ons

chang ng name of fi e,  29
defin ng JavaScr pt us ng,  54
des gnat ng fi e extens on n Notepad,  45
reasons for us ng,  30, 39

<< (eft arrows) as b tw se operator,  101
< (ess than)

operator,  104
s gn n XHTML,  8

<= (ess than or equa to) operator,  104
. oad() funct on (jQuery),  409
 (m nus s gn)
operator (unary),  106, 107

subtract on operator,  99
% modu o operator,  101, 374
* mu t p cat on operator,  100
{n, } characters n regu ar express ons,  92
.NET Common Language Runt me,  97
{n,m} characters n regu ar express ons,  92
/nonscr pt tags,  232
() (parentheses)

characters n regu ar express ons,  92
evok ng funct ons w th empty,  152 153

% (percent s gn)
modu o operator,  101

 (p pe) as b tw se operator,  101
+ (p us s gn)

add t ve operators,  99 100
character n regu ar express ons,  92
operator (unary),  106, 107

++ (p us s gns) operator (unary),  106 107
? (quest on mark)

character n regu ar express ons,  92
operator n f/e se constructs,  131

>> (r ght arrows) as b tw se operator,  101
>>> (r ght arrows) as b tw se operator,  101
// s ng e ne comments,  51
 (s ng e quotes)

escap ng,  67 68
n jQuery statements,  389
str ngs enc osed n,  66

/ (s ash) characters
d v s on operator,  100
n c os ng tag,  7

/ s ash characters
n comments,  51

[] (square brackets)
character n regu ar express ons,  92
n mp c t array constructor,  171

* (star s gn)
character n regu ar express ons,  92
mu t p cat on operator,  100

 subtract on operator,  99
(~) t de

character as b tw se operator,  101
operator (unary),  107

 (underscore character)
us ng n var ab es,  74

A
abs.x() funct on,  66
accord on effects, creat ng n jQuery U ,  423 426
Act veXObjects, nstant at ng,  347
addC ass() method,  403

Index

460	 addEventListener() method

addEventL stener() method,  184, 225, 226
add t on operator (+),  99 100
add t ve operators,  99 100
add() method,  228, 281
Add New tem d a og box (VS)

se ect ng HTML Page,  25
se ect ng JScr pt F e,  29

addNumbers() funct on,  151 152
add tags,  38
after() funct on (jQuery),  404
AJAX (Asynchronous JavaScr pt and XML)

about,  10, 345 346
accept ng user nput,  379
case study,  359 364
creat ng drop down boxes,  374 379
creat ng HTML tab es

w th XML,  367 371
jQuery and,  409 414
sty ng HTML tab es w th CSS,  371 374
support for,  345 346
XMLHTTPRequest() object

nstant at ng across browsers,  346
process ng AJAX responses,  350 353
process ng headers,  356 357
process ng XML responses,  354 355
send ng AJAX requests,  348
send ng and rece v ng w th,  352
us ng n web browsers,  332, 346
us ng POST method,  357 359
us ng to retr eve and d sp ay XML

data,  368 370
work ng w th JSON,  355 356

ajax() funct on (jQuery),  409 414
AJAX, XML

deve op ng JavaScr pt us ng,  20
us ng F rebug to debug JavaScr pt,  46

a ert() d a og box
d sp ay ng va ues n,  57, 58

a ert() funct on
as method of w ndow object,  155 156, 183
correct y p ac ng,  151
debugg ng JavaScr pt us ng,  47
n cond t ona statements,  127
n form va dat on,  275
p ac ng w th n oops,  47
show ng va ues conta ned w th n var ab es,  47

A F es, v ew ng,  45
a t tags, des gn ng webs tes us ng,  13
ampersand (&) character

as b tw se operator,  101
n XHTML,  8

AND operator (b tw se),  101
Andro d dev ces, Webk t render ng eng ne,  6
Apache web server, JavaScr pt us ng,  11, 20
appendCh d() method,  206, 217 218
append ng e ements to arrays,  172

App cat on Compat b ty V rtua PC mages,  15
arguments funct on,  148 149
Array() exp c t constructor,  171
array object, methods of,  172 178
arrays

as reference types,  96
ch dNodes property and,  212
for... n oop n,  141
mp c t/exp c t constructors,  171
ength property of,  171
us ng for oop w th,  138 140
us ng n jQuery,  393 394
us ng w th objects,  73

ASP.NET Deve opment Server
dep oy ng and test ng JavaScr pt app cat ons,  20
runn ng JavaScr pt code on,  27 28

ASP.Net Web S te, se ect ng,  24
ass gnment operators,  113 114
ass gn() method,  197
ass st ve features, and JavaScr pt,  13
Asynchronous JavaScr pt and XML (AJAX). See AJAX

(Asynchronous JavaScr pt and XML)
Asynchronous JavaScr pt ca s, us ng eva () method

w th,  179
attachEvent method,  184
attachEvent() method,  225, 228
attr() funct on (jQuery),  403
attr butes

e ements and,  206
gettab e,  213 215
href attr bute,  207, 212, 216
settab e,  216 217
target attr bute,  235 236

attr bute se ector match ng (jQuery),  396
ava He ght property,  185
ava W dth property,  185

B
background propert es,  301
back() method,  198
backs ash (\)

character n regu ar express ons,  92
before() funct on (jQuery),  404
beforeun oad event (jQuery),  406
behav ors, as component of JavaScr pt,  342
best pract ces

open ng browser w ndows,  234
p ac ng JavaScr pt n HTML,  8

b nd() funct on (jQuery),  405
B ng Maps,  342
B ng search eng ne,  344
b tw se not, negat ng w th,  107
b tw se operators,  101, 113
b nk tags,  13

	 clearInterval() method	 461

b ur event,  226
b ur event (jQuery),  405
b ur() method,  184
body tags

p acement of JavaScr pt w th n,  7 8
bookmarks, access ng browser,  359
Boo ean data types

about,  71
as pr m t ve types,  96
capture/mob e parameter,  225
convert ng,  98

border propert es,  301
break statement, us ng sw tch statement,  133
browser detect on,  4, 228 231
Browser Object Mode

about,  181 182
DOM (Document Object Mode)

about,  5 6, 203
as tree,  205 206
ava ab ty n jQuerry,  390
creat ng e ements,  217 219
d sp ay ng XML,  333
e ement d st nct ons,  204
HTML co ect ons and,  212
n form va dat on,  275
nnerHTML property,  208 209
Leve s (0, 1, 2) n,  204, 223 226
process ng nat ve XML responses,  354
retr ev ng e ements by D,  206 207
retr ev ng e ements by tag name,  210 212
retr ev ng e ements by tag name or D,  300 304
sett ng attr butes,  216 217
s mp e mage ro overs us ng o d,  253 255
spec fied objects,  208
transvers ng n jQuery,  398 404
us ng modern ro overs w th on oad

event,  255 261
v ew ng attr butes,  213 215
work ng w th nodes,  206
work ng w th s b ngs,  212

events n web forms,  182
h story object,  198 199
ocat on object

about,  191 192
ook ng at,  192 198

nav gator object
ook ng at,  188 190
prob ems w th browser detect on,  187
us ng to detect Java,  190 191

screen object,  185 187
se f object,  183

browsers. See web browsers
bubb e/capture event parameter,  225
bu t n funct ons,  56
bu t n objects,  155, 178 179
byte conservat on,  114

C
ca cu at ng dates,  87
ca back funct ons n jQuery,  404, 412 413, 418
capture/bubb e event parameter,  225
caret (̂) character

as b tw se operator,  101
n regu ar express ons,  92

carr age returns,  53
Cascad ng Sty e Sheets (CSS)

about,  297
AJAX comb ned w th,  345
app y ng,  299 300
DOCTYPE dec arat ons and,  9
mage ro overs and,  253
n o der web browsers,  231
JavaScr pt deve opment opt ons,  19
mod fy ng sty e sheets,  308 311
re at onsh p w th JavaScr pt

sett ng e ement sty es by D,  300 304
retr ev ng e ement sty es,  307 308
sett ng c asses,  306 307
sett ng d sp ay property n jQuery,  415
sett ng e ement sty es by D,  300 304
sett ng e ement sty es by type,  304 306
structure for,  298
sty ed drop down boxes,  378 379
sty ng HTML tab es w th,  371 374
us ng propert es and se ectors,  298 300
work ng w th CSS sty e c asses us ng jQuery,  403

case sens t v ty
of var ab e names,  74
syntax ru es,  49 50

CDATA sect on
dec ar ng pages as XHTML,  8, 53 54

CDN (Content De very Network),  387 388
cha n ng n jQuery,  402 403
changeco ors() funct on,  212
change event,  226
change event (jQuery),  405
changetext() funct on,  209
characters

to regu ar express ons,  92
characters (/)

n comments,  51
character sequences n regu ar express ons,  93 94
check boxes n web forms,  284 288
ch d nodes,  206
ch dNodes property,  212
Chrome

tab characters n,  67
us ng XMLHTTPRequest() object n,  332

c asses
about,  164 167

c ear nterva () funct on,  236 237
c ear nterva () method,  184

462	 clearTimeout() function

c earT meout() funct on,  236 237
c earT meout() method,  184
c ck event(),  226, 294
c ck event() (jQuery),  405
c ents

forc ng JavaScr pt on,  10 11
test ng server s de cobrand ng for,  12

c osed property,  183
c ose() method,  184, 234
c os ng tags

s ash character n,  7
c osures,  155
co orDepth property,  185
co or propert es,  301
co umn head ngs, add ng from XML

document,  337 339
comma operator,  114
comments

mu t ne comments (/* and */), beg nn ng and
end ng,  51

s ng e ne comments (//),  51
syntax ru es,  51

compat b ty, downward,  15, 17
comp ementary anguage, JavaScr pt as,  10
compound ass gnment operators,  113 114
compound vs. s mp e statements,  55
concatenat ng

arrays,  172 177
str ngs,  70

concat() method
w th arrays,  172 174
w th str ngs,  70

cond t ona statements. See also statements
do...wh e statement,  135
e se f statement,  126 127
e se statement,  126 127
f e se... f e se statement,  143 145
f statement,  54, 119 126
sem co ons n,  52
ternary cond t ona s,  131
test ng w th sw tch statement,  132 134
us ng mu t p e eve s n,  128 131
us ng return va ue w th n,  152
va dat ng forms w th,  143 145
wh e statement,  134 135

confirm() funct on,  156 161
constants, numer c,  65
Content De very Network (CDN), for

jQuery,  387 388
convert ng

Boo ean data types,  98
numbers,  97
seconds to m seconds,  237
str ngs,  97 98
to numbers w th p us s gn,  107

cook es
about,  239 240, 349
contents of,  240

enab ng prompt ng for,  241 242
pr vacy and,  239 240
read ng w th JavaScr pt,  248 250
remov ng,  250
sett ng doma n n,  246 247
sett ng exp rat on date,  241 244
sett ng path of,  245 246
s mp e,  241
work ng w th secure,  247 248

createE ement() method,  217
createTextNode() method,  218
creat ng e ements,  217 219
cross browser event hand ng n

jQuery,  405, 406
cross ng doma ns, and JavaScr pt,  11
CSS (Cascad ng Sty e Sheets)

about,  297
AJAX comb ned w th,  345
app y ng,  299 300
DOCTYPE dec arat ons and,  9
mage ro overs and,  253
n o der web browsers,  231
mod fy ng sty e sheets,  308 311
re at onsh p w th JavaScr pt

sett ng e ements sty es by D,  300 304
retr ev ng e ement sty es,  307 308
sett ng c asses,  306 307
sett ng d sp ay property n jQuery,  415
sett ng e ement sty es by D,  300 304
sett ng e ement sty es by type,  304 306
structure for,  298
sty ed drop down boxes,  378 379
sty ng HTML tab es w th,  371 374
us ng propert es and se ectors,  298 299
work ng w th CSS sty e c asses us ng jQuery,  403

cssF oat property,  301
css() funct on (jQuery),  394, 402
cssRu es array,  309
cur y braces ({ })

creat ng objects w th,  72, 167
n f statement,  52

cur y braces { }
creat ng objects w th,  72

currentSty e array property,  307

D
data, as component of JavaScr pt,  342
data secur ty, and JavaScr pt,  11
data types

about,  61
Boo ean,  71
nu ,  71
numbers,  62 66
objects,  72
str ngs,  66 70
undefined,  71

Date objects

	 Eclipse	 463

count ng down to date n future,  86 87
get...() methods of,  90
mp ementat on of methods by web

browsers,  82 84
methods,  155
set...() methods of,  90
syntax ru es for,  84
to...Str ng() methods,  90
wr t ng date and t me to web pages,  85 86

dateStr ng var ab es,  86
db c ck event,  226
db c ck event (jQuery),  405
debugg ng JavaScr pt,  46 47, 80 82
dec ar ng var ab es

str ct mode requ rement,  59
decodeUR Component() method,  179
decodeUR () method,  179
decrement ng numbers,  106 107
Defau t.aspx fi e,  25
defau tStatus property,  183
de ete operator (unary),  106, 108 111
de et ng e ements,  219 221
des gn ng webs tes,  12 14
detachEvent() method,  184, 226
deve op ng n JavaScr pt

configur ng env ronment,  20
creat ng web project

us ng Ec pse,  33 40
us ng Notepad,  41 43
us ng V sua Stud o 2010,  24 28

opt ons for,  19
us ng externa JavaScr pt fi es

w th Ec pse,  38 41
w th Notepad,  44 46
w th V sua Stud o 2010,  28 32

wr t ng JavaScr pt
w th Ec pse,  33 40
w th Notepad,  41 43
w th V s o stud o 2010,  20 24

d a og funct ons,  156 161
d rector es feature (open() method),  234
d sp ay, as component of JavaScr pt,  342
d sp ayData() funct on,  333 335, 371
d v s on (/) operator,  100
DOCTYPE dec arat on

mportance of,  9, 36
n user defined funct ons,  58
us ng correct,  13

document object, ch d of,  182
Document Object Mode (DOM). See DOM

(Document Object Mode)
Document Type (DOCTYPE) dec arat on. See

DOCTYPE dec arat on
do ar s gn ($) character n regu ar

express ons,  92
DOM 0 mode ,  223 226, 230
DOM (Document Object Mode)

about,  5 6, 182

as tree,  205 206
ava ab ty n jQuery,  390
creat ng e ements,  217 219
d sp ay ng XML,  333
e ement d st nct ons,  206
HTML co ect ons and,  212
n form va dat on,  275
nnerHTML property and,  208 209
Leve s (0, 1, 2) n,  223 226
process ng nat ve XML responses,  354
retr ev ng e ements by D,  206 207
retr ev ng e ements by tag name,  210 211
retr ev ng e ements by tag name or D,  300
sett ng attr butes,  216 217
s mp e mage ro overs us ng o d,  253 255
spec fied objects,  208
transvers ng n jQuery,  398 404
us ng modern ro overs w th on oad event,  255 261
v ew ng attr butes,  213 215
work ng w th notes,  206
work ng w th s b ngs,  212

doSometh ng() funct on,  75
dot notat on (.),  66, 68
dot s gn (.)

character n regu ar express ons,  92
operator, access ng methods,  155

doub e quotes (“ “)
escap ng,  67 68
n jQuery statements,  389
str ngs enc osed n,  66
to des gnate JavaScr pt fi e n Notepad,  44, 45

do...wh e statement,  135, 135 136
downward compat b ty,  15, 17
draggab e() funct on (jQuery U),  421 422
dragg ng and dropp ng e ements n jQuery

U ,  421 423
drop down boxes, creat ng,  374 379
droppab e() funct on (jQuery U),  421 423
DTD (DOCTYPE dec arat on). See DOCTYPE dec arat on

E
each() funct on,  398 399
Ec pse

add ng co umn head ngs from XML
document,  337 339

add ng durat ons n jQuery,  418
add ng e ements w th concat(),  173 175
add ng exp rat on dates to cook es,  242 244
ca cu at ng render t me,  87 89
count ng down to date n future,  86 87
creat ng brar es,  384 385
creat ng portab e ro overs,  257 262
creat ng prev ous button,  266 269
creat ng web project,  33 39
determ n ng screens he ght and w dth,  185 187
exam n ng var ab es scope,  76 77

464	 Eclipse

Ec pse, continued
ook ng at ocat on object,  192 198
ook ng at nav gator object,  188 190
oop ng through object propert es,  168 169
obta n ng nput w th confirm() funct on,  157 161
perform ng hexadec ma math,  62
retr ev ng e ement attr butes,  213 215
se ect ng an opt on w th JavaScr pt,  282
send ng and rece v ng w th

XMLHTTPRequest(),  352 353
test ng equa ty operators,  102
test ng JavaScr pt code,  20
us ng CSS and JavaScr pt for form

va dat on,  302 304
us ng de ete operator w th objects,  108 111
us ng document ready (jQuery),  390
us ng externa JavaScr pt fi es,  38 41
us ng for... n oop,  140 141
us ng for oop w th arrays,  138 140
us ng f statements to determ ne program

flow,  122 124
us ng try/catch w th web forms,  314 321
us ng typeof operator,  111 112
us ng XMLHTTPRequest() to retr eve and

d sp ay XML data,  368 370
va dat ng nput w th cond t ona

statements,  143 145
wr t ng date and t me to web pages,  85 86

ECMA 262 standard
about,  4 5
c asses and,  164
co d ng w th reserved words n creat ng

brar es,  385
enhancements n,  16 17
forEach() method,  177
ne term nators,  53
st ng of str ng methods,  70

methods of array object,  172, 177
on pr m t ve types,  96
reserved words,  55
spec ficat ons of Math object,  66
spec fy ng number of arguments,  148
str ct var ant,  59 60

ECMA (European Computer Manufacturers
Assoc at on),  4

E ch, Brendan,  3
e ements

chang ng text deve opments,  208 209
creat ng,  217 219
de et ng,  219 221
d st nct ons n DOM,  206
HTML co ect ons and,  212
retr ev ng by D,  206 209
retr ev ng by tag name,  210 212
retr ev ng e ement attr butes,  213 215

e ement sty es (CSS)
retr ev ng,  307 308
sett ng by D,  300 304

sett ng by type,  304 306
e se f statement,  126 127
e se statement,  126 127
encodeUR Component() method,  178 179
encodeUR () method,  178 179
equa ty operators,  102 104, 170
error check ng

str ct mode for,  59 60
error event (jQuery),  405
error hand ng

avo d hand ng events obtrus ve y,  323
n jQuery,  412 413
us ng fina y statement w th try/catch

statement,  321 322
us ng onerror() event

attach ng to mage object,  325 327
attach ng to w ndow object,  322 325
gnor ng errors,  324 325

us ng try/catch,  313 321
escape characters

n regu ar express ons (\),  92
reserve by UR RFC,  348
str ng,  67 68

European Computer Manufacturers
Assoc at on (ECMA),  4

eva () funct on
n str ct mode,  59

eva () method,  179
Event Bubb ng,  225
Event Capture,  225
event dr ven anguage, JavaScr pt as,  7
event hand ers

gener c,  227 228
n ne,  199, 204
W3C mode and nternet Exp orer

mode s,  224 226
event, steners,  226, 227
events

jQuery,  405 409
mode s

DOM (0, 1, 2),  204, 223 226
onc ck(),  204
on oad(),  204, 212
web forms and,  182

every() method,  178
Exce 2007

represent ng XML n,  333
work ng w th XML data from,  339

exc amat on po nt (!)
operator (unary),  106, 107

exec() method,  93 94
exp c t constructors,  171
express ons

defin t on of,  54
ne breaks n,  53

sem co ons n,  51 52, 54
Extens b e Hypertext Markup Language (XHTML)

p ac ng JavaScr pt n,  53 54

	 greater than or equal to (>=) operator	 465

Extens b e Markup Language (XML). See XML
(Extens b e Markup Language)

externa JavaScr pt fi es, us ng
w th ec pse,  38 41
w th Notepad,  44 46
w th V s o 2010,  28 32

F
fade n() funct on (jQuery),  419
fadeOut() funct on (jQuery),  419
fadeTo() funct on (jQuery),  419
features parameter,  233
feature test ng,  230 231
feedback, prov d ng n ne,  293 295
fi ter() method,  178
fina y statement,  321 322
F rebug (F refox add on)

nsta ng,  78 79
us ng to debug JavaScr pt,  47

F refox
best pract ce for open ng browser w ndow,  235
b ock ng on oad event,  233
features parameter,  233
for each... n oop n,  141 142
mp ementat on of Date object methods,  82
nterpretat on for DOM standard n,  6
JavaScr pt and o der browsers,  231
ook ng at nav gator object,  188 189
obta n ng ength of str ngs,  68 69
on h d ng ocat on bar n new w ndow,  234
remov ng cook es,  250
res z ng w ndows us ng JavaScr pt,  236
support for ECMA 262 standard,  5
test ng sNaN() funct on,  64
User Agent Sw tcher add on,  187
us ng escape sequences,  67 68
us ng F rebug add on to debug JavaScr pt,  46
us ng JavaScr pt pseudo protoco and

funct on,  7 8
us ng XMLHTTPRequest() object n,  332
v s tor browser detect on,  229

firstCh d property,  213
fl p() funct on,  283
float property,  301
focus event,  226
focus event (jQuery),  405
focus n event (jQuery),  405
focus() method,  184
focusout event (jQuery),  405
fontFam y sty e property,  372
font propert es,  301
for each... n oop,  141 143
forEach() method,  177
for... n oop,  140 141, 168 169
for oops,  137 139
form data

obta n ng,  278
preva dat ng,  289 295

for() method,  177
form nformat on

work ng w th check boxes,  284 288
work ng w th rad o buttons,  287 289
work ng w th se ect boxes,  279 283

form re ated se ectors (jQuery),  397
forms. See web forms
forms object, ch d of,  182
formVa d() funct on,  278
for statement

c auses n,  137 138
sem co ons n oop constructors,  54
separat ng cook e name from data,  249 250

forward() method,  198
forward s ashes (/), de neat ng regu ar express ons,  131
free ng of memory,  97
funct on over form, emphas z ng,  13
funct ons

about,  56, 147
as reference types,  96
browser compat b ty,  56
c osures and,  155
defin ng var ab es w th n,  75
jQuery,  397 405
Math object,  66
methods and,  155, 164
nam ng,  150 151
pass ng arguments nto,  148 149
return va ues,  151 152
syntax ru es,  49
syntax ru es for,  147
user defined

defin ng,  153 154, 156
p ac ng JavaScr pt w th,  57 58

us ng str ct mode w th n,  59
va dat ng nput to determ ne f number or text,  65

G
garbage co ect on,  97
Genera Deve opment Sett ngs co ect on (VS),  21 22
gener c event hand ers,  227 228
getA ResponseHeaders() method,  356
getAttr bute() method,  213 214
getComputedSty e() method,  307
getE ementBy d() method,  206 207, 210 212, 213 214,

230, 300
getE ementsByTagName() method,  210 211, 278
get() funct on (jQuery),  409
GET() method,  348, 349, 350, 356
get...() methods of Date objects,  90
getYear() method,  83 84
g oba y scop ng and dec ar ng var ab es,  75, 150
go() method,  198
Goog e Suggest,  374
greater than (>) operator,  104
greater than or equa to (>=) operator,  104

466	 hasClass() method (jQuery)

H
hasC ass() method (jQuery),  403
HEAD() method,  348, 349, 356
head tags

p acement of JavaScr pt w th n,  7 8
p ac ng JavaScr pt nto externa fi es from,  38 41

he ght (new w ndow) feature (open() method),  234
he ght propert es,  301
he ght property,  185
“He o Wor d” program,  7
hexadec ma numbers,  62 63
h dden data types,  71
h de() funct on (jQuery),  415 418
h story object,  182, 198 199
Host header, n HTTP,  349
hover event (jQuery),  405
hover() funct on (jQuery),  408
href attr bute,  206, 207, 212, 216
HTML co ect ons

document.anchors,  212
document.forms,  212
document. mages,  212
document. nks,  212

htm () funct on (jQuery),  403 404
HTML (Hypertext Markup Language)

best pract ce for p ac ng JavaScr pt n,  8
b nk tags,  13
chang ng n jQuery,  403 404
cook es,  349
DOCTYPE dec arat ons and,  9
DOM standard for,  5. See also DOM (Document

Object Mode)
about,  203

nsert ng comments to keep JavaScr pt away from
o der browsers,  231 232

JavaScr pt deve opment opt ons,  19
p ac ng JavaScr pt n,  53, 54
us ng we formed,  13

HTML tab es
creat ng w th XML,  367 371
sty ng w th CSS,  371 374

HTTP HEAD method. See HEAD() method
HTTP (Hypertext Transfer Protoco)

as protoco for exchang ng nformat on
on web,  349

cook es
about,  239 240
contents of,  240
enab ng prompt ng for,  241 242
pr vacy and,  239 240
read ng w th JavaScr pt,  248 250
remov ng,  250
sett ng doma n n,  246 247
sett ng exp rat on date,  241 244
sett ng path of,  245 246
s mp e,  241
work ng w th secure,  247 248

I
d attr bute,  206
dent fiers, as part of JavaScr pt statement,  54
DEs (ntegrated deve opment env ronments)

JavaScr pt deve opment opt ons,  19
f cond t ona . See f statement
f/e se constructs,  131
f e se... f e se statement,  143 145
f statement

about,  119
Boo ean express on w th n,  71
compound cond t ons us ng,  124 125
n error hand ng,  315 321
sem co ons n,  52, 54
syntax for,  119 123

S (M crosoft nternet nformat on Serv ces) 6.0,  11
ega numbers, determ n ng,  63

mage maps, work ng w th,  270 274
mage objects, attach ng onerror() event to,  325 327
mage ro overs

about,  253
nam ng convent on for,  259
s mp e ro overs us ng o d DOM event hand ng

mode ,  253 255
us ng modern ro overs w th DOM on oad

event,  255 261
mages

pre oad ng,  262 264
work ng w th s deshows,  263 269

mp c t constructors,  171
mport And Export Sett ngs W zard,  22 27
ncompat b t es w th browsers,  4 5
ncrement ng numbers,  106 107
ndent ng, n statements,  50
ndexes

for arrays,  139
for substr ng method,  69

ndexOf() method,  178
nfin ty constant,  65
n ne event hand ers

onc ck,  199, 203
n ne feedback, prov d ng,  293 295
nnerHTML property,  208
n operator,  104, 105
nstanceof operator,  104, 105
ntegrated Deve opment Env ronments (DEs)

JavaScr pt deve opment opt ons,  19
nternet Exp orer

access to o der vers ons of,  15
a ert about v ew ng b ocked content,  37
best pract ce for open ng browser w ndow,  235
b ock ng on oad event,  233
c osures n,  155
confirm() funct on n,  156
event mode s,  223, 224 226
features parameter,  233
for each... n oop n,  141 142
gener c event hand ers,  228

 JSON (JavaScript Object Notation) 467

mp ementat on of Date object methods, 82 84
nterpretat on of DOM standard n, 6 7
JavaScr pt and o der browsers, 231
jQuery and, 415
ook ng at nav gator object, 189
obta n ng ength of str ngs, 68 69
on h d ng ocat on bar n new w ndow, 234
prompt() funct on n, 143
remov ng cook es, 250
retr ev ng e ement sty es, 307
setAttr bute() method and, 217
support for DOM, 204
support for ECMA 262 standard, 4 5
support for JavaScr pt, 4 5
test ng sNaN() funct on, 64 65
us ng escape sequences, 67 68
us ng JavaScr pt pseudo protoco and funct on, 7 8
us ng XMLHTTPRequest() object n, 332, 346

nternet Exp orer 9
jQuery and, 415

nternet nformat on Serv ces (S) 6 .0, 11
nternet web browsers . See web browsers
Pad, Webk t render ng eng ne, 6
Phone, Webk t render ng eng ne, 6
sNaN() funct on, 63 65, 178
terat ng through arrays, methods to, 177

J
Java

us ng nav gator object to detect, 190
JavaScr pt

about, 3 6
and o der web browsers, 231 233
app cat ons, components of, 341 344
as comp ementary anguage, 10
as event dr ven anguage, 7
as object based anguage, 72
as web nterface, 342 343
m tat ons of, 10 12

negat ve assoc at on w th Java, 3 4
parts of programs, 6
pay ng attent on to syntax ru es, 6
p ac ng n HTML, 53
p ac ng n web pages, 7 9
p ac ng n XHTML, 53 54
spec fy ng number of arguments, 148
va dat on, 289 293

JavaScr pt nterpreter
nsert ng sem co ons, 52

JavaScr pt Object Notat on (JSON) . See JSON
(JavaScr pt Object Notat on)

javascr pt: pseudo protoco dent fier, 7 8, 112
Java V rtua mach ne, 97
jo n() method, 174 175
jQuery

about, 387

AJAX and, 409 414
cha n ng n, 402 403
chang ng src attr bute for vers on of, 388
co d ng w th reserved words n creat ng

brar es, 385
connect ng to oad (on oad) event, 389 390
cross browser event hand ng, 405, 406
down oad ng, 387 388
events

about, 405
b nd ng and unb nd ng, 405 407
mouse, 407 408

features for enhanc ng usab ty
about, 415
add ng fade n and fade out, 419
add ng s d ng funct ons, 420 421
h d ng e ements, 415 418
us ng show() funct on, 415 416, 418
us ng togg e() funct on, 417 418

funct ons
about, 397
ca back, 404, 412 413, 418
chang ng text and HTML, 403 404
nsert ng e ements, 404
transvers ng DOM, 398 404
work ng w th attr butes, 403

nc ud ng n web pages, 387, 388
brar es, 385

se ect ng e ements by
attr bute, 396
c ass, 391 392
h erarchy, 392 393
D, 391

pos t on, 393 395
type, 392

se ect ng form e ements, 397
se ectors, 389, 391 397
send ng data to server, 412
syntax for, 387, 388 389
travers ng n, 398

jquery() funct on, 388
jQuery U

about, 420
creat ng accord on effect, 423 426
drag and drop funct ons, 421 423
on ne nformat on about, 427
us ng, 420

JScr pt (JavaScr pt) fi es
add ng to web projects, 29
chang ng name of, 29
des gnat ng fi e extens on n Notepad, 45
nternet Exp orer support for, 4
reasons for us ng extens on, 30, 39
reference for, 15

JSON (JavaScr pt Object Notat on)
about, 16
work ng w th, 355 356

468	 keydown event

K
keydown event,  226
keydown event (jQuery),  405
keypress event,  226
keypress event (jQuery),  405
keyup event,  226
keyup event hand er,  363 364
keyup event (jQuery),  405
keywords

reserved,  55 56
return, on separate nes,  50
syntax ru es,  49
th s,  164
var

requ rement for var ab e dec arat ons,  59, 74

L
astCh d property,  213
ast ndex() method,  178
eft arrows (<<) as b tw se operator,  101
eft propert es,  301
eft (screen edge) feature (open() method),  234
egacy DOM (DOM 0),  204, 223 224
ength property

of arrays,  171
of str ngs,  68 69

ess than (<) operator,  104
ess than or equa to (<=) operator,  104
ess than s gn (<), n XHTML,  8
brar es
about,  383
defin ng,  383 385
jQuery,  385
MooToo s,  386
on ne references for th rd party,  386
Yahoo! User nterface (YU),  385

ne breaks, syntax ru es,  53
ne term nators,  53
nk ng fi es
us ng src attr bute,  54

steners, event,  226, 227
stName() funct on,  363 364
st sty e mage propert es,  301

L veScr pt,  3
oad event,  226
oad event (jQuery),  405
oca y scop ng and dec ar ng var ab es,  75 76, 150
ocat on (bar) feature (open() method),  234
ocat on object

about,  191 192
ch d of,  182
ook ng at,  192 198

og ca not, negat ng w th,  107
oops

creat ng w th wh e statement,  134 135
for each... n,  141 143
for... n,  140 141, 168

for oop,  137 139, 249
gett ng ength of arguments object,  148
n jQuery funct ons,  398 399
p ac ng a ert() funct on n,  47
sem co ons n,  52, 54
us ng return va ue w th n,  152

M
map() method,  178
marg n propert es,  301
Markup Va dator,  9, 13
match() funct on,  131
match() method,  93, 95
Math object

methods,  155
propert es of,  65 66

Math.P property,  65
MAX VALUE constant,  65
memory eak prob ems

c osures caus ng,  155
menubar feature (open() method),  234
methods

about,  155, 164
add ng to objects,  171
funct ons and,  155, 164
n Date object,  82 83
of array objects,  172 178
support for,  177

M crosoft B ng Maps,  342
M crosoft Exce 2007

represent ng XML n,  333
work ng w th XML data from,  339

M crosoft nternet Exp orer
access to o der vers ons of,  15
a ert about v ew ng b ocked content,  37
best pract ce for open ng browser w ndow,  235
b ock ng on oad event,  233
c osures n,  155
confirm() funct on n,  156
event mode s,  223, 224 226
features parameter,  233
for each... n oop n,  141 142
gener c event hand ers,  228
mp ementat on of Date object methods,  82 84
nterpretat on of DOM standard n,  5 6
JavaScr pt and o der browsers,  231
jQuery and,  415
ook ng at nav gator object,  189
obta n ng ength of str ngs,  68 69
on h d ng ocat on bar n new w ndow,  234
prompt() funct on n,  143
remov ng cook es,  250
retr ev ng e ement sty es,  307
retr ev ng ru es app ed by sty e sheets,  309
setAttr bute() method and,  217
support for DOM,  204
support for ECMA 262 standard,  4
support for JavaScr pt,  4

	 Notepad	 469

test ng sNaN() funct on,  64 65
us ng escape sequences,  67 68
us ng JavaScr pt pseudo protoco and funct on,  7 8
us ng XMLHTTPRequest() object n,  332, 346

M crosoft nternet Exp orer 9, jQuery and,  415
M crosoft nternet nformat on Serv ces (S) 6.0,

bu d ng web app cat ons from,  11
M crosoft Office Word, ed t ng JavaScr pt w th,  41
M crosoft Scr pt Debugger,  78
M crosoft V sua Bas c, Scr pt ng Ed t on,  4
M crosoft V sua Stud o

add ng co umn head ngs from XML
document,  337 339

add ng durat ons n jQuery,  418 419
add ng e ements w th concat(),  173 175
add ng exp rat on dates to cook es,  242 244
ca cu at ng render t me,  87 89
count ng down to date n future,  86 87
creat ng brar es,  384 385
creat ng portab e ro overs,  257 262
creat ng prev ous button,  266 269
determ n ng screens he ght and w dth,  185 187
DOCTYPE dec arat ons,  9
exam n ng var ab e scope,  76 77
JavaScr pt deve opment opt ons,  19
ook ng at ocat on object,  192 198
ook ng at nav gator object,  188 190
oop ng through object propert es,  168 169
obta n ng nput w th confirm() funct on,  157 161
perform ng hexadec ma math,  62 63
retr ev ng e ement attr butes,  213 215
se ect ng an opt on w th JavaScr pt,  282 284
send ng and rece v ng w th

XMLHTTPRequest(),  352 353
test ng equa ty operators,  102 103
us ng CSS and JavaScr pt for form va dat on,  302 304
us ng de ete operator w th objects,  108 111
us ng document ready (jQuery),  390
us ng for... n oop,  140 141
us ng for oop w th arrays,  138 140
us ng f statements to determ ne program

flow,  122 124
us ng try/catch w th web forms,  314 321
us ng typeof operator,  111 112
us ng XMLHTTPRequest() to retr eve and d sp ay XML

data,  368 370
va dat ng nput w th cond t ona statements,  143 145
wr t ng date and t me to web pages,  85 86

M crosoft V sua Stud o 2010
creat ng web projects,  24
deve op ng JavaScr pt,  20
us ng externa JavaScr pt fi es,  29 33
wr t ng JavaScr pt,  20 24

M crosoft V sua Web Deve oper 2010 Express
deve op ng JavaScr pt us ng,  20

M crosoft W ndows 7
open ng Notepad,  41

M crosoft W ndows V sta

open ng Notepad,  41
M crosoft W ndows XP

open ng Notepad,  41
m n ficat on,  114
m nus s gn ()

operator (unary),  106, 107
subtract on operator,  99

M N VALUE constant,  65
modu o operator (%),  101, 374
MooToo s brar es,  386
mousedown event,  226
mouse events (jQuery),  405, 407 408
mousemove event,  226
mouseout event,  226
mouseout() event,  271, 407 408
mouseover event,  226
mouseover() event,  271, 407 408
mouseup event,  226
moveBy() method,  184, 236
moveTo() method,  184, 236
Moz a F refox web browser. See F refox
mu t ne comments (/* and */), beg nn ng and

end ng,  51
mu t p e eve s of cond t ona s, us ng,  128 131
mu t p cat on operator (*),  100 101
mu t p cat ve operators,  100 101
mus c, us ng background,  14

N
name property,  183
nav gat on too s, des gn ng webs tes us ng s mp e,  13
nav gator object

browser detect on,  187, 228 232
ch d of,  182
ook ng at,  188 190
us ng to detect Java,  190 191
us ng w th caut on,  232

NEGAT VE NF N TY constant,  65
negat ve numbers, creat ng w th m nus s gn,  107
nested va ues

conta n ng arrays,  73
nest ng

funct ons,  155
webpage e ements,  7

Netscape
JavaScr pt and o der browsers,  231
support for ECMA 262 standard,  4

New JavaScr pt Project d a og (Ec pse),  33 39
New Web S te d a og box (VS),  24
node objects,  206, 213
nonscr pt tags,  232
Notepad

creat ng web page,  41 43
deve op ng JavaScr pt,  19
open ng,  41
us ng externa JavaScr pt fi es,  44 46
v ew ng A F es,  45

470	 NOT operator (bitwise)

NOT operator (b tw se),  101
nu

as pr m t ve types,  96
data types,  71

numbers
about,  62 63
as pr m t ve types,  96
convert ng,  97
convert ng to, w th p us s gn,  107
creat ng negat ve, w th m nus s gn,  107
decrement ng,  106 107
determ n ng va d,  63
ncrement ng,  106 107
propert es of Math objects,  65 66

numer c constants,  65

O
object detect on,  230
object or ented

JavaScr pt
anonymous funct ons n,  154

object or ented deve opment
c asses,  164 167
objects

about,  163
add ng methods to,  171
add ng propert es to,  168
ass gn ng propert es,  168
creat ng,  167
d sp ay ng propert es,  168
ook ng for propert es,  170
propert es of,  164

objects
about,  163
arguments,  149 150
as reference types,  96
bu t n,  155, 178 179
creat ng,  167 170
data type,  72
date

count ng down to date n future,  86 87
get...() methods of,  90
mp ementat on of methods by browsers,  82 84
set...() methods of,  90
to...Str ng() methods,  90
wr t ng date and t me to web pages,  85 86

g oba ,  178 179
HTML co ect ons and,  212
Math, propert es of,  65 66
method of array,  172 178
methods and,  164, 171
propert es

about,  164
ass gn ng,  168
d sp ay ng,  168 169
ook ng for,  170

RegExp
syntax of,  92 97
us ng,  91

us ng de ete operator w th,  108 111
us ng n arrays,  73

Office Word, ed t ng JavaScr pt w th,  41
onb ur() event,  224
onchange() event,  224
onc ck() event,  199, 204, 224
ondb c ck() event,  224
onerror() event,  322 327
onfocus() event,  224
onkeydown() event,  224
onkeyup() event,  224
on oad event,  255
on oad() event,  204, 212, 224, 233
on oad() funct ons,  228
onmousedown() event,  224
onmousemove() event,  224
onmouseout() event,  224, 253, 255 256
onmouseover() event,  224, 225, 253, 255 256
onmouseup() event,  224
onreset() event,  224
onres ze() event,  224
onse ect() event,  224
onsubm t() event,  224
onun oad event,  224
opener property,  183
open ng browser tabs,  235 236
open ng browser w ndows

best pract ces,  234
open() method,  233 234

open() method,  184, 233 234, 350
Opera

b ock ng on oad event,  233
nterpretat on for DOM standard n,  6
support for ECMA 262 standard,  5

operators
add t ve operators,  99 100
as part of JavaScr pt statement,  54
ass gnment,  113 114
b tw se,  101, 113
comma,  114
equa ty,  102 104
mu t p cat ve,  100 101
rat ona ,  104 105
ternary,  231
unary

about,  106
convert ng to numbers,  107
creat ng negat ve numbers,  107
de ete,  106, 108 111
ncrement ng and decrement ng,  106 107
negat ng w th,  107
return ng var ab e types,  111
vo d,  112

OR operator (b tw se),  101

	 resize event (jQuery)	 471

P
padd ng propert es,  301
parent() funct on,  401 402
parentheses ()

characters n regu ar express ons,  92
evok ng funct ons w th empty,  152 153

parent nodes,  213
parent property,  183
pars ng

case sens t ve regu ar express ons,  93
query str ngs sent by browser,  195
str ngs,  92

pass ve data types,  71
percent say ng (%)

modu o operator,  101
Per , work ng w th web app cat ons,  346
PHP (PHP: Hypertext Preprocessor), deve op ng n,  12
p pe () as b tw se operator,  101
p ac ng JavaScr pt

return va ues n funct ons,  152
syntax ru es,  53 54
w th user defined funct on,  57 58

p us s gn (+)
add t ve operators,  99
character n regu ar express ons,  92
operator (unary),  106, 107

p us s gns (++) operator (unary),  106 107
pop() method,  175
pop up w ndows,  233
pos t on propert es,  301
POS T VE NF N TY constant,  65
postfix ng code,  106 107
post() funct on (jQuery),  409
POST() method,  348, 349, 357 359
pow(x,y) funct on,  66
prefix, w ndows,  107, 183
pre oad ng mages,  262 264
prepend ng e ements to arrays,  172
prev ous button, creat ng,  266 269
pr m t ve types,  96
pr nt() method,  184
pr vacy

cook es and,  247 248
pr vacy, cook es and,  239
Project Exp orer (Ec pse),  35 36
projects

Ec pse
creat ng web project,  33 39

Notepad
creat ng web project,  41 46

p ac ng JavaScr pt w th user defined
funct ons,  57 58

V sua Stud o 2010
creat ng externa fi es,  29 33
creat ng web project,  24 28

prompt() funct on
n nternet Exp orer,  121, 143
w ndow objects,  156, 183

propert es
CSS,  301
JavaScr pt,  301
ength

arrays,  172
str ngs,  68 69

ook ng for,  170
of Math object,  66
of objects

about,  164
ass gn ng,  168
d sp ay ng,  168

readyState property,  334, 351
screen object,  185
w ndow object,  183

pseudo c asses,  164, 166 167
pseudo protoco dent fier, Javascr pt

typ ng JavaScr pt n address bar of web browser,  19
pseudo protoco dent fier, JavaScr pt,  7 8, 112
pseudo random numbers,  65, 66
push() method,  175

Q
quest on mark (?)

character n regu ar express ons,  92
operator n f/e se constructs,  131

Qu rks Mode, fa ng back to,  9
Qu rksMode webs te, on browser compat b ty,  56

R
rad o buttons n web forms,  287 289
random() funct on,  66
rat ona operators,  104 105
readyAJAX() funct on,  350, 363
ready() funct on (jQuery),  389
readyState property,  334, 351
reference types,  96
RegExp object

about,  91
syntax of,  92 97

reg sterContentHand er() method,  199
reg sterProtoco Hand er() method,  199
regu ar express ons

syntax of,  92 97
us ng forward s ashes (/) to de neate,  131

re oad() method,  198
removeCh d() method,  219 220
removeC ass() method (jQuery),  403
removeEventL stener() method,  184, 226
remove() method,  228
rep ace() method,  92, 93, 95
reserved words,  55 56
Res g, John,  228
res zab e (w ndow) feature (open() method),  234
res zeBy() method,  184, 236
res ze event (jQuery),  405

472	 resizeTo() method

res zeTo() method,  184, 236
responseText() method,  350
responseXML() method,  354 355
retr ev ng e ements

attr butes,  213
by D,  206 207
by tag name,  210 212

return, keyword
on separate ne,  50
separat ng from va ues,  52

return va ues, of funct ons,  151 152
reverse() method,  178
RFC 2616, defin ng HTTP,  349
RFC 2965,  239
RFC 3986,  348
Rh no,  181
r ght arrows (>>) as b tw se operator,  101
r ght arrows (>>>) as b tw se operator,  101
ro over() funct on,  260 262
ro over mages

about,  253
nam ng convent on for,  259
s mp e ro overs us ng o d DOM event hand ng

mode ,  253 255
us ng modern ro overs w th DOM on oad

event,  255 260
round(x),  66
ru es array,  309

S
Safar

nterpretat on for DOM standard n,  6
support for ECMA 262 standard,  5
Webk t render ng eng ne n,  6

same or g n po cy,  351, 357
Save As d a og box (Notepad),  42
screen object

ch d of,  182
propert es of,  185

Scr pt Debugger,  78
scr pt tags

add ng src attr bute to,  31, 40
dec ar ng as JavaScr pt,  37
p acement of JavaScr pt w th n,  7 8
p ac ng JavaScr pt n,  53

scro bars feature (open() method),  234
scro event (jQuery),  405
search() method,  93, 95
Secure Sockets Layer (SSL) enab ed sess on,

cook es sent over,  240
secur ty

cook es and,  239 240, 247 248
prob ems us ng XML (AJAX),  179

secur ty enhancements
str ct mode for,  59 60

se ect event (jQuery),  405
se f object,  182, 183
se f propert es,  183

sem co ons
n statements and express ons,  51 52, 54

sendA ert() funct on,  237
send() method,  350
server s de code, deve op ng,  12
setAttr bute() method,  216 217
set nterva () funct on,  236 237
set nterva () method,  184
set...() methods of Date objects,  90
setT meout() funct on,  236 238
setT meout() method,  184
Sh ft Left operator (b tw se),  101
sh ft() method,  175 176
Sh ft R ght operators (b tw se),  101
shortcuts, programm ng w th,  114
show() funct on (jQuery),  415 416, 418
showNum() funct on,  155
s b ng re at onsh ps,  212
s mp e vs. compound statements,  55
s ng e ne comments (//),  51
s ng e quotes ()

escap ng,  67
n jQuery statements,  389
str ngs enc osed n,  66

s te maps, des gn ng webs tes us ng,  13
s ash (/) characters

d v s on operator,  100
n c os ng tag,  7

s ce() method,  70, 176
s deDown() funct on (jQuery),  420
s deshows

creat ng,  263 265
mov ng backward,  266 270

s deUp() funct on (jQuery),  420 421
So ut on Exp orer (VS)

ocat on of,  25
open ng .htm fi es,  29

some() method,  178
sort() method,  176 177
spec a characters

to regu ar express ons,  92
sp ce() method,  178
sp t method,  93
square brackets []

character n regu ar express ons,  92
n mp c t array constructor,  171

src attr bute
add ng to scr pt tag

Ec pse,  40
Notepad,  45
V sua Bas c 2010,  31

chang ng for vers on of jQuery,  388
defin ng ocat on of externa JavaScr pt fi e,  28
nk ng fi es us ng,  54

src() method,  262
SSL (Secure Sockets Layer) enab ed sess on,

cook es sent over,  240
Star() funct on,  167
star objects,  165 167, 168 169

	 troubleshooting	 473

star s gn (*)
character n regu ar express ons,  92

starStr ng var ab es,  174
startT mer() funct on,  237
statements. See also cond t ona statements

defin t on of,  54
funct ons n,  147
ndent ng,  50
ne breaks n,  53

sem co ons n,  51
s mp e vs. compound,  55
wh te space n,  50

status (bar) feature (open() method),  234
status property,  183
stopPropagat on() method,  226
str ct mode,  17, 59 60
Str ng object,  155
str ngs

convert ng,  98
examp es of,  66
n regu ar express ons,  95
methods and propert es,  68 69
pars ng,  92

sty eF oat property,  301
sty eSheets array,  310
sty e sheets, mod fy ng,  308 311
subm t event,  226
subm t() event,  294
subm t event (jQuery),  405
substr ng() method,  69, 70, 196
substr() method,  70
subtract on operator (),  99
suggest as you type drop down boxes,,  374 379
sw tch statement, test ng w th,  132 134
syntax ru es

case sens t v ty,  49 50, 74
comments,  51
for funct ons,  147
for() method,  177
for var ab e names,  74
f/e se constructs,  132
f statements,  119 123
jQuery,  387, 388 389
keywords,  49. See also keywords
ne breaks,  53

of regu ar express ons,  92 97
p ac ng JavaScr pt,  53 54
sem co ons,  51 52
wh tespace,  50

T
tabs, open ng w ndow,  235 236
tags w th n web pages

p acement of JavaScr pt w th n,  7 8
target attr bute,  235 236
td e ements,  211
ternary cond t ona s,  131
ternary operator,  231

test ng
equa ty operators,  102 103
mu t p e browsers,  15
numbers above 99,  130
server s de programm ng,  12
web browsers w th W3C app cat on,  6
webs tes w th mu t p e browsers,  5
w th sw tch statement,  132 134

test() method,  93
text a gn propert es,  301
text capab t es on webs tes,  232
text ed tors, for wr t ng JavaScr pt,  19. See also

Notepad
text fie ds, va dat ng,  293 295
text() funct on (jQuery),  403
text readers, and JavaScr pt,  13
textSearch funct on,  364
th s keyword,  164
t de (~)

character as b tw se operator,  101
operator (unary),  106, 107

t mer D var ab e,  238
t mers, funct ons re ated to,  184, 236 238
t ps

convert ng seconds to m seconds,  237
defin ng funct ons,  147
des gn ng webs tes,  12 14
for... n oop n arrays,  141
n work ng w th cook es,  240
jo n() method,  175
on sett ng cook es prompt,  242
on us ng $(document).ready() funct on n jQuery,  390
reasons v s tors m ght not have JavaScr pt

capab ty,  232
re y ng on v s tor browser nformat on,  187
unsett ng doma n of cook e,  247
us ng confirm() funct on for user nput,  157
us ng dates,  87
us ng Markup Va dator,  9
va dat ng JavaScr pt us ng subm t event,  294

togg eC ass() method (jQuery),  403
togg e event (jQuery),  405
togg e() funct on (jQuery),  417 418
to SOStr ng() method,  17
tokens, as part of JavaScr pt statement,  54
toLoca eLowerCase() method,  70
toLoca eUpperCase() method,  70
toLowerCase() method,  70
ToNumber() funct on,  100, 107
too bar feature (open() method),  234
top propert es,  301
top property,  183
top (screen edge) feature (open() method),  234
to...Str ng() methods,  90
toUpperCase() method,  70
travers ng n jQuery,  398
tree structure

DOM as,  205
troub eshoot ng

creat ng brar es,  385

474	 true/false values

true/fa se va ues
boo ean,  71
captures/bubb e event parameter,  225

two s ash (//) method n comments,  51
typeof operator (unary),  106, 111 113, 230

U
unary operators

about,  106
convert ng to numbers,  107
creat ng negat ve numbers,  107
de ete,  106, 108 111
ncrement ng and decrement ng,  106 107
negat ng us ng,  107
return ng var ab e types,  111 113
vo d,  112

unb nd() funct on (jQuery),  407
undefined

as pr m t ve types,  96
undefined data types

about,  71
underscore character ()

us ng n var ab es,  74
un oad event,  226
un oad event (jQuery),  405
unobtrus ve scr pt ng,  14 15
unsh ft() method,  175
UR s (Un form Resource dent fiers) mak ng safe

mak ng safe,  178 179
mov ng forward and backward through v s tor,  198
us ng ocat on object to dent fy,  191 192

userAgent property,  228 230
User Agent Sw tcher (F refox add on),  187
user defined funct ons

defin ng,  153 154, 156
p ac ng JavaScr pt w th,  57 58

user nput and AJAX,  379

V
va () funct on (jQuery),  403
va dat ng

text fie d,  293 295
va dat ng web pages on ne,  9
va dat on, hack ng JavaScr pt,  289 293
va d numbers, determ n ng,  63
var ab e names

dup cat on of,  60
var ab es

dateStr ng,  86
dec ar ng,  74

str ct mode requ rement for,  59
pr m t ve types,  96
reference types,  96
reserved words,  55 56
scop ng,  75 77, 150 152

starStr ng,  174
syntax ru es for nam ng,  74
test ng wou d sw tch statement,  132
troub eshoot ng,  80 82
types of,  74
us ng a ert() funct on

show ng va ues conta ned w th n var ab es,  47
var keyword

requ rement for var ab e dec arat ons,  59, 74
VBScr pt,  4
Venkman, too for debugg ng JavaScr pt,  46
V m, deve op ng JavaScr pt w th,  19, 41
v s b ty propert es,  301
v s tor

browser nformat on,  187, 228 233
mov ng forward and backward through h story

of,  198
screen he ght and w dth,  185 187

V sua Bas c .NET, deve op ng n,  12
V sua Stud o

add ng co umn head ngs from XML
document,  337 339

add ng durat ons n jQuery,  418
add ng e ements w th concat(),  173 175
add ng exp rat on dates to cook es,  242 244
ca cu at ng render t me,  87 89
count ng down to date n future,  86 87
creat ng brar es,  384 385
creat ng portab e ro overs,  257 262
creat ng prev ous button,  266 269
determ n ng screens he ght and w dth,  185 187
exam n ng var ab e scope,  76 77
JavaScr pt deve opment opt ons,  19
ook ng at ocat on object,  192, 192 198
ook ng at nav gator object,  188 190
oop ng through object propert es,  168
obta n ng nput w th confirm() funct on,  157 161
perform ng hexadec ma math,  62 63
retr ev ng e ement attr butes,  213 215
se ect ng an opt on w th JavaScr pt,  282 284
send ng and rece v ng w th

XMLHTTPRequest(),  352 353
test ng equa ty operators,  102 105
us ng CSS and JavaScr pt for form va dat on,  302 304
us ng de ete operator w th objects,  108 111
us ng document ready (jQuery),  390
us ng for... n oop,  140 141
us ng for oop w th arrays,  138 140
us ng f statements to determ ne program

flow,  122 124
us ng try/catch w th web forms,  314 321
us ng typeof operator,  111 112
us ng XMLHTTPRequest() to retr eve and d sp ay XML

data,  368 370
va dat ng nput w th cond t ona statements,  143 145
wr t ng date and t me to web pages,  85 86

V sua Stud o (VS) 2010
creat ng web projects,  24 28

	 World Wide Web Consortium (W3C)	 475

deve op ng JavaScr pt,  20
se ect ng sty es for deve opment

env ronment,  20 21
us ng externa JavaScr pt fi es,  29 33
wr t ng JavaScr pt,  20 24

V sua Web Deve oper 2010 Express
deve op ng JavaScr pt us ng,  20

vo d operator (unary),  106, 112

W
W3C (Wor d W de Web Consort um)

app cat on for test ng DOM eve support n web
browsers,  6

defin ng XML standard,  331
defin t on of DOM standard,  5
DOM spec ficat ons at,  203
event mode s,  204, 223 226
gener c event hand ers,  228
nnerHTML property and,  208
Markup Va dator,  9, 13
retr ev ng e ement sty es,  307, 309

web app cat ons
dep oy ng,  20

Web Browser, Ec pse
open ng,  37

web browsers. See also nd v dua web
browsers; See also Browser Object Mode

access ng bookmarks from mu t p e
computers,  359 364

b ock ng on oad event,  233
c os ng w ndows

c os ng() method,  234
c osures n,  155
confirm() funct on n,  156
detect on of v s tor browser,  4, 228 231
event mode s,  204, 223 226
features parameter,  233
for each... n oop n,  141 142
funct on support,  56
mp ementat on of Date object methods,  82 84
nterpretat on for DOM standard n,  6
JavaScr pt and o der,  231 233
mov ng w ndows,  184, 236
open ng w ndows

best pract ces,  234
open() method,  233 234

open ng w ndow tabs,  235 236
pars ng query str ngs,  195
prob ems w th detect on,  187
prompt() funct on n,  143
res z ng browser w ndows,  184, 236
support for ECMA 262 standard,  4 5
support for funct ona ty of,  15
support for JavaScr pt,  4 5
typ ng JavaScr pt n address bar of,  19
us ng XMLHTTPRequest() object n,  332, 346

W3C app cat on for test ng DOM eve support n.
See W3C (Wor d W de Web Consort um)

web deve opment
t ps for des gn ng webs tes,  12 14
too s for,  20

Web Deve opment Sett ngs co ect on
chang ng opt ons to use,  22 25

web forms
about JavaScr pt and,  275 278
check boxes n,  284 288
confirm() funct on and,  157
events n,  182
obta n ng form data,  278
preva dat ng form data,  289 295
rad o buttons n,  287 289
se ect boxes n,  279 283
us ng try/catch for error hand ng w th,  314 321
va dat ng form entr es,  301 304

web, how t works,  349
Webk t render ng eng ne n Safar ,  6
webpages

components of JavaScr pt n,  342
nc ud ng jQuery n,  387, 388
JavaScr pt p acement w th n,  7 9
nest ng e ements,  7

webs tes
browser support for,  15
des gn ng,  12 14
pop up w ndows,  233
prob ems w th browser detect on,  187

wh e statement,  134 135
sem co ons n oop constructors,  54

wh te space, n statements,  50 51
w dth (new w ndow) feature (open() method),  234
w dth propert es,  301
w dth property,  185
w ndow object

about,  183
browser h erarchy of objects,  181 182
events,  182
methods of,  183, 184
propert es of,  183

w ndow objects
a ert() funct on,  156, 160
attach ng onerror() event to,  322 325
confirm() funct on,  156 161
prompt() funct on,  156

W ndows 7
open ng Notepad,  41

W ndows V sta
open ng Notepad,  41

W ndows XP
open ng Notepad,  41

W zards (VS)
mport And Export Sett ngs,  22 24

Wor d W de Web Consort um (W3C). See W3C (Wor d
W de Web Consort um)

476	 XHTML (Extensible Hypertext Markup Language)

X
XHTML (Extens b e Hypertext Markup Language)

ampersand character n,  8
ess than s gn (<) n,  8
p ac ng JavaScr pt n,  53 54
standard for DOCTYPE dec arat ons,  9

XML (AJAX)
ca s and us ng eva () method w th,  179
creat ng HTML tab es,  367 371
deve op ng JavaScr pt us ng,  20
us ng F rebug to debug JavaScr pt,  46
XMLHTTPRequest() object, us ng to retr eve and

d sp ay XML data,  368 370
XML (Extens b e Markup Language)

about,  331
documents

about,  331 332
add ng co umn head ngs,  337 339
d sp ay ng,  333 339

XML (Extens b e Markup Language)
mport ng,  332

DOM standard for,  5
XMLHTTPRequest() object

nstant at ng across browsers,  346 347
process ng AJAX responses,  350 353
process ng headers,  356 357
send ng AJAX requests,  348
send ng and rece v ng w th,  352
us ng n web browsers,  332, 346
us ng POST method,  357
us ng to retr eve and d sp ay XML data,  368 371

XOR operator (b tw se),  101

Y
Yahoo! User nterface (YU)

co d ng w th reserved words n creat ng
brar es,  385

brar es,  385

About the Author
Steve Suehring s a techno ogy arch tect who’s wr tten about programm ng, secur ty, network
and system adm n strat on, operat ng systems, and other top cs for severa ndustry pub cat ons
He speaks at conferences and user groups and has served as an ed tor for a popu ar techno ogy
magaz ne

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better . Your feedback will help us continually improve our books and learning
resources for you .

Thank you in advance for your input!

microsoft.com/learning/booksurvey	

microsoft.com/learning/books/newsletter	

	Contents at a Glance
	Table of Contents
	Acknowledgements
	Introducing JavaScript Step by Step, Second Edition
	Getting Help

	Part I. JavaWhat? The Where, Why,
	Chapter 1. JavaScript Is More Than You Might Think
	A Brief History of JavaScript
	Enter Internet Explorer 3.0
	And Then Came ECMAScript
	So Many Standards...
	The DOM

	What’s in a JavaScript Program?
	JavaScript Placement on Your Webpage
	What JavaScript Can Do
	What JavaScript Can’t Do
	JavaScript Can’t Be Forced on a Client
	JavaScript Can’t Guarantee Data Security
	JavaScript Can’t Cross Domains
	JavaScript Doesn’t Do Servers

	Tips for Using JavaScript
	Where JavaScript Fits
	Which Browsers Should the Site Support?

	What’s New in ECMAScript Version 5?
	New Array Methods
	New Controls on Object Properties
	New JSON Object
	Changes to the Date Object
	A New Strict Mode
	Browser Support

	Exercises

	Chapter 2. Developing in JavaScript
	JavaScript Development Options
	Configuring Your Environment
	Writing JavaScript with Visual Studio 2010
	Your First Web (and JavaScript) Project with
Visual Studio 2010
	Using External JavaScript Files with Visual Studio 2010

	Writing JavaScript with Eclipse
	Your First Web (and JavaScript) Project with Eclipse
	Using External JavaScript Files with Eclipse

	Writing JavaScript Without an IDE
	Your First Web (and JavaScript) Project with Notepad
	Using External JavaScript Files Without an IDE

	Debugging JavaScript
	Exercises

	Chapter 3. JavaScript Syntax and Statements
	A Bit of Housekeeping
	Case Sensitivity
	White Space
	Comments
	Semicolons
	Line Breaks
	Placing JavaScript Correctly

	JavaScript Statements
	What’s in a Statement?
	The Two Types of JavaScript Statements

	Reserved Words in JavaScript
	A Quick Look at Functions
	JavaScript’s New Strict Mode
	Exercises

	Working with Variables and
Data Types
	Data Types in JavaScript
	Working with Numbers
	Working with Strings
	Booleans
	Null
	Undefined
	Objects
	Arrays

	Defining and Using Variables
	Declaring Variables
	Variable Types
	Variable Scope
	The Date Object

	Using the RegExp Object
	The Syntax of Regular Expressions
	References and Garbage Collection

	Learning About Type Conversions
	Number Conversions
	String Conversions
	Boolean Conversions

	Exercises

	Using Operators and Expressions
	Meet the Operators
	Additive Operators
	Multiplicative Operators
	Bitwise Operators
	Equality Operators
	Relational Operators
	The in Operator
	The instanceof Operator

	Unary Operators
	Incrementing and Decrementing
	Converting to a Number with the Plus Sign
	Creating a Negative Number with the Minus Sign
	Negating with bitwise not and logical not
	Using the delete Operator
	Returning Variable Types with the typeof Operator
	The void Operator

	Assignment Operators
	The Comma Operator
	Exercises

	Part II. Applying JavaScript
	Chapter 6. Controlling Flow with Conditionals and Loops
	If (and How)
	Syntax for if Statements
	The prompt() Function in Internet Explorer
	Compound Conditions

	Using else if and else Statements
	Working with Ternary Conditionals
	Testing with switch
	Looping with while
	The while Statement
	The do...while Statement

	Using for Loops
	The for Loop
	The for...in Loop
	The for each...in Loop

	Validating Forms with Conditionals
	Exercises

	Chapter 7. Working with Functions
	What’s in a Function?
	Function Arguments
	Variable Scoping Revisited
	Return Values
	More on Calling Functions
	Anonymous/Unnamed Functions (Function Literals)
	Closures

	Methods
	A Look at Dialog Functions
	Exercises

	Chapter 8. Objects in JavaScript
	Object-Oriented Development
	Objects
	Properties
	Methods
	Classes

	Creating Objects
	Adding Properties to Objects
	Adding Methods to Objects

	Finding Out More About Arrays
	The length Property
	Array Methods

	Taking Advantage of Built-in Objects
	The Global Object

	Exercises

	Chapter 9. The Browser Object Model
	Introducing the Browser
	The Browser Hierarchy
	Events

	A Sense of Self
	Getting Information About the Screen
	Using the navigator Object
	The location Object
	The history Object
	Exercises

	Part III. Integrating JavaScript into Design
	Chapter 10. The Document Object Model
	The Document Object Model Defined
	DOM Level 0: The Legacy DOM
	DOM Levels 1 and 2
	The DOM as a Tree
	Working with Nodes

	Retrieving Elements
	Retrieving Elements by ID
	Retrieving by Tag Name
	HTML Collections
	Working with Siblings

	Working with Attributes
	Viewing Attributes
	Setting Attributes

	Creating Elements
	Adding Text
	Adding an Element and Setting an ID

	Deleting Elements
	Exercises

	Chapter 11. JavaScript Events and the Browser
	Understanding Window Events
	The Event Models
	A Generic Event Handler

	Detecting Visitor Information
	A Brief Look at the userAgent Property
	Feature Testing
	Keeping JavaScript Away from Older Browsers
	Other navigator Properties and Methods

	Opening, Closing, and Resizing Windows
	Window Opening Best Practices
	Opening Tabs: No JavaScript Necessary?
	Resizing and Moving Windows

	Timers
	Exercises

	Chapter 12. Creating and Consuming Cookies
	Understanding Cookies
	Creating Cookies with JavaScript
	Looking at a Simple Cookie
	Setting a Cookie’s Expiration Date
	Setting the Cookie Path
	Setting the Cookie Domain
	Working with Secure Cookies

	Reading Cookies with JavaScript
	Removing Cookies
	Exercises

	Chapter 13. Working with Images in JavaScript
	Working with Image Rollovers
	A Simple Rollover
	Modern Rollovers

	Preloading Images
	Working with Slideshows
	Creating a Slideshow
	Moving Backward

	Working with Image Maps
	Exercises

	Chapter 14. Using JavaScript with Web Forms
	JavaScript and Web Forms
	Obtaining Form Data
	Working with Form Information
	Working with Select Boxes
	Working with Check Boxes
	Working with Radio Buttons

	Prevalidating Form Data
	Hacking JavaScript Validation
	Validating a Text Field

	Exercises

	Chapter 15. JavaScript and CSS
	What Is CSS?
	Using Properties and Selectors
	Applying CSS

	The Relationship Between JavaScript and CSS
	Setting Element Styles by ID
	Setting Element Styles by Type
	Setting CSS Classes with JavaScript
	Retrieving Element Styles with JavaScript
	Modifying Style Sheets with JavaScript

	Exercises

	Chapter 16. JavaScript Error Handling
	Introducing Two Ways to Handle Errors
	Using try/catch
	And Finally...

	Using the onerror Event
	Attaching onerror to the window Object
	Ignoring Errors
	Attaching onerror to the image Object

	Exercises

	Part IV. AJAX and Server-Side Integration
	Chapter 17. JavaScript and XML
	Using XML with JavaScript
	Looking at an Example XML Document
	Loading an XML Document with JavaScript

	Working with XML Data from Excel 2007
	A Preview of Things to Come
	Exercises

	Chapter 18. JavaScript Applications
	Components of JavaScript Applications
	The Big Three: Display, Behavior, Data

	JavaScript and Web Interfaces

	Chapter 19. A Touch of AJAX
	Introduction to AJAX
	The XMLHttpRequest Object
	Instantiating the XMLHttpRequest Object
	Sending an AJAX Request
	Processing an AJAX Response
	Processing XML Responses
	Working with JSON
	Processing Headers
	Using the POST Method

	Case Study: Live Searching and Updating
	Exercises

	Chapter 20. A Bit Deeper into AJAX
	Creating an HTML Table with XML and CSS
	Styling the Table with CSS
	Changing Style Attributes with JavaScript

	Creating a Dynamic Drop-Down Box
	Accepting Input from the User and AJAX
	Exercises

	Part V. jQuery
	Chapter 21. An Introduction to JavaScript Libraries and Frameworks
	Understanding Programming Libraries
	Defining Your Own JavaScript Library
	Looking at Popular JavaScript Libraries and Frameworks
	jQuery
	Yahoo! User Interface
	MooTools
	Other Libraries

	Exercises

	Chapter 22. An Introduction to jQuery
	jQuery Primer
	Using jQuery
	The Two jQuery Downloads
	Including jQuery
	Basic jQuery Syntax
	Connecting jQuery to the Load Event

	Using Selectors
	Selecting Elements by ID
	Selecting Elements by Class
	Selecting Elements by Type
	Selecting Elements by Hierarchy
	Selecting Elements by Position
	Selecting Elements by Attribute
	Selecting Form Elements
	More Selectors

	Functions
	Traversing the DOM
	Working with Attributes
	Changing Text and HTML
	Inserting Elements
	Callback Functions

	Events
	Binding and Unbinding
	Mouse Events and Hover
	Many More Event Handlers

	AJAX and jQuery
	AJAX Errors and Timeouts
	Sending Data to the Server
	Other Important Options

	More jQuery
	Exercises

	Chapter 23. jQuery Effects and Plug-Ins
	Core Features for Enhancing Usability
	Native Effects

	jQuery UI
	Using jQuery UI
	Drag and Drop
	Accordion
	More jQuery UI

	Exercises

	Appendix
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23

	Index

