
www.allitebooks.com

http://www.allitebooks.org

JavaScript Unit Testing

Your comprehensive and practical guide to eficiently
performing and automating JavaScript unit testing

Hazem Saleh

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JavaScript Unit Testing

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1040113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-062-5

www.packtpub.com

Cover Image by Jasmine Doremus (jasdoremus@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Hazem Saleh

Reviewer

Allan Lykke Christensen

Acquisition Editor

Jonathan Titmus

Commissioning Editors

Harsha Bharwani

Priyanka Shah

Technical Editors

Hardik Soni

Devdutt Kulkarni

Copy Editors

Brandt D'Mello

Insiya Morbiwala

Alida Paiva

Project Coordinator

Priya Sharma

Proofreaders

Lawrence A. Herman

Joel Johnson

Indexer

Hemangini Bari

Graphics

Aditi Gajjar

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hazem Saleh has 9 years of experience in JEE and open source technologies.
He has worked as a technical consultant for different clients in Europe (Sweden),
North America (USA, Canada), South America (Peru), Africa (Egypt), and Asia
(Qatar, Kuwait). He is an Apache MyFaces committer, and the founder of many
open source projects.

Besides being the co-author of the book The Deinitive Guide to Apache MyFaces
and Facelets, Zubin Wadia, Martin Marinschek, Hazem Saleh, Dennis Byrne, Apress
and the author of this book, Hazem is also an author of many technical articles,
a developerWorks contributing author, and a technical speaker at both local and
international conferences, such as the IBM Regional Technical Exchange, CONFESS,
and JavaOne. Hazem is now working for IBM Egypt (Cairo Lab SWG Services) as
an Advisory Software Engineer. He is a Web 2.0 subject matter expert and an IBM
Certiied Expert IT Specialist.

I would like to thank my mother, my father, my brother Mohamed,
my sister Omnia, and all my family for endlessly supporting me
while writing this book. I would like to thank the love and best
friend of my life, my wife Naglaa, for encouraging and supporting
me while writing this book. I would like to thank all the people who
have done me a favor; I would like to thank Ahmed Fouad, Tamer
Mahfouz, my dearest brothers Ali AlKahki and Amr Ali, and every
one who has done me any kind of favor.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Allan Lykke Christensen is the Director of Interactive Media Management
and the Vice President of Danish ICT Management, an international consulting
irm with a focus on ICT in developing economies. He is responsible for the daily
management of teams in Uganda, Bangladesh, and Denmark. In his daily work, he is
also responsible for project planning, initiating, and overall implementation. He has
been developing and implementing IT projects for more than 10 years. His expertise
covers a wide range; he has developed worklow systems, information systems,
e-learning tools, knowledge-management systems, and websites. He has worked
as Team Leader on several major European Commission inanced ICT projects in
various developing economies. He has co-authored the book The Deinitive Guide to
Apache MyFaces and Facelets, Apress, and made countless presentations and training
sessions on programming-related topics around the world. Allan is also the Lead
Developer of the CONVERGE project, which aims at implementing an open source,
editorial content management system for media houses. More information on this
can be found at http://www.getconverge.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Unit Testing JavaScript Applications 7

What unit testing is 7

Why we need unit testing 8

What Test-Driven Development (TDD) is 10

Complexities in testing JavaScript applications 11

Weather forecasting application 13

Exploring the application's HTML and JavaScript code 15

Running the weather application 28
Summary 29

Chapter 2: Jasmine 31

Coniguration 31
Writing your irst Jasmine test 32
The nested describe blocks 38

Jasmine matchers 39

The toBe matcher 39

The toBeDeined and toBeUndeined matchers 40
The toBeNull matcher 41
The toBeTruthy and toBeFalsy matchers 41
The toContain matcher 42
The toBeLessThan and toBeGreaterThan matchers 42
The toMatch matcher 43
Developing custom Jasmine matchers 43

Testing asynchronous (Ajax) JavaScript code 45

The runs() function 45
The waits() function 46
The waitsFor() function 47
The spyOn() function 49

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

HTML ixtures 51
Coniguring the jasmine-jquery plugin 52
The loadFixtures module 53

Testing the weather application 55

Testing the LoginClient object 56
Testing the RegistrationClient object 59
Testing the WeatherClient object 63
Running the weather application tests 63

Summary 63

Chapter 3: YUI Test 65

Writing your irst YUI test 67
Assertions 74

The assert assertion 74
The areEqual and areNotEqual assertions 75
The areSame and areNotSame assertions 75
The datatype assertions 75
Special value assertions 76
The fail assertion 77

Testing asynchronous (Ajax) JavaScript code 78

The wait and resume functions 78
Testing the weather application 79

Testing the LoginClient object 80
Testing the RegistrationClient object 84
Testing the WeatherClient object 88
Running the weather application tests 89
Generating test reports 89

Automation and integration with build management tools 95

Coniguring YUI Test Selenium Driver 95
Using YUI Test Selenium Driver in the weather application 96
Integration with build management tools 98

Summary 99

Chapter 4: QUnit 101

Coniguration 101
Writing your irst QUnit test 102
Assertions 108

The ok assertion 108
The equal and notEqual assertions 109
The deepEqual and notDeepEqual assertions 109
The expect assertion 110
Developing custom QUnit assertions 111

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Testing asynchronous (Ajax) JavaScript code 114

The stop and start APIs 114
Testing the weather application 116

Testing the LoginClient object 118
Testing the RegistrationClient object 121
Testing the WeatherClient object 126
Running the weather application tests 128

Summary 129

Chapter 5: JsTestDriver 131

Architecture 131

Coniguration 132
Writing your irst JSTD test 134
Assertions 139

The assert, assertTrue, and assertFalse([msg], expression) assertions 140
The assertEquals and assertNotEquals([msg], expected, actual)
assertions 140
The assertSame and assertNotSame([msg], expected, actual)
assertions 140
The datatype assertions 141
Special value assertions 142
The fail([msg]) assertion 143

Testing asynchronous (Ajax) JavaScript code 143

AsyncTestCase, queue, and callbacks 144
Testing the weather application 145

Testing the LoginClient object 147
Testing the RegistrationClient object 149
Testing the WeatherClient object 153
Coniguring the proxy 153
Running the weather application tests 154
Generating test reports 155

Integration with other JavaScript test frameworks 160

Integrating JSTD with Jasmine 162
Integrating JSTD with QUnit 164

Integration with build management tools 167

Integration with the IDEs 167

Eclipse integration 168
Summary 170

Index 171

www.allitebooks.com

http://www.allitebooks.org

Preface
One of the biggest challenges of many web applications is being supported
by different browsers with different versions. JavaScript code that runs on
the Safari browser will not necessarily run correctly on Internet Explorer (IE),
Firefox, or Google chrome browsers. This challenge is caused by the lack of unit
testing of the JavaScript code that has lived in the web application from day one.
Without unit testing the JavaScript code, more money will have to be spent for
testing and retesting the application's web pages after deciding to upgrade to
current, supported browsers (or after updating the JavaScript code of the web
pages with non-trivial features).

The JavaScript Unit Testing book is a comprehensive practical guide that illustrates
in detail how to eficiently create and automate JavaScript tests for web applications
using popular, JavaScript unit testing frameworks, such as Jasmine, YUI Test, QUnit,
and JsTestDriver.

This book explains the concept of JavaScript unit testing and explores the bits of an
interactive Ajax web application (the weather application). Throughout the book,
the JavaScript part of the weather application is tested using different JavaScript unit
testing frameworks. The book illustrates how to generate test and code coverage
reports of developed JavaScript tests. It also explains how to automate the running of
JavaScript tests from build and continuous integration tools. The book shows how to
integrate different JavaScript unit testing frameworks with each other in order to test
web applications in the most eficient way.

Preface

[2]

What this book covers
Chapter 1, Unit Testing JavaScript Applications, helps you understand what unit
testing is, the requirements of a good unit test, and why unit testing is needed.
You will also learn the difference between Test-Driven Development and traditional
unit testing. You will understand the complexities of testing JavaScript code, and
the requirements of good, JavaScript unit testing tools. In this chapter, we will
explore the weather web application's JavaScript section which we will unit test
in the next chapters.

Chapter 2, Jasmine, helps you learn what Jasmine is and how to use it for testing
synchronous JavaScript code. You will learn how to test asynchronous (Ajax)
JavaScript code using the Jasmine Spies, waitsFor, and runs mechanisms. You will
learn how to perform mock Ajax testing using Jasmine. You will learn about the
various matchers provided by the framework, and how to load HTML ixtures in
your Jasmine tests. In this chapter, you will learn how to use Jasmine for testing the
weather application's JavaScript section.

Chapter 3, YUI Test, helps you to learn what YUI Test is and how to use this
JavaScript unit testing framework for testing synchronous JavaScript code. You will
learn how to test asynchronous (Ajax) JavaScript code using the YUI Test's wait and
resume mechanisms. You will learn about the various assertions provided by the
framework, how to display XML and JSON test reports using framework reporter
APIs, and how to generate test reports automatically using the YUI Test Selenium
Driver. You will learn how to automate running YUI tests using the YUI Test
Selenium Driver, and how to integrate an automation script with build management
and continuous integration tools. In this chapter, you will learn how to use YUI Test
for testing the weather application's JavaScript section.

Chapter 4, QUnit, helps you to understand what QUnit is and how to use it for
testing synchronous JavaScript code. You will learn how to test asynchronous
(Ajax) JavaScript code using the QUnit test mechanism and the QUnit asyncTest
mechanism. You will also learn the different assertions provided by the framework,
and how to develop your own assertion in order to simplify your test code. You will
learn how to load HTML ixtures in your QUnit tests. In this chapter, you will learn
how to use the framework for testing the weather application's JavaScript section.

Chapter 5, JsTestDriver, helps you to learn what JsTestDriver (JSTD) is, the JSTD
architecture, the JSTD coniguration, and how to use JSTD for testing synchronous
JavaScript code. You will learn how to test asynchronous (Ajax) JavaScript code
using the JSTD AsyncTestCase object. You will learn the various assertions provided
by the framework, and how to generate test and code coverage reports using the
framework's code coverage plugin. You will learn how to use JSTD as a test runner
for the other JavaScript unit testing frameworks mentioned in the book, such as

Preface

[3]

Jasmine and QUnit, in order to enable the execution of the tests of these frameworks
from the command-line interface. You will learn how to integrate the tests of
JSTD (and the tests of the JavaScript frameworks on top of JSTD) with build and
continuous integration tools. You will learn how to work with the JSTD framework
in one of the most popular integrated development environments (IDEs) which
is Eclipse. In this chapter, you will learn how to use JSTD for testing the weather
application's JavaScript section.

What you need for this book
You will need the following software in order to run all of the examples in this book:

• Apache Tomcat 6, which can be found at http://tomcat.apache.org/
download-60.cgi

• Java Development Kit (JDK) Version 5.0 or later, which can be found at
http://www.oracle.com/technetwork/java/javase/downloads/index.

html

• The Selenium Server version 2.25.0 (for Chapter 3, YUI Test only), which can
be found at http://seleniumhq.org/download/

• Eclipse IDE (for Chapter 5, JsTestDriver only), which can be found at
http://www.eclipse.org/downloads/packages/release/indigo/sr2

Who this book is for
The target audience for this book is developers, designers, and architects of
web applications.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The validateLoginForm function
calls the LoginClient JavaScript object, which is responsible for validating the
login form."

A block of code is set as follows:

function validateLoginForm() {

 var loginClient = new weatherapp.LoginClient();

Preface

[4]

 var loginForm = {

 "userNameField" : "username",

 "passwordField" : "password",

 "userNameMessage" : "usernameMessage",

 "passwordMessage" : "passwordMessage"

 };

 return loginClient.validateLoginForm(loginForm);

}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>QUnit test runner</title>

 <link rel="stylesheet" href="lib/qunit-1.10.0.css">

</head>

<body>

 <div id="qunit"></div>

 <div id="qunit-fixture"></div>

 <script src="lib/qunit-1.10.0.js"></script>

 ...The test code here...

</body>

</html>

Any command line input or output is written as follows:

java -jar JsTestDriver-1.3.4.b.jar --port 9876 --browser [firefoxpath],
[iepath],[chromepath]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "In this
application, the user enters his/her name and then clicks on the Welcome button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Unit Testing JavaScript

Applications
Before going into the details of unit testing JavaScript applications, we need to
understand irst what unit testing is and why we need to unit test our applications.
This chapter also shows the complexities of testing JavaScript applications and
why it is not as simple as desktop applications. Finally, the chapter illustrates the
functionality and the JavaScript code of a sample weather application. We will unit
test its JavaScript code in the following chapters of the book.

What unit testing is
Unit testing is not a new concept in the software development world. Thanks to Kent
Beck, the concept of unit testing was introduced in Smalltalk, then the concept was
transferred to many other programming languages, such as C, C++, and Java. The
classical deinition of unit testing is that it is a piece of code (usually a method) that
invokes another piece of code and later checks the correctness of some assumptions.

The deinition is technically correct; however, it does not show us how to make
a really good unit test. In order to write a good unit test, we need to understand
the requirements of a good unit test.

Unit Testing JavaScript Applications

[8]

As shown in the following igure, a good unit test should be automated, repeatable,
easy to understand, incremental, easy to run, and fast.

A good unit test should be automated and repeatable, which means that other
team members can repeat running the application unit tests for every signiicant
code change automatically. It should also be easy to understand so that other team
members can understand what your test means and can continue adding more test
cases or updating an existing test case. A good unit test should be incremental; this
means that the unit test should be updated if a new relevant defect is detected in the
code, which means that this defect will not happen again as long as this unit test is
running periodically. Finally, a good unit test should be easy to run; it should run
by executing a command or by clicking a button and should not take a long time
for execution because fast unit tests can help in increasing the development
team's productivity.

So let's go back to the deinition and reine it. Unit testing is a piece of code
(usually a method) that invokes another piece of code and checks the correctness
of some assumptions later. Unit testing should be automated, repeatable, easy to
understand, incremental, easy to run, and fast.

Why we need unit testing
Unit testing applications is not something nice to have. It is actually a mandatory
activity for having a successful software solutions that can cope with different
changes across time with high stability. There is no excuse to skip unit testing of
applications even for projects with a tight schedule. The importance of unit testing
may not appear in the early stages of the project; however, its advantages are visible
in the middle and the inal stages of the project, when the code gets complicated,
more features are required, and more regression defects appear (defects that appear
again after a major code change).

Chapter 1

[9]

Without unit testing, the integration of the different components in the system
becomes complicated. This complexity results from the tracing of the defects of not
only the integration between the components but also each "buggy" component. This
complicates the life of the developers by making them spend nights in the ofice in
order to meet the schedule.

The number of new defects and the regression defects becomes unmanageable when
the code base becomes complicated and unit testing is not available. The developer
can resolve a speciic defect and, after a set of code changes, this defect can happen
again because there is no repeatable test case to ensure that the defect will not
happen again.

Having more number of defects per lines of code affects the application's quality
badly, and this means that more time has to be spent on testing the application.
Bad quality applications have a longer test cycle for each project deployment
(or phase), because they have a high probability of having more defects for every
code change, which leads to more pressure on the project management, the project
developers, and the project testers.

Having good unit testing can be a good reference for the system documentation
because it contains the test scenarios of the system use cases. In addition to this,
unit testing shows how the system APIs are used, which relect the current design
of the system. This means that unit testing is a powerful basis of code and design
refactoring for having more enhancements in the system.

Having good unit testing minimizes the number of regression defects because in good
unit testing the system has a repeatable number of test cases for every relevant defect.
Having a continuous integration job that runs periodically on the application unit tests
will ensure that these defects will not happen again, because if a speciic defect appears
again due to a change in the application code, then the developer will be notiied to ix
the defect and ensure that the test case of this defect passes successfully.

Continuous integration (CI) is a practice that ensures automating
the build and the test process of the application. In continuous
integration testing, the tests of the application source code run
periodically (for example many times per day) in order to identify
the application's potential problems and to reduce the integration
time of the application components.

As a result of reducing the regression defects, having good unit testing reduces the
test cycle for each phase (or system deployment). In addition to this, the application
can have more and more features per iterations or phases peacefully without
worrying if these features shall break an existing module that has good unit tests.

www.allitebooks.com

http://www.allitebooks.org

Unit Testing JavaScript Applications

[10]

What Test-Driven Development (TDD) is
There are two known approaches in writing unit tests for applications.
The irst approach prefers writing unit tests after writing the actual application code
and this approach is called traditional unit testing. The second approach prefers
writing unit tests before writing the actual application code, and this approach is
called Test-Driven Development (TDD) or the Test-First approach.

As shown in the following igure, traditional unit testing is about writing the
application code irst. It can simply be a class or a method. After writing the piece
of code, the unit tests, which test the functionality of the code, are written. Then the
unit tests run. If the unit tests fail then the developer ixes the defects and runs the
unit tests again. If the unit tests succeed then the developer can either refactor the
code and run the tests again or continue to write the next piece of code and so on.

As shown in the following igure, TDD starts by writing a failing unit test to indicate
that the functionality is missing. After writing the unit test, the unit test must be run
to ensure that it fails. After that, the developer writes the application code that meets
the unit test expectation. The unit test must be run again to ensure that it succeeds.
If it fails then the developer ixes the bugs and if it succeeds the developer can either
refactor the application code or continue writing the next test case.

Chapter 1

[11]

TDD is a powerful technique, as it can give you more control on the application code
and design; however, it is a double-edged sword because if it is done incorrectly,
writing the tests can waste a lot of time and the schedule of the project can slip.
Finally, either you are using TDD or traditional unit testing technique. Don't forget
to make your tests automated, repeatable, easy to understand, incremental, easy to
run, and fast.

Complexities in testing JavaScript

applications
Testing JavaScript applications is complex and requires a lot of time and
effort. Testing JavaScript applications requires the tester to test the application
on different browsers (Internet Explorer, Firefox, Safari, Chrome, and so on).
This is because the JavaScript code that runs on a speciic browser will not
necessarily work on another browser.

Testing existing JavaScript web applications (with many web pages) on new
browsers that are not supported by the application code is not a lexible process.
Supporting a new unsupported browser means allocating more time for testing the
application again on this new browser and for the new/regression defects to be ixed
by the developers. Let's see a simple Broken JavaScript example, which illustrates
this idea. In this example, the user enters his/her name and then clicks on the
Welcome button. After that the welcome message appears.

Unit Testing JavaScript Applications

[12]

The following code snippet shows the broken JavaScript example:

<!DOCTYPE html>
<html>
<head>
 <title>Broken JavaScript Example</title>
 <script type=»text/javascript»>
 function welcome() {
 var userName = document.getElementById(«userName»).value;
 document.getElementById(«welcomeMessage»).innerText = «Welcome «
 + userName + «!»;
 }
 </script>
</head>
<body>
 <h1>Broken JavaScript Example</h1>

 <label>Please enter your name:</label>
 <input id=»userName» type=»text» />

 <input type=»button» onclick=»welcome()» value=»Welcome»></
 input>

 <div id=»welcomeMessage»/>

</body>
</html>

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the iles e-mailed directly to you.

If you run the code shown in the previous code snippet, you will ind that it works
ine in Internet Explorer (IE) and Safari while it does not work in Firefox (to be more
speciic, this example works on Internet Explorer 8 and Safari 5.1, while it will not
work on Firefox 3.6). The reason behind this problem is that the innerText property
is not supported in Firefox. This is one of the hundreds of examples that show a code
that works in a speciic browser while it does not work in another one.

As a result of these complexities, testing JavaScript code requires a good unit
testing tool, which provides mechanisms to overcome these complexities. The good
JavaScript unit testing tool should be able to execute the test cases across all of the
browsers, should have an easy setup, should have an easy coniguration, and should
be fast in executing the test cases.

Chapter 1

[13]

Weather forecasting application
Now, let's move to the weather forecasting application. The weather forecasting
application is a Java web application that allows the users to check the current
weather in different cities in the world. The weather forecasting application contains
both synchronous and asynchronous (Ajax) JavaScript code, which we will test in the
later chapters of the book using the different JavaScript unit testing frameworks.

The weather forecasting application mainly contains three use cases:

• Log in to the application

• Register a user in the application

• Check the current weather in a speciic city

The weather forecasting application is a Java web application. The server-side part of
the application is written using Java servlets (http://docs.oracle.com/javaee/6/
tutorial/doc/bnafd.html). If you are not familiar with Java servlets, do not
worry. This book focuses only on JavaScript unit testing; all you need to know about
these servlets is the functionality of each one of them, not the code behind it. The
functionality of each application servlet will be explained during when the JavaScript
code is explained, to show you the complete Ajax request life cycle with the server.

Another thing that needs to be mentioned is that the weather application pages
are .jsp iles; however, 99 percent of their code is pure HTML code that is easy to
understand (the application pages code will be explained in detail in the next section).

The irst screen of the application is the login screen in which the user enters his
username and password, as shown in the following screenshot:

Unit Testing JavaScript Applications

[14]

When the user clicks on the Login button, there is a JavaScript login client that
ensures that the username and the password are entered correctly. If the username
and the password are correct, they are submitted to the server, which validates them
if the user is registered in the application. If the user is registered in the application
then the user is redirected to the weather checking page; otherwise an error message
appears to the user.

The username ield must not be empty and has to be in a valid e-mail address format.
The password ield also must not be empty and has to contain at least one digit, one
capital, one small character, and at least one special character. The password length
has to be six characters or more.

In the weather checking page, the user can select one of the available cities from the
combobox, then click on the Get weather condition button to get the current weather
information of the selected city, as shown in the following screenshot:

In the user registration page, the user can register in the application by entering
his username and conirmed password, as shown in the following screenshot:

Chapter 1

[15]

When the user clicks on the Register button, the registration client's JavaScript object
ensures that the username and the passwords are entered correctly. The registration
client uses the same rules of the login client in username and password validations.
It also ensures that the conirmed password is the same as the entered password.

If the user's registration information is correct, the username and passwords are
submitted to the server. The user information is registered in the system after
performing server-side validations and checking that the user has not already
registered in the application. If the user is already registered in the system then
an error message appears to the user.

Exploring the application's HTML and

JavaScript code
The following code snippet shows the HTML code of the login form in the login.
jsp ile. It is a simple form that has username and password ields with their labels,
messages, a registration link, and a login button.

<form class="box login" action="/weatherApplication/LoginServlet"
method="post">

 <fieldset class="boxBody">

 <label for="username">Username <span id="usernameMessage"
 class="error"></label>

 <input type="text" id="username" name="username"/>

 <label for="password">Password <span id="passwordMessage"
 class="error"></label>

 <input type="password" id="password" name="password"/>

 </fieldset>

 <div id="footer">

Unit Testing JavaScript Applications

[16]

 <label>Register</label>

 <input id="btnLogin" class="btnLogin" type="submit" value="Login"
 onclick="return validateLoginForm();"/>

 </div>

</form>

When the Login button is clicked, the validateLoginForm JavaScript function is
called. The following code snippet shows the validateLoginForm function in the
login.jsp ile:

function validateLoginForm() {

 var loginClient = new weatherapp.LoginClient();

 var loginForm = {

 "userNameField" : "username",

 "passwordField" : "password",

 "userNameMessage" : "usernameMessage",

 "passwordMessage" : "passwordMessage"

 };

 return loginClient.validateLoginForm(loginForm);

}

The validateLoginForm function calls the LoginClient JavaScript object that
is responsible for validating the login form. It constructs a JavaScript Object
Notation (JSON) object that includes the username, password, username message,
and password message IDs, and then passes the constructed JSON object to the
validateLoginForm function of the LoginClient object.

The weather application customizes a CSS3 based style from the
blog CSS Junction:

http://www.cssjunction.com/freebies/simple-login-
from-html5css3-template-free/

The following code snippet shows the validateLoginForm method of the
LoginClient object in the LoginClient.js ile. It validates that the username
and the password ields are not empty and are compliant with the validation rules.

if (typeof weatherapp == "undefined" || !weatherapp) {

 weatherapp = {};

}

weatherapp.LoginClient = function() {};

weatherapp.LoginClient.prototype.validateLoginForm =

Chapter 1

[17]

function(loginForm) {

 if (this.validateEmptyFields(loginForm) &&

 this.validateUserName(loginForm) &&

 this.validatePassword(loginForm)) {

 return true;

 }

 return false;

};

One of the recommended JavaScript's best practices is to use
namespaces; the application deines a JavaScript namespace in order
to avoid collisions with other JavaScript objects of similar names. The
following code deines a weatherapp namespace if it is not already
deined:

if (typeof weatherapp == "undefined" || !weatherapp) {

 weatherapp = {};

}

The following code snippet shows the validateEmptyFields method of the
LoginClient object in the LoginClient.js ile. It validates that the username
and the password ields are not empty and if any of these ields are empty,
an error message appears:

weatherapp.LoginClient.prototype.validateEmptyFields =
function(loginForm) {

 var passwordMessageID = loginForm.passwordMessage;

 var userNameMessageID = loginForm.userNameMessage;

 var passwordFieldID = loginForm.passwordField;

 var userNameFieldID = loginForm.userNameField;

 document.getElementById(passwordMessageID).innerHTML = "";

 document.getElementById(userNameMessageID).innerHTML = "";

 if (! document.getElementById(userNameFieldID).value) {

 document.getElementById(userNameMessageID).innerHTML = "(field is
 required)";

 return false;

 }

Unit Testing JavaScript Applications

[18]

 if (! document.getElementById(passwordFieldID).value) {

 document.getElementById(passwordMessageID).innerHTML = "(field is
 required)";

 return false;

 }

 return true;

};

The following code snippet shows the validateUserName method of the
LoginClient object in the LoginClient.js ile. It validates that the username
is in the form of a valid e-mail:

weatherapp.LoginClient.prototype.validateUserName =
function(loginForm) {

 // the username must be an email...

 var userNameMessageID = loginForm.userNameMessage;

 var userNameFieldID = loginForm.userNameField;

var userNameRegex = /^[_A-Za-z0-9-]+(\.[_A-Za-z0-9-]+)*@
[A-Za-z0-9]+(\.[A-Za-z0-9]+)*(\.[A-Za-z]{2,})$/;

 var userName = document.getElementById(userNameFieldID).value;

if(! userNameRegex.test(userName)) {

 document.getElementById(userNameMessageID).innerHTML = "(format is
 invalid)";

return false;

}

 return true;

};

Using the regular expression /^[_A-Za-z0-9-]+(\.[_A-Za-z0-9-]+)*@
[A-Za-z0-9]+(\.[A-Za-z0-9]+)*(\.[A-Za-z]{2,})$/, the username is validated
against a valid e-mail form. If the username is not in a valid e-mail form then an
error message appears in the username message span.

The following code snippet shows the validatePassword method of the
LoginClient object in the LoginClient.js ile. It validates if the password has
at least one digit, one capital character, one small character, at least one special
character, and also if it contains six characters or more:

weatherapp.LoginClient.prototype.validatePassword =

Chapter 1

[19]

function(loginForm) {

 // the password contains at least one digit, one capital and small
character

 // and at least one special character, and 6 characters or more...

 var passwordMessageID = loginForm.passwordMessage;

 var passwordFieldID = loginForm.passwordField;

 var passwordRegex = /((?=.*\d)(?=.*[a-z])(?=.*[A-Z])(?=.*[@#$%]).
{6,20})/;

 var password = document.getElementById(passwordFieldID).value;

 if (! (passwordRegex.test(password) && password.length >= 6)) {

 document.getElementById(passwordMessageID).innerHTML = "(format is
 invalid)";

 return false;

 }

 return true;

};

If the password is not compliant with the mentioned rules then an error message
appears in the password message span.

If the username and the password ields pass the JavaScript validation rules, the
login form submits its content to LoginServlet, which makes another server-side
validation and then redirects the user to the weather checking page if the validation
goes OK.

It is very important not to rely on the JavaScript client-side validation
only, because JavaScript can be disabled from the browser. So it is a
must to always make a server-side validation besides the client-side
validation.

The following code snippet shows the weather checking form of the weather
application located in the welcome.jsp ile. It contains a combobox illed with the
Yahoo! Weather Where On Earth IDs (the WOEID is a unique reference identiier
assigned by Yahoo! to identify any place on Earth) of different cities in the world.

<h1>Welcome to the weather application</h1>

<FORM method="post">

 <label class="label" for="postalCode">Select the Location: </label>

 <select id="w" class="selectField">

 <option value="1521894">Cairo, Egypt</option>

www.allitebooks.com

http://www.allitebooks.org

Unit Testing JavaScript Applications

[20]

 <option value="906057">Stockholm, Sweden</option>

 <option value="551801">Vienna, Austria</option>

 <option value="766273">Madrid, Spain</option>

 <option value="615702">Paris, France</option>

 <option value="2459115">New York, USA</option>

 <option value="418440">Lima, Peru</option>

 </select>

 <input type="button" class="button" onclick="invokeWeatherClient();"

 value="Get weather condition"/>

 <div id="weatherInformation" class="weatherPanel">

 </div>

</FORM>

When the Get weather condition button is clicked, the invokeWeatherClient
function is called. The following code snippet shows the invokeWeatherClient
function code in the welcome.jsp ile:

function invokeWeatherClient() {

 var weatherClient = new weatherapp.WeatherClient();

 var location = document.getElementById("w").value;

 weatherClient.getWeatherCondition({

 'location': location,

 'resultDivID': 'weatherInformation'

 },

weatherClient.displayWeatherInformation,

weatherClient.handleWeatherInfoError);

}

The invokeWeatherClient function calls the getWeatherCondition method of the
WeatherClient object. The irst parameter of the getWeatherCondition method
is the weatherForm object, which is a JSON object containing the location WOEID
and the ID of the DIV element that receives the weather information HTML result
of the Yahoo! Weather Representational State Transfer (REST) service. The second
parameter represents the irst callback, which is the displayWeatherInformation
method that is called if the getWeatherCondition call succeeds. The last parameter
represents the second callback, which is the handleWeatherInfoError method that
is called if the getWeatherCondition call fails.

The following code snippet shows getWeatherCondition of the
WeatherClient object in the WeatherClient.js ile that sends an Ajax request
to WeatherProxyServlet with the w parameter that represents the WOEID.

Chapter 1

[21]

WeatherProxyServlet interacts with the Yahoo! Weather REST service in order to
fetch the current weather information:

if (typeof weatherapp == "undefined" || !weatherapp) {

 weatherapp = {};

}

weatherapp.WeatherClient = function() {};

weatherapp.WeatherClient.xmlhttp;

weatherapp.WeatherClient.weatherForm;

weatherapp.WeatherClient.endpointURL = "";

weatherapp.WeatherClient.prototype.getWeatherCondition =
function(weatherForm, successCallBack, failureCallBack) {

 if (window.XMLHttpRequest) {

 this.xmlhttp = new XMLHttpRequest();

 } else {

 this.xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 var successCallBackLocal = successCallBack;

 var failureCallBackLocal = failureCallBack;

 var weatherClientLocal = this;

 this.xmlhttp.onreadystatechange = function() {

weatherClientLocal.weatherInformationReady(successCallBackLocal,
failureCallBackLocal);

 };

 this.weatherForm = weatherForm;

 if (typeof this.endpointURL == "undefined") {

 this.endpointURL = "";

 }

 this.xmlhttp.open("GET",

 this.endpointURL +

 "/weatherApplication/WeatherProxyServlet?w=" + weatherForm.
 location + "&preventCache=" + new Date().getTime(),

 true);

 this.xmlhttp.send();

};

Unit Testing JavaScript Applications

[22]

weatherapp.WeatherClient.prototype.weatherInformationReady =
function(successCallBack, failureCallBack) {

 if (this.xmlhttp.readyState != 4) {

 return;

 }

 if (this.xmlhttp.status != 200) {

 failureCallBack(this);

return;

 }

 if (this.xmlhttp.readyState == 4 && this.xmlhttp.status == 200) {

 successCallBack(this);

 }

};

weatherapp.WeatherClient.prototype.displayWeatherInformation =
function(weatherClient) {

 var resultDivID = weatherClient.weatherForm.resultDivID;

document.getElementById(resultDivID).innerHTML = weatherClient.
xmlhttp.responseText;

};

weatherapp.WeatherClient.prototype.handleWeatherInfoError =
function(weatherClient) {

 var resultDivID = weatherClient.weatherForm.resultDivID;

 alert ("Error: " + weatherClient.xmlhttp.responseText);

document.getElementById(resultDivID).innerHTML = "Error: " +
weatherClient.xmlhttp.responseText;

};

The getWeatherCondition method irst creates an XML HTTP request object using
new XMLHttpRequest() in case of IE7+, Firefox, Chrome, and Opera. In the case of
IE5 and IE6, the XML HTTP request object is created using an ActiveX object new
ActiveXObject("Microsoft.XMLHTTP").

The getWeatherCondition method then registers both, the success callback
(successCallBack) and the failure callback (failureCallBack) using the
weatherInformationReady method that is called for every Ajax readyState change.

Chapter 1

[23]

Finally, the getWeatherCondition method sends an asynchronous Ajax request
to WeatherProxyServlet. When the Ajax response comes from the server and
the operation is done successfully then the success callback is called, which is the
displayWeatherInformation method. In the case of operation failure (which can
happen, for example, if the passed WOEID is invalid or the Yahoo! Weather service is
down), the failure callback is called, which is the handleWeatherInfoError method.

The displayWeatherInformation method displays the returned weather
information HTML result from WeatherProxyServlet (which fetches the weather
information from the Yahoo! Weather REST service) in the weatherInformation div
element while the handleWeatherInfoError method displays the error message in
the same div element and also displays an alert with the error message.

It is assumed that you are familiar with Ajax programming. If you are
not familiar with Ajax programming, it is recommended to check the
following introductory Ajax tutorial on w3schools:

http://www.w3schools.com/ajax/default.asp

In order to prevent IE from caching Ajax GET requests, a random parameter is
appended using new Date().getTime(). In many JavaScript libraries, this can
be handled through the framework APIs. For example, in Dojo the preventCache
attribute of the dojo.xhrGet API can be used to prevent the IE Ajax GET caching.

The following code snippet shows the HTML code of the registration form in the
register.jsp ile. It consists of a username and two password ields with their
corresponding labels, messages, login link, and a register button:

<form class="box register" method="post">

 <fieldset class="boxBody">

<label for="username">Username (Email) <span id="usernameMessage"
class="error"></label>

 <input type="text" id="username" name="username"/>

<label for="password1">Password <span id="passwordMessage1"
class="error"></label>

 <input type="password" id="password1" name="password1"/>

 <label for="password2">Confirm your password</label>

 <input type="password" id="password2" name="password2"/>

 </fieldset>

 <div id="footer">

 <label>Login</label>

Unit Testing JavaScript Applications

[24]

<input id="btnRegister" class="btnLogin" type="button"
value="Register" onclick="registerUser();" />

 </div>

</form>

When the Register button is clicked, the registerUser JavaScript function is called.
The following code snippet shows the code of the registerUser function in the
register.jsp ile:

function registerUser() {

 var registrationClient = new weatherapp.RegistrationClient();

 var registrationForm = {

 "userNameField" : "username",

 "passwordField1" : "password1",

 "passwordField2" : "password2",

 "userNameMessage" : "usernameMessage",

 "passwordMessage1" : "passwordMessage1"

 };

 if (registrationClient.validateRegistrationForm(registrationForm)) {

 registrationClient.registerUser(registrationForm,

 registrationClient.displaySuccessMessage,

 registrationClient.handleRegistrationError);

 }

}

The registerUser function is calling the RegistrationClient JavaScript object
that is responsible for validating and submitting the registration form using Ajax
to RegistrationServlet. registerUser constructs the registrationForm
JSON object, which includes the username, password1, password2, username
message, and password1 message IDs, and then passes the object to the
validateRegistrationForm method of the RegistrationClient object.

If the validation passes, it calls the registerUser method of the
RegistrationClient object. The irst parameter of the registerUser method is
the registrationForm JSON object. The second parameter is the success callback,
which is the displaySuccessMessage method, while the last parameter is the failure
callback, which is the handleRegistrationError method.

The following code snippet shows the code of the validateRegistrationForm
method of the RegistrationClient object in the RegistrationClient.js ile. It
uses the validation methods of LoginClient in order to validate the empty username

Chapter 1

[25]

and password ields, and to validate if the username and the password ields conform
to the validation rules. In addition to this, the validateRegistrationForm method
validates if the two entered passwords are identical:

if (typeof weatherapp == "undefined" || !weatherapp) {

 weatherapp = {};

}

weatherapp.RegistrationClient = function() {};

weatherapp.RegistrationClient.xmlhttp;

weatherapp.RegistrationClient.endpointURL = "";

weatherapp.RegistrationClient.prototype.validateRegistrationForm =
function(registrationForm) {

 var userNameMessage = registrationForm.userNameMessage;

 var passwordMessage1 = registrationForm.passwordMessage1;

 var userNameField = registrationForm.userNameField;

 var passwordField1 = registrationForm.passwordField1;

 var passwordField2 = registrationForm.passwordField2;

 var password1 = document.getElementById(passwordField1).value;

 var password2 = document.getElementById(passwordField2).value;

 // Empty messages ...

 document.getElementById(userNameMessage).innerHTML = "";

 document.getElementById(passwordMessage1).innerHTML = "";

 // create the loginClient object in order to validate fields ...

 var loginClient = new weatherapp.LoginClient();

 var loginForm = {};

 loginForm.userNameField = userNameField;

 loginForm.userNameMessage = userNameMessage;

 loginForm.passwordField = passwordField1;

 loginForm.passwordMessage = passwordMessage1;

 // validate empty username and password fields.

 if (! loginClient.validateEmptyFields(loginForm)) {

 return false;

 }

 // validate that password fields have the same value...

Unit Testing JavaScript Applications

[26]

 if (password1 != password2) {

document.getElementById(passwordMessage1).innerHTML = "(Passwords must
be identical)";

 return false;

 }

 // check if the username is correct...

 if (! loginClient.validateUserName(loginForm)) {

document.getElementById(userNameMessage).innerHTML = "(format is
invalid)";

 return false;

 }

 // check if the password is correct...

 if (! loginClient.validatePassword(loginForm)) {

document.getElementById(passwordMessage1).innerHTML = "(format is
invalid)";

 return false;

 }

 return true;

};

The following code snippet shows the registerUser method code of the
RegistrationClient object in the RegistrationClient.js ile. It creates
an Ajax POST request with the username and the passwords' (original password
and conirmed password) data and sends them asynchronously
to RegistrationServlet.

weatherapp.RegistrationClient.prototype.registerUser =
function(registrationForm, successCallBack, failureCallBack) {
 var userNameField = registrationForm.userNameField;
 var passwordField1 = registrationForm.passwordField1;
 var passwordField2 = registrationForm.passwordField2;

 var userName = document.getElementById(userNameField).value;
 var password1 = document.getElementById(passwordField1).value;
 var password2 = document.getElementById(passwordField2).value;

 if (window.XMLHttpRequest) {
 this.xmlhttp = new XMLHttpRequest();
 } else {

 this.xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
 }

Chapter 1

[27]

 var successCallBackLocal = successCallBack;
 var failureCallBackLocal = failureCallBack;
 var registrationClientLocal = this;

 this.xmlhttp.onreadystatechange = function() {
registrationClientLocal.registrationReady(successCallBackLocal,
failureCallBackLocal);
 };

 if (typeof this.endpointURL == "undefined") {
 this.endpointURL = "";
 }

 this.xmlhttp.open("POST",
 this.endpointURL +
 "/weatherApplication/RegistrationServlet",
 true);

this.xmlhttp.setRequestHeader("Content-type","application/x-www-form-
urlencoded");

 this.xmlhttp.send(userNameField + "=" + userName + "&" +
 passwordField1 + "=" + password1 + "&" +
 passwordField2 + "=" + password2);
};

weatherapp.RegistrationClient.prototype.registrationReady =
function(successCallBack, failureCallBack) {
 if (this.xmlhttp.readyState != 4) {
 return;
 }

 if (this.xmlhttp.status != 200) {
 failureCallBack(this);
return;
}

 if (this.xmlhttp.readyState == 4 && this.xmlhttp.status == 200) {
 successCallBack(this);
 }
};

weatherapp.RegistrationClient.prototype.displaySuccessMessage =
function(registrationClient) {

 alert("User registration went successfully ...");

};

weatherapp.RegistrationClient.prototype.handleRegistrationError =

Unit Testing JavaScript Applications

[28]

function(registrationClient) {

 alert(registrationClient.xmlhttp.responseText);

};

RegistrationServlet validates the user data and ensures that the user did not
already register in the application. When the Ajax response comes from the server,
and the registration operation is completed successfully, the displaySuccessMessage
method is called. If the registration operation failed (for example, if the user ID is
already registered in the application), the handleRegistrationError method is
called. Both the displaySuccessMessage and the handleRegistrationError
methods display alerts to show the success and the failure registration messages.

Running the weather application
In order to run the weather application, you irst need to download the
weatherApplication.war ile from the book's website (www.packtpub.com).
Then you need to deploy the WAR ile on Apache Tomcat 6. In order to install
Apache Tomcat 6, you need to download it from http://tomcat.apache.org/
download-60.cgi. Apache Tomcat 6.0 requires the Java 2 Standard Edition
Runtime Environment (JRE) Version 5.0 or later.

In order to install JRE, you need to download and install the J2SE Runtime
Environment as follows:

1. Download the JRE, release Version 5.0 or later, from http://www.oracle.
com/technetwork/java/javase/downloads/index.html.

2. Install the JRE according to the instructions included with the release.

3. Set an environment variable named JRE_HOME to the pathname of the
directory in which you installed the JRE, for example, c:\jre5.0 or /usr/
local/java/jre5.0.

After you download the binary distribution of Apache Tomcat 6, you need to
unpack the distribution in a suitable location on the hard disk. After this, you need
to deine the CATALINA_HOME environment variable, which refers to the location of
the Tomcat distribution.

Now, you can start Apache Tomcat 6 by executing the following command
on Windows:

$CATALINA_HOME\bin\startup.bat

Chapter 1

[29]

Start as while in Unix, you can execute the following command:

$CATALINA_HOME/bin/startup.sh

In order to make sure that the Apache Tomcat 6 starts correctly, you need to type the
following URL in the browser:

http://localhost:8080/

After making sure that the Apache Tomcat 6 is running correctly, you can stop it by
executing the following command on Windows:

$CATALINA_HOME\bin\shutdown.bat

Start as while in Unix, you can execute the following command:

$CATALINA_HOME/bin/shutdown.sh

Now, we come to the step of the weather application deployment where you need to
get the weatherApplication.war ile from the book resources. After getting the ile,
copy the WAR ile to the $CATALINA_HOME\webapps folder, then start the Apache
Tomcat 6 again.

In order to access the weather application, you can access it using the following URL:

http://localhost:8080/weatherApplication/login.jsp

For the sake of simplicity, there is a predeined username and password
that can be used to access the weather application; the username is
admin@123.com and the password is Admin@123. Another thing
that has to be mentioned is that the registered users are not stored in a
database; they are stored in the application scope, which means they
will be available as long as the application is not restarted.

Summary
In this chapter, you learned what unit testing is, the requirements of a good unit
test, and why we need unit testing. You got to know the difference between the
Test-Driven Development and the traditional unit testing. In the JavaScript world,
you understood the complexities of testing JavaScript code, and the requirements of
good JavaScript unit testing tools. At the end of this chapter, I explored with you the
weather web application use cases and its JavaScript code in detail, which we will
unit test in the later chapters. In the next chapter, you will learn how to work with
the Jasmine framework and how to use it for testing the weather application.

www.allitebooks.com

http://www.allitebooks.org

Jasmine
Jasmine is a powerful JavaScript unit testing framework. It provides a clean
mechanism for testing synchronous and asynchronous JavaScript code. Jasmine is
a behavior-driven development framework that provides descriptive test cases that
focus more on the business value than on the technical details. Because it is written
in a simple natural language, Jasmine tests can be read by non-programmers and can
provide a clear description when a single test succeeds or fails and also the reason
behind its failure. In this chapter, the framework will be illustrated in detail and will
be used to test the weather application that is discussed in Chapter 1, Unit Testing
JavaScript Applications.

Behavior-driven development (BDD) is an agile software development
technique introduced by Dan North that focuses on writing descriptive
tests from the business perspective. BDD extends TDD by writing
test cases that test the software behavior (requirements) in a natural
language that anyone (not necessarily a programmer) can read and
understand. The names of the unit tests are sentences that usually
start with the word "should" and they are written in the order of their
business value.

Coniguration
In order to conigure Jasmine, the irst step is to download the framework from
https://github.com/pivotal/jasmine/downloads. Here, you will ind the latest
releases of the framework. At the time of this writing, the latest release is v1.2.0,
which has been used in this book.

Jasmine

[32]

After unpacking jasmine-standalone-1.2.0.zip (or later), you will ind the folder
structure shown in the following screenshot:

The src folder in the preceding screenshot contains the JavaScript source iles
that you want to test, the spec folder contains the JavaScript testing iles, while
SpecRunner.html is the test case runner HTML ile. The lib folder contains the
framework iles.

In order to make sure that everything is running OK, click on the SpecRunner.html
ile; you should see passing specs, as shown in the following screenshot:

This structure is not rigid; you can modify it to serve the organization of your
application. For the purpose of testing the weather application, we will modify
it to cope with the structure of the application.

Writing your irst Jasmine test
Before writing the irst Jasmine test, we will need to understand the difference
between a suite and a spec (test speciication) in Jasmine. A Jasmine suite is a
group of test cases that can be used to test a speciic behavior of the JavaScript

Chapter 2

[33]

code (a JavaScript object or function). In Jasmine, the test suite begins with a call
to the Jasmine global function describe with two parameters. The irst parameter
represents the title of the test suite, while the second parameter represents a function
that implements the test suite.

A Jasmine spec represents a test case inside the test suite. In Jasmine, a test case
begins with a call to the Jasmine global function it with two parameters. The irst
parameter represents the title of the spec and the second parameter represents a
function that implements the test case.

A Jasmine spec contains one or more expectations. Every expectation represents
an assertion that can be either true or false. In order to pass the spec, all of the
expectations inside the spec have to be true. If one or more expectations inside a spec
is false, the spec fails. The following code snippet shows an example of a Jasmine test
suite and a spec with an expectation:

describe("A sample suite", function() {

 it("contains a sample spec with an expectation", function() {

 expect(true).toEqual(true);

 });

});

Now, let's move to the SimpleMath JavaScript object, which is described in the
following code snippet. The SimpleMath JavaScript object is a simple mathematical
utility that performs factorial, signum, and average mathematical operations.

SimpleMath = function() {

};

SimpleMath.prototype.getFactorial = function (number) {

 if (number < 0) {

 throw new Error("There is no factorial for negative numbers");

 }

 else if (number == 1 || number == 0) {

 // If number <= 1 then number! = 1.

 return 1;

 } else {

 // If number > 1 then number! = number * (number-1)!

 return number * this.getFactorial(number-1);

 }

}

Jasmine

[34]

SimpleMath.prototype.signum = function (number) {

 if (number > 0) {

 return 1;

 } else if (number == 0) {

 return 0;

 } else {

 return -1;

 }

}

SimpleMath.prototype.average = function (number1, number2) {

 return (number1 + number2) / 2;

}

In the preceding code snippet, the SimpleMath object is used to calculate the factorial
of numbers. In mathematics, the factorial function of a nonnegative integer n, which
is denoted by n!, is the product of all positive integers less than or equal to n. For
example, 4! = 4 x 3 x 2 x 1 = 24. According to Wikipedia, the factorial function has the
following mathematical deinition:

The SimpleMath object calculates the factorial of the number using the
getFactorial recursive function. It throws an Error exception when the passed
parameter to the getFactorial method is a negative number because there is no
factorial value for negative numbers.

In addition to calculating the factorial of numbers, it can get the signum of any
number using the signum method. In mathematics, the signum function extracts
the sign of a real number. According to Wikipedia, the signum function has the
following mathematical deinition:

Finally, SimpleMath can calculate the average of two numbers using the average
method. The average value of two numbers can be calculated by dividing the sum
of the two numbers by 2.

Chapter 2

[35]

Now, let's start writing the specs using Jasmine. First of all, in order to test the
getFactorial method, let's have the three following test scenarios; we will test
calculating the factorial of:

• A positive number

• Zero

• A negative number

Boundary testing is a kind of testing that focuses on the boundary
or the limit conditions of the objects to be tested. These boundary
conditions can include the maximum value, minimum value, error
values, and inside/outside boundary values. In the factorial testing
example, the test scenarios apply this kind of testing by testing the
factorial API with a positive number, a negative number, and zero.

The following code snippet shows how to test the calculation of the factorial
of a positive number (3), 0, and a negative number (-10):

describe("SimpleMath", function() {
 var simpleMath;

 beforeEach(function() {
 simpleMath = new SimpleMath();
 });

 describe("when SimpleMath is used to find factorial", function() {
 it("should be able to find factorial for positive number",
 function() {
 expect(simpleMath.getFactorial(3)).toEqual(6);
 });

 it("should be able to find factorial for zero", function() {
 expect(simpleMath.getFactorial(0)).toEqual(1);
 });

 it("should be able to throw an exception when the number is
 negative", function() {
 expect(
 function() {
 simpleMath.getFactorial(-10)
 }).toThrow("There is no factorial for negative numbers");
 });

 });
…

});

Jasmine

[36]

The describe keyword declares a new test suite called "SimpleMath". beforeEach
is used for initialization of the specs inside the suite, that is, beforeEach is called
once before the run of each spec in the describe function. In the beforeEach
function, the simpleMath object is created using new SimpleMath().

In Jasmine, it is also possible to execute JavaScript code after the run
of each spec in the describe function, using the afterEach global
function. Having beforeEach and afterEach in Jasmine allows the
developer not to repeat setup and inalization code for each spec.

After initializing the simpleMath object, you can either create a direct spec using
the it keyword or create a child test suite using the describe keyword. For the
purpose of organizing the example, a new test suite is created for each group of tests
with similar functionalities. This is why an independent test suite is created to test
the functionality of the getFactorial test suite provided by the SimpleMath object
using the describe keyword.

In the irst test scenario of the getFactorial test suite, the spec title is "should
be able to find factorial for positive number", and the expect function
calls simpleMath.getFactorial(3) and expects it to be equal to 6. If simpleMath.
getFactorial(3) returns a value other than 6, the test fails. We have many other
options (matchers) to use instead of toEqual. These matchers will be discussed in
more detail in the Jasmine matchers section.

In the second test scenario of the getFactorial test suite, the expect function
calls simpleMath.getFactorial(0) and expects it to be equal to 1. In the last test
scenario of the getFactorial test suite, the expect function calls simpleMath.
getFactorial(-10) and expects it to throw an exception with the message "There is
no factorial for negative numbers", using the toThrow matcher. The toThrow
matcher succeeds if the function expect throws an exception when executed.

After inalizing the getFactorial test suite, we come to a new test suite that tests
the functionality of the signum method provided by the SimpleMath object. The
following code snippet shows the signum test suite:

describe("when SimpleMath is used to find signum", function() {

 it("should be able to find the signum for a positive number",
 function() {

 expect(simpleMath.signum(3)).toEqual(1);

 });

 it("should be able to find the signum for zero", function() {

 expect(simpleMath.signum(0)).toEqual(0);

 });

Chapter 2

[37]

 it("should be able to find the signum for a negative number",
 function() {

 expect(simpleMath.signum(-1000)).toEqual(-1);

 });

});

We have three test scenarios for the signum method, the irst test scenario is about
getting the signum value for a positive number, the second test scenario is about
getting the signum value for zero, and the last test scenario is about getting the signum
value for a negative number. As indicated in the deinition of the signum function,
it has to return +1 for any positive number, 0 for zero, and inally -1 for any negative
number. The following code snippet shows the average test suite:

 describe("when SimpleMath is used to find the average of two
 values", function() {

 it("should be able to find the average of two values",
 function() {

 expect(simpleMath.average(3, 6)).toEqual(4.5);

 });

 });

In the average spec, the test ensures that the average is calculated correctly by trying
to calculate the average of two numbers, 3 and 6, and expecting the result to be 4.5.

Now, after writing the suites and the specs, it is the time to run the tests. In order to
run the tests, we need to do the following steps:

1. Place the simpleMath.js ile in the src folder.

2. Place the simpleMathSpec.js ile ,which contains the SimpleMath unit tests,
in the spec folder.

3. Edit the SpecRunner.html ile as shown in the following code snippet:
<html>

<head>

 <title>Jasmine Spec Runner</title>

 <link rel="shortcut icon" type="image/png"
 href="lib/jasmine-1.2.0/jasmine_favicon.png">

 <link rel="stylesheet" type="text/css" href="lib/jasmine-
 1.2.0/jasmine.css">

 <script type="text/javascript" src="lib/jasmine-
 1.2.0/jasmine.js"></script>

 <script type="text/javascript" src="lib/jasmine-
 1.2.0/jasmine-html.js"></script>

Jasmine

[38]

 <!-- include spec files here... -->

 <script type="text/javascript"
 src="spec/simpleMathSpec.js"></script>

 <!-- include source files here... -->

 <script type="text/javascript"
 src="src/simpleMath.js"></script>

As shown in the preceding code snippet, in the highlighted lines, <script
type="text/javascript" src="spec/simpleMathSpec.js"></script> is
added under the <!-- include spec files here... --> section, while <script
type="text/javascript" src="src/simpleMath.js"></script> is added under
the <!-- include source files here... --> section. After double-clicking on
SpecRunner.html, you will see the test results passed.

The nested describe blocks
Jasmine is lexible in nesting the describe blocks with specs at any level. This
means that, before executing a spec, Jasmine walks down executing each beforeEach
function in order, then executes the spec, and lastly walks up executing each
afterEach function.

The following code snippet is an example of the Jasmine's nested describe blocks:

describe("MyTest", function() {

 beforeEach(function() {

 alert("beforeEach level1");

 });

 describe("MyTest level2", function() {

 beforeEach(function() {

 alert("beforeEach level2");

 });

 describe("MyTest level3", function() {

 beforeEach(function() {

 alert("beforeEach level3");

 });

 it("is a simple spec in level3", function() {

 alert("A simple spec in level3");

 expect(true).toBe(true);

 });

 afterEach(function() {

 alert("afterEach level3");

 });

 });

Chapter 2

[39]

 afterEach(function() {

 alert("afterEach level2");

 });

 });

 afterEach(function() {

 alert("afterEach level1");

 });

});

This test will result in the following messages on the alert boxes:

• beforeEach level1

• beforeEach level2

• beforeEach level3

• A simple spec in level3

• afterEach level3

• afterEach level2

• afterEach level1

Jasmine matchers
In the irst Jasmine example, we used the toEqual and toThrow Jasmine matchers.
In this section, the other different built-in matchers provided by Jasmine will be
illustrated and will explain how to write a custom Jasmine matcher to have more
powerful and descriptive testing code.

The toBe matcher
The toBe matcher is passed if the actual value is of the same type and value as that
of the expected value. It uses === to perform this comparison. The following code
snippet shows an example of the toBe matcher:

describe("the toBe Matcher", function() {

 it("should compare both types and values", function() {

 var actual = "123";

 var expected = "123";

 expect(actual).toBe(expected);

 });

});

www.allitebooks.com

http://www.allitebooks.org

Jasmine

[40]

You might question the difference between the toBe and toEqual matchers.
The answer to this question would be that the toEqual matcher provides a powerful
mechanism for handling equality; it can handle array comparisons, for example, as
shown in the following code snippet:

 describe("the toEqual Matcher", function() {

 it("should be able to compare arrays", function() {

 var actual = [1, 2, 3];

 var expected = [1, 2, 3];

 expect(actual).toEqual(expected);

 });

 });

The following code snippet shows how the toBe matcher is unable to compare two
equivalent arrays:

 describe("the toBe Matcher", function() {

 it("should not be able to compare arrays", function() {

 var actual = [1, 2, 3];

 var expected = [1, 2, 3];

 expect(actual).not.toBe(expected);

 });

 });

As you may have noticed in the preceding code snippet, the not keyword is used
for making the test passes because the toBe matcher will not be able to know that
the actual and expected arrays are the same. The Jasmine not keyword can be used
with every matcher's criteria for inverting the result.

The toBeDeined and toBeUndeined
matchers
The toBeDefined matcher is used to ensure that a property or a value is deined,
while the toBeUndefined matcher is used to ensure that a property or a value is
undeined. The following code snippet shows an example of both matchers:

describe("the toBeDefined Matcher", function() {

 it("should be able to check defined objects", function() {

 var object = [1, 2, 3];

 expect(object).toBeDefined();

Chapter 2

[41]

 });

});

describe("the toBeUndefined Matcher", function() {

 it("should be able to check undefined objects", function() {

 var object;

 expect(object).toBeUndefined();

 });

});

You can achieve the behavior of the toBeUndefined matcher by using the not
keyword and the toBeDefined matcher, as shown in the following code snippet:

describe("the toBeUndefined Matcher using the not keyword and the
toBeDefined matcher", function() {

 it("should be able to check undefined objects", function() {

 var object;

 expect(object).not.toBeDefined();

 });

});

The toBeNull matcher
The toBeNull matcher is used to ensure that a property or a value is null.
The following code snippet shows an example of the toBeNull matcher:

 describe("the toBeNull Matcher", function() {

 it("should be able to check if an object value is null",
 function() {

 var object = null;

 expect(object).toBeNull();

 });

 });

The toBeTruthy and toBeFalsy matchers
The toBeTruthy matcher is used to ensure that a property or a value is true while
the toBeFalsy matcher is used for ensuring that a property or a value is false.
The following code snippet shows an example of both matchers:

describe("the toBeTruthy Matcher", function() {

 it("should be able to check if an object value is true",
function() {

Jasmine

[42]

 var object = true;

 expect(object).toBeTruthy();

 });

});

describe("the toBeFalsy Matcher", function() {

 it("should be able to check if an object value is false",
function() {

 var object = false;

 expect(object).toBeFalsy();

 });

});

The toContain matcher
The toContain matcher is used to check whether a string or array contains
a substring or an item. The following code snippet shows an example of the
toContain matcher:

describe("the toContain Matcher", function() {

 it("should be able to check if a String contains a specific
 substring", function() {

 expect("Hello World from Cairo").toContain("Cairo");

 });

 it("should be able to check if an Array contains a specific
 item", function() {

 expect(["TV", "Watch", "Table"]).toContain("Watch");

 });

});

The toBeLessThan and toBeGreaterThan
matchers
The toBeLessThan and the toBeGreaterThan matchers are used to perform
the simple mathematical less-than and greater-than operations, as shown in
the following code snippet:

describe("the toBeLessThan Matcher", function() {

 it("should be able to perform the less than operation",
 function() {

 expect(4).toBeLessThan(5);

 });

Chapter 2

[43]

});

describe("the toBeGreaterThan Matcher", function() {

 it("should be able to perform the greater than operation",
 function() {

 expect(5).toBeGreaterThan(4);

 });

});

The toMatch matcher
The toMatch matcher is used to check whether a value matches a string or a regular
expression. The following code snippet shows an example of the toMatch matcher,
which ensures that the expect parameter is a digit:

describe("the toMatch Matcher", function() {

 it("should be able to match the value with a regular expression",
 function() {

 expect(5).toMatch("[0-9]");

 });

});

Developing custom Jasmine matchers
In addition to all of the mentioned built-in matchers, Jasmine enables you to develop
custom matchers to have more powerful and descriptive testing code. Let's develop
two custom matchers, toBePrimeNumber and toBeSumOf, to understand how to
develop custom matchers in Jasmine.

The purpose of the toBePrimeNumber matcher is to check whether the actual number
(the number in the expect function) is a prime number, while the toBeSumOf
matcher checks whether the sum of its two arguments is equal to the actual number.

In order to deine a custom matcher in Jasmine, you should use the addMatchers
API to deine the matcher(s) passing an object parameter to the API. The object
parameter is represented as a set of key-value pairs. Every key in the object
represents the matcher's name, while the value represents the matcher's associated
function (the matcher's implementation). The deinition of the matchers can be
placed in either the beforeEach or the it block. The following code snippet shows
the toBePrimeNumber and toBeSumOf custom matchers:

beforeEach(function(){

 this.addMatchers({

 toBeSumOf: function (firstNumber, secondNumber) {

 return this.actual == firstNumber + secondNumber;

Jasmine

[44]

 },

 toBePrimeNumber: function() {

 if (this.actual < 2) {

 return false;

 }

 var n = Math.sqrt(this.actual);

 for (var i = 2; i <= n; ++i) {

 if (this.actual % i == 0) {

 return false;

 }

 }

 return true;

 }

 });

});

After deining the custom matchers, they can be used like the other built-in matchers
in the test code, as shown in the following code snippet:

describe("Testing toBeSumOf custom matcher", function() {

 it("should be able to calculate the sum of two numbers",
 function() {

 expect(10).toBeSumOf(7, 3);

 });

});

describe("Testing toBePrimeNumber custom matcher", function() {

 it("should be able to know prime number", function() {

 expect(13).toBePrimeNumber();

 });

 it("should be able to know non-prime number", function() {

 expect(4).not.toBePrimeNumber();

 });

});

As shown in the preceding code snippet, you can use the not keyword with your
deined custom matchers.

Chapter 2

[45]

Testing asynchronous (Ajax) JavaScript

code
Now, the question that comes to mind is how to test asynchronous (Ajax) JavaScript
code using Jasmine. What was mentioned in the chapter so far is how
to perform unit testing for synchronous JavaScript code. Jasmine fortunately includes
powerful functions (runs(), waits(), and waitsFor()) for performing real Ajax
testing (which requires the backend server to be up and running in order to complete
the Ajax tests), and it also provides a mechanism for making fake Ajax testing (which
does not require the availability of the backend server in order to complete the
Ajax tests).

The runs() function
The code inside the runs() block runs directly as if it were outside the block.
The main purpose of the runs() block is to work with the waits() and waitsFor()
blocks to handle the testing of the asynchronous operations.

The runs() block has some characteristics that are important to know. The irst point
is that, if you have multiple runs() blocks in your spec, they will run sequentially, as
shown in the following code snippet:

 describe("Testing runs blocks", function() {

 it("should work correctly", function() {

 runs(function() {

 this.x = 1;

 expect(this.x).toEqual(1);

 });

 runs(function() {

 this.x++;

 expect(this.x).toEqual(2);

 });

 runs(function() {

 this.x = this.x * 4;

 expect(this.x).toEqual(8);

 });

 });

 });

Jasmine

[46]

In the preceding code snippet, the runs() blocks run in sequence; when the irst
runs() block completes, the value of this.x is initialized to 1. Then, the second
runs() block runs, and the value of this.x is incremented by 1 to be 2. Finally,
the last runs() block runs, and the value of this.x is multiplied by 4 to be 8.

The second important point here is that the properties between the runs()
blocks can be shared using the this keyword, as shown in the next code snippet.

The waits() function
The waits() function pauses the execution of the next block until its timeout period
parameter is passed, in order to give the JavaScript code the opportunity to perform
some other operations. The following code snippet shows an example of the waits()
functionality with the runs() blocks:

describe("Testing waits with runs blocks", function() {

 it("should work correctly", function() {

 runs(function() {

 this.x = 1;

 var localThis = this;

 window.setTimeout(function() {

 localThis.x += 99;

 }, 500);

 });

 runs(function() {

 expect(this.x).toEqual(1);

 });

 waits(1000);

 runs(function() {

 expect(this.x).toEqual(100);

 });

 });

});

In the irst runs() block, the this.x variable is set to 1 and a JavaScript setTimeout
method is created to increment the this.x variable by 99 after 500 milliseconds.
Before 500 milliseconds, the second runs() block veriies that this.x is equal
to 1. Then, waits(1000) pauses the execution of the next runs() block by 1000

Chapter 2

[47]

milliseconds, which is enough time for setTimeout to complete its execution and
incrementing this.x by 99 to be 100. After the 1000 milliseconds, the last runs()
block veriies that the this.x variable is 100.

In real applications, we may not know the exact time to wait for until the
asynchronous operation completes its execution. Fortunately, Jasmine provides
a more powerful mechanism to wait for the results of asynchronous operations,
the waitsFor() function.

The waitsFor() function
The waitsFor() function provides a more powerful interface that can pause the
execution of the next block until its provided function returns true or a speciic
timeout period passes. The following code snippet shows an example of the
waitsFor() functionality with the runs() blocks:

describe("Testing waitsFor with runs blocks", function() {

 it("should work correctly", function() {

 runs(function() {

 this.x = 1;

 var localThis = this;

 var intervalID = window.setInterval(function() {

 localThis.x += 1;

 if (localThis.x == 100) {

 window.clearInterval(intervalID);

 }

 }, 20);

 });

 waitsFor(function() {

 return this.x == 100;

 }, "Something wrong happens, it should not wait all of this
 time", 5000);

 runs(function() {

 expect(this.x).toEqual(100);

 });

 });

});

Jasmine

[48]

In the irst runs() block, the this.x variable is set to 1, and a JavaScript
setInterval method is created to continuously increment the this.x variable with
1 every 20 milliseconds, and stop incrementing this.x once its value becomes 100;
that is, after 2000 milliseconds are up, setInterval stops execution. Before 2000
milliseconds are complete, the second waitsFor() function pauses executing the
next runs block until either this.x reaches 100 or the operation times out after 5000
milliseconds. After 2000 milliseconds, the value of this.x becomes 100, which
results in a true condition result in the return of the waitsFor() provided function.
This will result in executing the next runs block, which checks that this.x is equal
to 100.

The waitsFor() function is mostly used for testing real Ajax requests; it waits for the
completion of the execution of the Ajax callback with the help of Jasmine Spies.

A Jasmine Spy is a replacement for a JavaScript function that can
either be a callback, an instance method, a static method, or an object
constructor.

The following code snippet shows how to test a real Ajax request:

 describe("when waitsFor is used for testing real Ajax requests",
 function() {

 it("should do this very well with the Jasmine Spy", function() {

 var successCallBack = jasmine.createSpy();

 var failureCallBack = jasmine.createSpy();

 asyncSystem.doAjaxOperation(inputData, successCallBack,
 failureCallBack);

 waitsFor(function() {

 return successCallBack.callCount > 0;

 }, "operation never completed", 10000);

 runs(function() {

 expect(successCallBack).toHaveBeenCalled();

 expect(failureCallBack).not.toHaveBeenCalled();

 });

 });

 });

Chapter 2

[49]

In the preceding code snippet, two Jasmine Spies are created using jasmine.
createSpy() to replace the Ajax operation callbacks (the success callback and the
failure callback), and then the asynchronous system is called with the input data and
the success and failure callbacks (the two Jasmine Spies). The waitsFor() provided
function waits for the calling of the success callback by using the callCount
property of the spy. If the success callback is not called after 10000 milliseconds,
the test fails.

In addition to the callCount property, Jasmine Spy has two other
properties. mostRecentCall.args returns an array of the arguments
from the last call to the Spy and argsForCall[i] returns an array of
the arguments from the call number i to the Spy.

Finally, the inal runs() block ensures that the success callback is called using the
spy matcher toHaveBeenCalled() (you can omit this line because it is already
known that the success callback is called from the waitsFor provided function;
however, I like to add this check for increasing the readability of the test) and
ensures that the failure callback is not called using the not keyword with the
toHaveBeenCalled() matcher.

In addition to the toHaveBeenCalled() matcher,
Jasmine Spies has another custom matcher, the
toHaveBeenCalledWith(arguments) matcher, which
checks if the spy is called with the speciied arguments.

The spyOn() function
In the previous section, we learned how to create a spy using the jasmine.
createSpy() API in order to replace the Ajax callbacks with the spies for making a
complete real Ajax testing. The question that may come to mind now is whether it
is possible to make a fake Ajax testing using Jasmine if there is no server available
and you want to check that things will work correctly after the response comes
from the server. (In other words, is it possible to mock the Ajax testing in Jasmine?)
The answer to this question is yes. The Ajax fake testing can be simulated using the
Jasmine spyOn() function, which can spy on the asynchronous operation and routes
its calls to a fake function. First of all, let's see how spyOn() works. spyOn() can spy
on a callback, an instance method, a static method, or an object constructor.

www.allitebooks.com

http://www.allitebooks.org

Jasmine

[50]

The following code snippet shows how spyOn() can spy on an instance method
of the SimpleMath object:

SimpleMath = function() {
};

SimpleMath.prototype.getFactorial = function (number) {
 //...
}

describe("Testing spyOn", function() {
 it("should spy on instance methods", function() {
 var simpleMath = new SimpleMath();

 spyOn(simpleMath, 'getFactorial');
 simpleMath.getFactorial(3);

 expect(simpleMath.getFactorial).toHaveBeenCalledWith(3);
 });
});

The spyOn() method spies on the getFactorial method of the SimpleMath object.
The getFactorial method of the SimpleMath object is called with number 3.
Finally, the simpleMath.getFactorial spy knows that the instance method has
been called with number 3 using the toHaveBeenCalledWith matcher.

Spies are automatically removed after each spec. So make sure that you
deine them in the beforeEach function or within every spec separately.

In order to simulate the fake Ajax testing behavior, the spy has a powerful method,
which is the andCallFake(function) method that calls its function parameter when
the spy is called. The following code snippet shows you how to perform a fake Ajax
testing using Jasmine:

describe("when making a fake Ajax testing", function() {

 it("should be done the Jasmine Spy and the andCallFake
 function", function() {

 var successCallBack = jasmine.createSpy();

 var failureCallBack = jasmine.createSpy();

 var successFakeData = "Succcess Fake Data ...";

 spyOn(asyncSystem,
 'doAjaxOperation').andCallFake(function(inputData,
 successCallBack, failureCallBack) {

 successCallBack(successFakeData);
 });

Chapter 2

[51]

 asyncSystem.doAjaxOperation(inputData, successCallBack,
 failureCallBack);

 expect(successCallBack).toHaveBeenCalled();
 expect(failureCallBack).not.toHaveBeenCalled();
 });
});

A spy is created on the doAjaxOperation method of the asyncSystem object, and an
order is given to the spy through the andCallFake method to call the fake function
that has the same parameters of real doAjaxOperation when a call is done to
original asyncSystem.doAjaxOperation. The fake function calls successCallBack
to simulate a successful Ajax operation. After calling asyncSystem.
doAjaxOperation, which does not go to the server anymore, thanks to the spy, as
it executes the fake function, and inally successCallBack is checked that it has
been called while failureCallBack is checked that it has never been called during
the spec. Notice we are not using the waits(), waitsFor(), or runs() functions
anymore in the fake testing because this test is fully performed on the client side so
there is no need to wait for a response from the server.

Besides the andCallFake(function) method, there are other
three useful methods in the spy that you may use. The irst one
is the andCallThrough() method, which calls the original
function that the spy spied on when the spy was called. The
second one is the andReturn(arguments) method, which
returns the arguments parameter when the spy is called. Finally,
the andThrow(exception) method throws an exception when
the spy is called.

HTML ixtures
HTML ixtures are the input HTML code that is needed for executing one or
more tests that require manipulating Document Object Model (DOM) elements.
Jasmine does not provide an API for handling HTML ixtures in the specs.
However, fortunately, there are some extensions of the framework that provide this
functionality. One of the best plugins that provide this functionality is the jasmine-
jquery plugin. Although jasmine-jquery goes beyond the HTML ixtures loading
(it has a powerful set of matchers for the jQuery framework), I will focus only on its
HTML ixture functionality, as this is what we need as JavaScript developers from
Jasmine in order to test our JavaScript applications even though the applications
are using a JavaScript library such as Dojo or jQuery or are not using any JavaScript
library at all.

Jasmine

[52]

Coniguring the jasmine-jquery plugin
In order to conigure the jasmine-jquery plugin with Jasmine we need to perform
the following steps:

1. Download the plugin ZIP ile from https://github.com/velesin/
jasmine-jquery/downloads.

2. Unpack the velesin-jasmine-jquery.zip (at the time of writing this
chapter, the version of jasmine-jquery plugin was 1.3.2).

3. Get the jasmine-jquery.js ile from the lib folder, and the jquery.js ile
from the vendor\jquery folder.

4. Group the jasmine-jquery.js and jquery.js iles under a folder.
Let's make the folder name jasmine-jquery. I usually place the
jasmine-jquery folder under a plugins folder in the lib folder of Jasmine.
The following screenshot shows the structure of the Jasmine tests in the
weather application:

Chapter 2

[53]

5. Finally, include the two iles in the SpecRunner.html ile as shown in the
highlighted lines of the following code snippet:

 <script type="text/javascript" src="lib/jasmine-
 1.2.0/jasmine.js"></script>

 <script type="text/javascript" src="lib/jasmine-
 1.2.0/jasmine-html.js"></script>

 <!-- The plugin files -->

 <script type="text/javascript" src="lib/plugins/jasmine-
 jquery/jquery.js"></script>

 <script type="text/javascript" src="lib/plugins/jasmine-
 jquery/jasmine-jquery.js"></script>

 <!-- include spec files here... -->

 ...

The loadFixtures module
This ixture module of jasmine-jquery allows loading the HTML content to be
used by the tests. Simply, you can put the ixtures you want to load for your tests in
the spec\javascripts\fixtures conventional folder and use the loadFixtures
API to load the ixture(s). The following code snippet shows an example of the
loadFixtures module:

beforeEach(function() {

 loadFixtures("registrationFixture.html");

});

In the spec\javascripts\fixtures folder, the registrationFixture.html ile is
as shown in the following code snippet:

<label for="username">Username (Email) <span id="usernameMessage"
class="error"></label>

<input type="text" id="username" name="username"/>

<label for="password1">Password <span id="passwordMessage1"
class="error"></label>

<input type="password" id="password1" name="password1"/>

<label for="password2">Confirm your password</label>

<input type="password" id="password2" name="password2"/>

Jasmine

[54]

You can change the default ixtures path instead of working with the
spec\javascripts\fixtures conventional folder using:

jasmine.getFixtures().fixturesPath = '[The new path]';

The loadFixtures API can be used for loading multiple ixtures for
the same test. You can use the loadFixtures API as follows:

loadFixtures(fixtureUrl[, fixtureUrl, ...])

Once you use the loadFixtures API to load the ixture(s), the ixture is loaded in the
<div id="jasmine-fixtures"></div> container and added to the DOM using the
ixture module. Fixtures are automatically cleaned up between tests so you do not
have to clean them up manually. For speeding up the tests, jasmine-jquery makes
an internal caching for the HTML ixtures in order to avoid the overhead if you
decide to load the same ixture ile many times in the tests.

The loadFixtures(…) API is a shortcut for the jasmine.
getFixtures().load(...) so you can freely use any of
them to load the HTML ixtures for the tests.

In jasmine-jquery you have the option to write the HTML code inline without
having to load it from an external ile. You can do this using the jasmine.
getFixtures().set(…) API as follows:

jasmine.getFixtures().set('<div id="someDiv">HTML code …</div>');

While testing the weather application, both the load and set APIs will be used for
loading the test ixtures.

I recommend using the inline approach if the HTML ixture is a few
lines of HTML code. However, if the HTML ixture is large, then it is
better to load it from an external ile in order to have a better readable
testing code.

This is all what we need to know from jasmine-jquery in order to load the
needed ixtures for our tests. The next step is to write the Jasmine tests for
the weather application.

Chapter 2

[55]

Testing the weather application
Now, we come to write the Jasmine tests for our weather application. Actually,
after you know how to write Jasmine tests for both synchronous and asynchronous
JavaScript code and how to load the HTML ixtures in your Jasmine tests from
the previous sections, testing the weather application is an easy task. As you may
remember we have three major JavaScript objects in the weather application that
we need to write unit tests for: the LoginClient, RegistrationClient, and
WeatherClient objects.

One of the best practices that I recommend is to separate the JavaScript source and
testing code as shown in the preceding screenshot. There are two parent folders, one
for the JavaScript source, which I call js-src folder, and the other for the JavaScript
tests, which I call js-test folder. The js-test folder contains the tests written by
the testing frameworks that will be used in this book; for now, it contains a jasmine
folder that includes the Jasmine tests.

As indicated in the Coniguration section, Jasmine structure can be modiied to fulill
the organization of every web application. The preceding screenshot shows the
customized Jasmine structure for our weather application, under the jasmine folder;
we have two subfolders, the spec and the lib folders, while the src folder is now
represented in the js-src folder, which is directly under the js folder.

The following code snippet shows the JavaScript iles included for the Jasmine iles,
the jasmine-jquery iles, the spec iles, and the source iles in the SpecRunner.html
of the weather application according to the preceding screenshot:

<!-- The Jasmine files -->

<link rel="shortcut icon" type="image/png" href="lib/jasmine-1.2.0/
jasmine_favicon.png">

<link rel="stylesheet" type="text/css" href="lib/jasmine-1.2.0/
jasmine.css">

<script type="text/javascript" src="lib/jasmine-1.2.0/jasmine.js"></
script>

<script type="text/javascript" src="lib/jasmine-1.2.0/jasmine-html.
js"></script>

<!-- The jasmine-jquery files -->

<script type="text/javascript" src="lib/plugins/jasmine-jquery/jquery.
js"></script>

<script type="text/javascript" src="lib/plugins/jasmine-jquery/
jasmine-jquery.js"></script>

<!-- include spec files here... -->

<script type="text/javascript" src="spec/LoginClientSpec.js"></script>

<script type="text/javascript" src="spec/RegistrationClientSpec.js"></

Jasmine

[56]

script>

<script type="text/javascript" src="spec/WeatherClientSpec.js"></
script>

<!-- include source files here... -->

<script type="text/javascript" src="../../js-src/LoginClient.js"></
script>

<script type="text/javascript" src="../../js-src/RegistrationClient.
js"></script>

<script type="text/javascript" src="../../js-src/WeatherClient.js"></
script>

Testing the LoginClient object
In the LoginClient object, we will unit test the following functionalities:

• Validation of empty username and password

• Validating that the username is in e-mail address format

• Validating that the password contains at least one digit, one capital
and small letter, at least one special character, and six characters or more

The following code snippet shows the irst test suite of LoginClientSpec,
which tests the validation of empty username and password:

describe("LoginClientSpec", function() {

 var loginClient;

 var loginForm;

 beforeEach(function() {

 loadFixtures("loginFixture.html");

 loginClient = new weatherapp.LoginClient();

 loginForm = {

 "userNameField" : "username",

 "passwordField" : "password",

 "userNameMessage" : "usernameMessage",

 "passwordMessage" : "passwordMessage"

 };

 });

 describe("when validating empty username and password",
 function() {

 it("should be able to display an error message when username
 is not entered", function() {

Chapter 2

[57]

 document.getElementById("username").value = ""; /* setting
 username to empty */

 document.getElementById("password").value = "Admin@123";

 loginClient.validateLoginForm(loginForm);

 expect(document.getElementById("usernameMessage").innerHTML).
 toEqual("(field is required)");

 });

 it("should be able to display an error message when password
 is not entered", function() {

 document.getElementById("username").value =
 "someone@yahoo.com";

 document.getElementById("password").value = ""; /*
 setting password to empty */

 loginClient.validateLoginForm(loginForm);

 expect(document.getElementById("passwordMessage").innerHTML).
toEqual("(field is required)");

 });

 });

 //...

});

In the preceding code snippet, beforeEach loads the HTML ixture of the login
client test, creates an instance from weatherapp.LoginClient, and creates the
loginForm object, which holds the IDs of the login form that will be used in the test.
The following code snippet shows the HTML ixture of the login client test in the
loginFixture.html ile:

<label for="username">Username <span id="usernameMessage"
class="error"></label>

<input type="text" id="username" name="username"/>

<label for="password">Password <span id="passwordMessage"
class="error"></label>

<input type="password" id="password" name="password"/>

The irst spec tests that the LoginClient object should be able to display an error
message when username is not entered. It sets an empty value in the "username"
ield and then calls the validateLoginForm API of the LoginClient object. Finally,
it checks that the validateLoginForm API produces the "(field is required)"
message in the username message ield. The second spec is doing the same thing but
with the password ield, not with the username ield.

Jasmine

[58]

The following code snippet shows the second and the third test suites of
LoginClientSpec, which validates the formats of the username and password ields:

 describe("when validating username format", function() {

 it("should be able to display an error message when username
 format is not correct", function() {

 document.getElementById("username").value = "someone@yahoo";
 /* setting username to incorrect format */

 document.getElementById("password").value = "Admin@123";

 loginClient.validateLoginForm(loginForm);

 expect(document.getElementById("usernameMessage").innerHTML).
 toEqual("(format is invalid)");

 });

 });

 describe("when validating password format", function() {

 it("should be able to display an error message when
 password format is not correct", function() {

 document.getElementById("username").value =
 "someone@yahoo.com";

 document.getElementById("password").value = "admin@123";
 /* setting password to incorrect format */

 loginClient.validateLoginForm(loginForm);

 expect(document.getElementById("passwordMessage").innerHTML).
 toEqual("(format is invalid)");

 });

 });

In the preceding code snippet, the irst suite tests the validation of the username
format. It tests that the LoginClient object should be able to display an error
message when the username format is not correct. It sets an invalid e-mail value in
the "username" ield and then calls the validateLoginForm API of the LoginClient
object. Finally, it checks that the validateLoginForm API produces the "(format is
invalid)" message in the username message ield.

The second suite does the same thing but with the password ield not with the
username ield. It enters a password that does not comply with the application's
password rules; it enters a password that does not include a capital letter, and then
calls the validateLoginForm API of the LoginClient object. Finally, it checks that
the validateLoginForm API produces the "(format is invalid)" message in the
password message ield.

Chapter 2

[59]

It may not be always suitable while performing JavaScript unit testing
to test against the application messages because the application
messages can change at any time. However, in the weather application
testing example, I performed testing on the application messages in
order to show you how to perform testing against the HTML DOM
elements. If you want to avoid testing against DOM elements, you can
test against the validateLoginForm API directly as follows:

expect(loginClient.validateLoginForm(loginForm)).
toEqual(true);

Testing the RegistrationClient object
In the RegistrationClient object, we will test the following functionalities:

• Validation of empty username and password

• Validation of matched passwords

• Validating that the username is in e-mail address format

• Validating that the password contains at least one digit, one capital and small
letter, at least one special character, and six characters or more

• Validating that the user registration Ajax functionality is performed correctly

The irst four points will not be explained because they are pretty similar to the tests
that are explained in LoginClientSpec, so let's explain how to check that the user
registration functionality is done correctly. The following code snippet shows the
user registration test scenarios:

describe("RegistrationClientSpec", function() {

 var registrationClient;

 var registrationForm;

 var userName;

 beforeEach(function() {

 loadFixtures("registrationFixture.html");

 registrationClient = new weatherapp.RegistrationClient();

 registrationForm = {

 "userNameField" : "username",

 "passwordField1" : "password1",

 "passwordField2" : "password2",

 "userNameMessage" : "usernameMessage",

 "passwordMessage1" : "passwordMessage1"

 };

www.allitebooks.com

http://www.allitebooks.org

Jasmine

[60]

 });

 //The user registration test scenarios

 describe("when user registration is done", function() {

 it("should be able to register valid user correctly",
 function() {

 userName = "hazems" + new Date().getTime() + "@apache.org";

 document.getElementById("username").value = userName;

 document.getElementById("password1").value = "Admin@123";

 document.getElementById("password2").value = "Admin@123";

 var successCallBack = jasmine.createSpy();

 var failureCallBack = jasmine.createSpy();

 registrationClient.registerUser(registrationForm,
 successCallBack, failureCallBack);

 waitsFor(function() {

 return successCallBack.callCount > 0;

 }, "registration never completed", 10000);

 runs(function() {

 expect(successCallBack).toHaveBeenCalled();

 expect(failureCallBack).not.toHaveBeenCalled();

 });

 });

 it("should fail when a specific user id is already
 registered", function() {

 document.getElementById("username").value = userName;

 document.getElementById("password1").value = "Admin@123";

 document.getElementById("password2").value = "Admin@123";

 var successCallBack = jasmine.createSpy();

 var failureCallBack = jasmine.createSpy();

 registrationClient.registerUser(registrationForm,
 successCallBack, failureCallBack);

 waitsFor(function() {

 return failureCallBack.callCount > 0;

 }, "registration never completed", 10000);

Chapter 2

[61]

 runs(function() {

 expect(failureCallBack).toHaveBeenCalled();

 expect(failureCallBack.mostRecentCall.args[0].xmlhttp.
responseText, "A user with the same username is already registered
...");

 expect(successCallBack).not.toHaveBeenCalled();

 });

 });

 });

});

In the preceding code snippet, beforeEach loads the ixture of the registration client
test, creates an instance from weatherapp.RegistrationClient, and creates the
registrationForm object, which holds the IDs of the registration form that will
be used in the test. The following code snippet shows the ixture of the registration
client test in the registrationFixture.html ile:

<label for="username">Username (Email) <span id="usernameMessage"
class="error"></label>

<input type="text" id="username" name="username"/>

<label for="password1">Password <span id="passwordMessage1"
class="error"></label>

<input type="password" id="password1" name="password1"/>

<label for="password2">Confirm your password</label>

<input type="password" id="password2" name="password2"/>

The registration testing suite has two main test scenarios:

• The registration client should be able to register valid user correctly

• The registration client should fail when registering a user ID that
is already registered

In the irst spec, the registration form is illed with a valid username and valid matched
passwords; then two spies are created. The irst spy replaces the success callback while
the second one replaces the failure callback. registrationClient.registerUser
is called with the registration form, the success callback, and the failure callback
parameters and the waitsFor() function waits for a call to the success callback or it
will be timed out after 10000 milliseconds. Once waitsFor() is completed, the runs
block checks that the success callback is called and the failure callback is not called for
ensuring that the registration operation is completed correctly.

Jasmine

[62]

Note that the Ajax testing of the weather application is real Ajax testing; this requires
the server to be up and running in order to perform the test correctly. If you want to
make fake Ajax testing, for example, for the successful user registration, you can do
this as you learned from the spyOn section as follows:

it("makes a fake registration Ajax call", function() {

 document.getElementById("username").value = userName;

 document.getElementById("password1").value = "Admin@123";

 document.getElementById("password2").value = "Admin@123";

 var successCallBack = jasmine.createSpy();

 var failureCallBack = jasmine.createSpy();

 spyOn(registrationClient,
 'registerUser').andCallFake(function(registrationForm,
 successCallBack, failureCallBack) {

 successCallBack();

 });

 registrationClient.registerUser(registrationForm,
 successCallBack, failureCallBack);

 expect(successCallBack).toHaveBeenCalled();

 expect(failureCallBack).not.toHaveBeenCalled();

 });

In the second spec, the registration form is illed with the same username that is
already registered in the irst spec and then two spies are created. The irst spy
replaces the success callback while the second one replaces the failure callback.
registrationClient.registerUser is called with the registration form, the
success callback, and the failure callback parameters and the waitsFor() function
waits for a call to the failure callback or it will be timed out after 10000 milliseconds.
Once waitsFor() is completed, the runs block checks that the failure callback is
called, and using expect(failureCallBack.mostRecentCall.args[0].xmlhttp.
responseText, "A user with the same username is already registered

...") ensures that the server sends the correct duplicate registration failure message
to the failure callback. Finally, the spec checks that the success callback is not called
for ensuring that the registration operation is not done because of the already
registered user ID. This was all about the registration tests.

Chapter 2

[63]

Testing the WeatherClient object
In the WeatherClient object, we will test the following functionalities:

• Getting the weather of a valid location

• Getting the weather for an invalid location (the system should display an
error message for this case)

For testing the WeatherClient object, the same technique that we used in the
registerUser test case is followed. I will leave this test for you as an exercise; you
can get the full source code of the WeatherClientSpec.js ile from the Chapter 2
folder in the code bundle available from the book's website.

Running the weather application tests
In order to run the weather application tests correctly, you have to make sure that the
server is up and running in order to pass the Ajax test suites. So, you need to deploy
this chapter's updated version of the weather application on Tomcat 6 as explained
in Chapter 1, Unit Testing JavaScript Applications and then type in the browser the
following URL to see the passing tests:

http://localhost:8080[or other Tomcat port]/weatherApplication/js/js-
test/jasmine/SpecRunner.html

Summary
In this chapter, you learned what Jasmine is and how to use it for testing synchronous
JavaScript code. You also learned how to test asynchronous (Ajax) JavaScript code
using Jasmine Spies and the waitsFor/runs mechanism. You also learned how to
make fake Ajax testing using Jasmine. You learned the various matchers provided by
the framework, and know how to load the HTML ixtures easily in your Jasmine tests.
Finally, I explained how to apply all of these things for testing the weather application
using Jasmine. In the next chapter, you will learn how to work with the YUI Test
framework and how to use it for testing the weather application.

YUI Test
YUI Test is one of the most popular JavaScript unit testing frameworks. Although
YUI Test is part of the Yahoo! User Interface (YUI) JavaScript library (YUI is an
open source JavaScript and CSS library that can be used to build Rich Internet
Applications), it can be used to test any independent JavaScript code that does not
use the YUI library. YUI Test provides a simple syntax for creating JavaScript test
cases that can run either from the browser or from the command line; it also provides
a clean mechanism for testing asynchronous (Ajax) JavaScript code. If you are
familiar with the syntax of xUnit frameworks (such as JUnit), you will ind yourself
familiar with the YUI Test syntax. In this chapter, the framework will be illustrated
in detail and will be used to test the weather application that is discussed in Chapter
1, Unit Testing JavaScript Applications.

In YUI Test, there are different ways to display test results. You can display the test
results in the browser console or develop your custom test runner pages to display
the test results. It is preferable to develop custom test runner pages in order to
display the test results in all the browsers because some browsers do not support the
console object. The console object is supported in Firefox with Firebug installed,
Safari 3+, Internet Explorer 8+, and Chrome.

Before writing your irst YUI test, you need to know the structure of a custom
YUI test runner page. We will create the test runner page, BasicRunner.html,
that will be the basis for all the test runner pages used in this chapter. In order
to build the test runner page, irst of all you need to include the YUI JavaScript
ile yui-min.js—from the Yahoo! Content Delivery Network (CDN)—in the
BasicRunner.html ile, as follows:

<script src="http://yui.yahooapis.com/3.6.0/build/yui/yui-min.js"></
script>

YUI Test

[66]

At the time of this writing, the latest version of YUI Test is 3.6.0, which is the one
used in this chapter. After including the YUI JavaScript ile, we need to create and
conigure a YUI instance using the YUI().use API, as follows:

YUI().use('test', 'console', function(Y) {

 ...

});

The YUI().use API takes the list of YUI modules to be loaded. For the purpose of
testing, we need the YUI 'test' and 'console' modules (the 'test' module is
responsible for creating the tests, while the 'console' module is responsible for
displaying the test results in a nifty console component). Then, the YUI().use API
takes the test's callback function that is called asynchronously once the modules are
loaded. The Y parameter in the callback function represents the YUI instance.

As shown in the following code snippet taken from the BasicRunner.html ile,
you can write the tests in the provided callback and then create a console component
using the Y.Console object:

<HTML>

 <HEAD>

 <TITLE>YUITest Example</TITLE>

 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">

 <script src="http://yui.yahooapis.com/3.6.0/build/yui/yui-
 min.js"></script>

 </HEAD>

 <BODY>

 <div id="log" class="yui3-skin-sam" style="margin:0px"></div>

 <script>

 // create a new YUI instance and populate it with the required
 modules.

 YUI().use('test', 'console', function(Y) {

 // Here write your test suites with the test cases
 (tests)...

 //create the console

 var console = new Y.Console({

 style: 'block',

 newestOnTop : false

 });

 console.render('#log');

Chapter 3

[67]

 // Here run the tests

 });

 </script>

 </BODY>

</HTML>

The console object is rendered as a block element by setting the style attribute
to 'block', and the results within the console can be displayed in the sequence of
their executions by setting the newestOnTop attribute to false. Finally, the console
component is created on the log div element.

Now you can run the tests, and they will be displayed automatically by the YUI
console component. The following screenshot shows the BasicRunner.html ile's
console component without any developed tests:

Writing your irst YUI test
The YUI test can contain test suites, test cases, and test functions. A YUI test suite is
a group of related test cases. Each test case includes one or more test functions for the
JavaScript code. Every test function should contain one or more assertion in order to
perform the tests and verify the outputs.

The YUI Test.Suite object is responsible for creating a YUI test suite, while the YUI
Test.Case object creates a YUI test case. The add method of the Test.Suite object
is used for attaching the test case object to the test suite. The following code snippet
shows an example of a YUI test suite:

YUI().use('test', 'console', function(Y){

 var testcase1 = new Y.Test.Case({

YUI Test

[68]

 name: "testcase1",

 testFunction1: function() {

 //...

 },

 testFunction2: function() {

 //...

 }

 });

 var testcase2 = new Y.Test.Case({

 name: "testcase2",

 testAnotherFunction: function() {

 //...

 }

 });

 var suite = new Y.Test.Suite("Testsuite");

 suite.add(testcase1);

 suite.add(testcase2);

 //...

});

As shown in the preceding code snippet, two test cases are created. The irst test case is
named testcase1; it contains two test functions, testFunction1 and testFunction2.
In YUI Test, you can create a test function simply by starting the function name with
the word "test". The second test case is named testcase2; and it contains a single test
function, testAnotherFunction. A test suite is created with the name Testsuite.
Finally, testcase1 and testcase2 are added to the Testsuite test suite. In YUI Test,
you have the option of creating a friendly test name for the test function, as follows:

var testCase = new Y.Test.Case({

 name: "some Testcase",

 "The test should do X": function () {

 //...

 },

 "The test should do Y": function () {

 //...

 }

});

Chapter 3

[69]

The "some Testcase" test case contains two tests with the names "The test
should do X" and "The test should do Y".

Let's now move to testing the SimpleMath JavaScript object (which we tested using
Jasmine in Chapter 2, Jasmine). The following code snippet reminds you with the code
of the SimpleMath object:

SimpleMath = function() {

};

SimpleMath.prototype.getFactorial = function (number) {

 if (number < 0) {

 throw new Error("There is no factorial for negative numbers");

 }

 else if (number == 1 || number == 0) {

 // If number <= 1 then number! = 1.

 return 1;

 } else {

 // If number > 1 then number! = number * (number-1)!

 return number * this.getFactorial(number-1);

 }

}

SimpleMath.prototype.signum = function (number) {

 if (number > 0) {

 return 1;

 } else if (number == 0) {

 return 0;

 } else {

 return -1;

 }

}

SimpleMath.prototype.average = function (number1, number2) {

 return (number1 + number2) / 2;

}

YUI Test

[70]

As we did in Chapter 2, Jasmine, we will develop the following three test scenarios for
the getFactorial method:

• A positive number

• Zero

• A negative number

The following code snippet shows how to test calculating the factorial of a positive
number (3), 0, and a negative number (-10) using YUI Test:

YUI().use('test', 'console', function(Y){

 var factorialTestcase = new Y.Test.Case({

 name: "Factorial Testcase",

 _should: {

 error: {

 testNegativeNumber: true //this test should throw an error

 }

 },

 setUp: function() {

 this.simpleMath = new SimpleMath();

 },

 tearDown: function() {

 delete this.simpleMath;

 },

 testPositiveNumber: function() {

 Y.Assert.areEqual(6, this.simpleMath.getFactorial(3));

 },

 testZero: function() {

 Y.Assert.areEqual(1, this.simpleMath.getFactorial(0));

 },

 testNegativeNumber: function() {

 this.simpleMath.getFactorial(-10);

 }

 });

 //...

});

The Y.Test.Case object declares a new test case called "Factorial Testcase".
The setUp method is used to initialize the test functions in the test case; that is, the
setUp method is called once before the run of each test function in the test case.

Chapter 3

[71]

In the setUp method, the simpleMath object is created using new SimpleMath().
The tearDown method is used to de-initialize the test functions in the test case; the
tearDown method is called once after the run of each test function in the test case.
In the factorial tests, the tearDown method is used to clean up resources by deleting
the created simpleMath object.

In the irst test function of the getFactorial test case, the Y.Assert.areEqual
assertion function calls simpleMath.getFactorial(3) and expects the result to
be 6. If simpleMath.getFactorial(3) returns a value other than 6, the test fails.
We have many other assertions to use instead of Y.Assert.areEqual; we shall be
discussing them in more detail in the Assertions section.

In the second test function of the getFactorial test case, the Y.Assert.areEqual
assertion function calls simpleMath.getFactorial(0) and expects it to be equal to
1. In the last test function of the getFactorial test case, the Y.Assert.areEqual
assertion function calls simpleMath.getFactorial(-10) and expects it to throw an
error by using the _should.error object. In YUI Test, if you set a property whose
name is the test method's name and value is true in the _should.error object, this
means that this test method must throw an error in order to have the test function pass.

After inalizing the getFactorial test case, we come to a new test case that
tests the functionality of the signum method provided by the SimpleMath object.
The following code snippet shows the signum test case:

var signumTestcase = new Y.Test.Case({

 name: "Signum Testcase",

 setUp: function() {

 this.simpleMath = new SimpleMath();

 },

 tearDown: function() {

 delete this.simpleMath;

 },

 testPositiveNumber: function() {

 Y.Assert.areEqual(1, this.simpleMath.signum(3));

 },

 testZero: function() {

 Y.Assert.areEqual(0, this.simpleMath.signum(0));

 },

 testNegativeNumber: function() {

 Y.Assert.areEqual(-1, this.simpleMath.signum(-1000));

 }

});

YUI Test

[72]

In the preceding code snippet, we have three tests for the signum method:

• The irst test is about getting the signum value for a positive number (3)

• The second test is about getting the signum value for 0

• The last test is about getting the signum value for a negative number (-1000)

The following code snippet shows the average test case:

var averageTestcase = new Y.Test.Case({

 name: "Average Testcase",

 setUp: function() {

 this.simpleMath = new SimpleMath();

 },

 tearDown: function() {

 delete this.simpleMath;

 },

 testAverage: function() {

 Y.Assert.areEqual(4.5, this.simpleMath.average(3, 6));

 }

});

In the average test case, the testAverage test function ensures that the average is
calculated correctly by calling the average method, using the two parameters 3 and
6, and expecting the result to be 4.5.

In the following code snippet, a test suite "SimpleMath Test Suite" is created
in order to group the test cases factorialTestcase, signumTestcase, and
averageTestcase. Finally, the console component is created to display the
test results.

var suite = new Y.Test.Suite("SimpleMath Test Suite");

suite.add(factorialTestcase);
suite.add(signumTestcase);
suite.add(averageTestcase);

//create the console
var console = new Y.Console({
 style: 'block',
 newestOnTop : false
});
console.render('#resultsPanel');

Y.Test.Runner.add(suite);
Y.Test.Runner.run();

Chapter 3

[73]

In order to run the test suite, we need to add it to the YUI test runner page by using the
Y.Test.Runner.add API, and then run the YUI test runner page by using the Y.Test.
Runner.run API. After clicking the SimpleMath YUI test page SimpleMathTests.
html, you will ind the test results, as shown in the following screenshot:

Finally, the following code snippet shows the complete structure of the SimpleMath
YUI test page, which includes the simpleMath.js source ile to be tested in the page:

<HTML>

 <HEAD>

 <TITLE>SimpleMathTest</TITLE>

 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">

 <script src="http://yui.yahooapis.com/3.6.0/build/yui/yui-
 min.js"></script>

 <script src="src/simpleMath.js"></script>

 </HEAD>

 <BODY>

 <div id="resultsPanel" class="yui3-skin-sam"></div>

 <script language="javascript" type="text/javascript">

 YUI().use('test', 'console', function(Y){

 var factorialTestcase = new Y.Test.Case({

 …

 });

YUI Test

[74]

 var signumTestcase = new Y.Test.Case({

…

 });

 var averageTestcase = new Y.Test.Case({

 …

 });

 var suite = new Y.Test.Suite("SimpleMath Test Suite");

 suite.add(factorialTestcase);

 suite.add(signumTestcase);

 suite.add(averageTestcase);

 //create the console and run the test suite …

 });

 </script>

 </BODY>

</HTML>

It is recommended that you separate the test logic from the test
runner ile(s), that is, have the tests in separate JavaScript iles and
then include them in the test runner ile(s). However, the test logic is
embedded in the test runner ile in the simpleMath testing example,
for simplicity. In the Testing the weather application section, this sort of
separation will be applied.

Assertions
An assertion is a function that validates a condition if the condition is not valid;
it throws an error that causes the test to fail. A test method can include one or more
assertions; all the assertions have to pass in order that the test method passes. In the
irst YUI test example, we used the Y.Assert.areEqual assertion. In this section,
the other different built-in assertions provided by YUI Test will be illustrated.

The assert assertion
The assert function takes two parameters. The irst parameter is a condition, and
the second parameter represents a failure message. It is passed if the condition is
true, and when it fails, the failure message is displayed. For example:

Chapter 3

[75]

Y.assert(10 == 10, "Error ..."); // will pass

Y.assert(10 != 10, "Error ..."); // will fail and display an error

The areEqual and areNotEqual assertions
The areEqual assertion function takes three parameters; the irst two parameters
represent the expected and actual values, and the third parameter is optional and
represents a failure message. The areEqual function is passed if the actual is equal
to the expected. If they are not equal, the test fails and the optional failure message
is displayed. The areNotEqual function ensures that the actual and expected
parameters are not equal.

It is very important to know that the areEqual and areNotEqual functions are using
the JavaScript == operator to perform the comparison, that is, they do the comparison
and neglect the types. For example, the following assertions will pass:

Y.Assert.areEqual(10, 10, "10 should equal 10...");

Y.Assert.areEqual(10, "10", "10 should equal '10'...");

Y.Assert.areNotEqual(10, 11, "10 should not equal 11...");

The areSame and areNotSame assertions
The areSame and areNotSame assertion functions are much similar to the areEqual
and areNotEqual assertions. The main difference between them is that the areSame
and areNotSame assertion functions use the === operator for comparison, that is,
they compare both the values and the types of the actual and expected parameters.
For example, the following assertions will pass:

Y.Assert.areSame(10, 10, "10 is the same as 10...");

Y.Assert.areNotSame(10, 11, "10 is not the same as 11...");

Y.Assert.areNotSame(15, "15", "15 is not the same as '15'...");

Y.Assert.areNotSame(15, "16", "15 is not the same as '16'...");

The datatype assertions
The following set of assertion functions in YUI Test checks the value types. Each one
of these assertion functions takes two parameters; the irst parameter is the value to
test and the second parameter is an optional failure message:

• isBoolean() is passed if the value is a Boolean

• isString() is passed if the value is a string

• isNumber() is passed if the value is a number

• isArray() is passed if the value is an array

YUI Test

[76]

• isFunction() is passed if the value is a function

• isObject() is passed if the value is an object

For example, the following assertions will pass:

Y.Assert.isBoolean(false);

Y.Assert.isString("some string");

Y.Assert.isNumber(1000);

Y.Assert.isArray([1, 2, 3]);

Y.Assert.isFunction(function(){ alert('test'); });

Y.Assert.isObject({somekey: 'someValue'});

YUI Test also provides generic assertion functions, isTypeOf and isInstanceOf,
to check the datatypes.

The isTypeOf() method uses the JavaScript typeof operator in order to check the
value type. It takes three parameters; the irst parameter represents the value type,
the second represents the value to test, and the third parameter is optional and
represents a failure message. For example, the following isTypeOf assertions will pass:

Y.Assert.isTypeOf("boolean", false);

Y.Assert.isTypeOf("string", "some string");

Y.Assert.isTypeOf("number", 1000);

Y.Assert.isTypeOf("object", [1, 2, 3]);

Y.Assert.isTypeOf("function", function(){ alert('test'); });

Y.Assert.isTypeOf("object", {somekey: 'someValue'});

In addition to all of this, you can use the isInstanceOf assertion, which uses the
JavaScript instanceof operator in order to check the value instance. It takes three
parameters; the irst parameter represents the type constructor, the second represents
the value to test, and the third parameter is optional and represents a failure message.

Special value assertions
The following set of assertion functions in YUI Test checks whether a variable value
belongs to one of the special values as mentioned in the following list. Each one of
these functions takes two parameters; the irst parameter is the value to test, and the
second parameter is an optional failure message:

• isUndefined() is passed if the value is undeined
• isNotUndefined() is passed if the value is not undeined (deined)
• isNull() is passed if the value is null

• isNotNull() is passed if the value is not null

• isNaN() is passed if the value is not a number (NaN)

Chapter 3

[77]

• isNotNaN() is passed if the value is not NaN

• isFalse() is passed if the value is false

• isTrue() is passed if the value is true

For example, the following assertions will pass:

this.someStr = "some string";

Y.Assert.isUndefined(this.anyUndefinedThing);

Y.Assert.isNotUndefined(this.someStr);

Y.Assert.isNull(null);

Y.Assert.isNotNull(this.someStr);

Y.Assert.isNaN(1000 / "string_value");

Y.Assert.isNotNaN(1000);

Y.Assert.isFalse(false);

Y.Assert.isTrue(true);

The fail assertion
In some situations, you may need to fail the test manually, for example, if you want
to make your own custom assertion function that encapsulates speciic validation
logic. In order to do this, YUI Test provides the fail() method to fail the test
manually. The Y.Assert.isAverage assertion is an example of a custom assertion
that uses the fail() method:

Y.Assert.isAverage = function(number1, number2, expected,
failureMessage) {

 var actual = (number1 + number2) / 2;

 if (actual != expected) {

 Y.Assert.fail(failureMessage);

 }

}

The Y.Assert.isAverage custom assertion can be called by simply using
the following code:

Y.Assert.isAverage(3, 4, 3.5, "Average is incorrect");

The fail() method has an optional message parameter that is
displayed when the fail() method is called.

YUI Test

[78]

Testing asynchronous (Ajax) JavaScript

code
The common question that comes to mind is how to test asynchronous (Ajax)
JavaScript code using YUI Test. What was mentioned earlier in this chapter so far is
how to perform unit testing for synchronous JavaScript code. YUI Test provides two
main APIs in order to perform real Ajax testing: wait() and resume(). Although the
provided APIs of the YUI Test to perform real Ajax testing are not as rich as Jasmine
(the provided YUI Test APIs do not, for example include something like spies or the
Jasmine's automatic waitsFor mechanism), they are enough to perform a real Ajax
test. Let me show you how to do this.

The wait and resume functions
The wait() function has two modes of operation. Its irst mode pauses the execution
of the test until its timeout period passes. For example:

this.wait(function() {

 Y.Assert.isAverage(3, 4, 3.5, "Average is incorrect");

}, 1000);

This code pauses the test for 1000 milliseconds, and after that its function in the irst
argument is executed.

The second mode of operation pauses the execution of the test until it is resumed
using the resume() function; if it is not resumed using the resume() function, the
test fails. Using the second mode of operation, we can perform a real Ajax testing
using YUI Test, as shown in the following code snippet:

// Inside a test function

var this_local = this;

var successCallback = function(response) {

 this_local.resume(function() {

 // Assertions goes here to the response object...

 });

};

Chapter 3

[79]

var failureCallback = function(response) {

 this_local.resume(function() {

 fail(); /* failure callback must not be called for successful
 scenario */

 });

};

asyncSystem.doAjaxOperation(inputData, successCallback,
failureCallback);

this.wait(5000); /* wait for 5 seconds until the resume is called
or timeout */

As shown in the preceding code snippet, two callbacks are created; one of
them represents the successful callback (successCallback) that is called
if the Ajax operation succeeds, and the other one represents the failure
callback (failureCallback) that is called if the Ajax operation fails. In both
successCallback and failureCallback, a call to the resume() API is done in
order to notify the wait() API that the server response is returned. The resume()
API has a single argument that represents a function that can have one or more
assertions. In successCallback, the argument function of the resume() API
can carry out assertions on the response parameter, which is returned from
the server response to verify that the server returns the correct results, while in
failureCallback, the argument function of the resume() API forces the test to
fail because it must not be called if the operation is completed successfully.

If the Ajax response is not returned from the server after ive seconds (you can
set this to whatever duration you want), the wait() API will cause the test to fail.
Although this is a manual method, as opposed to Jasmine's waitsFor mechanism,
it is enough for real Ajax testing and will be used in order to test the Ajax part of the
weather application in the next section.

Testing the weather application
Now we come to developing the YUI tests for our weather application. Actually,
after you know how to write YUI tests for both synchronous and asynchronous
JavaScript (Ajax) code, testing the weather application is an easy task. As you
remember from the previous two chapters, we have three major JavaScript objects
in the weather application that we need to develop tests for—the LoginClient,
RegistrationClient, and WeatherClient objects.

YUI Test

[80]

Two subfolders, yuitest and tests , are created under the js-test folder (thus:
yuitest\tests) to contain the YUI tests, as shown in the following screenshot:

Because currently YUI Test does not have an API to load the HTML ixtures, they
are included as part of the HTML test runner pages. As shown in the preceding
screenshot, there are three HTML iles that contain the HTML ixtures for every
test—LoginClientTest.html, RegistrationClientTest.html, and
WeatherClientTest.html. Every HTML ile also includes the source and
test JavaScript objects. There are three YUI test iles (LoginClientTest.js,
RegistrationClientTest.js, and WeatherClientTest.js) that test the
main three JavaScript objects of the application.

Testing the LoginClient object
As what we did in Chapter 2, Jasmine, in the Testing the LoginClient object section
we will perform unit testing for the following functionalities:

• Validation of empty username and password

• Validating that the username is in e-mail address format

• Validating that the password contains at least one digit, one capital and
small letter, at least one special character, and six characters or more

Chapter 3

[81]

In order to perform this test, two test cases are created; one for testing the validation
of the empty ields (the username and password) and the other one for testing the
validation of the ields' formats. The two test cases are grouped in a single test suite,
LoginClient Test Suite. The following code snippet shows the validation of the
empty ields' test case in the LoginClientTest.js ile:

var emptyFieldsTestcase = new Y.Test.Case({

 name: "Empty userName and Password fields validation Testcase",

 setUp: function() {

 this.loginClient = new weatherapp.LoginClient();

 this.loginForm = {

 "userNameField" : "username",

 "passwordField" : "password",

 "userNameMessage" : "usernameMessage",

 "passwordMessage" : "passwordMessage"

 };

 },

 tearDown: function() {

 delete this.loginClient;

 delete this.loginForm;

 },

 testEmptyUserName: function() {

 document.getElementById("username").value = ""; /* setting
 username to empty */

 document.getElementById("password").value = "Admin@123";

 this.loginClient.validateLoginForm(this.loginForm);

 Y.Assert.areEqual("(field is required)",
 document.getElementById("usernameMessage").innerHTML);

 },

 testEmptyPassword: function() {

 document.getElementById("username").value =
 "someone@yahoo.com";

 document.getElementById("password").value = ""; /* setting
 password to empty */

 this.loginClient.validateLoginForm(this.loginForm);

 Y.Assert.areEqual("(field is required)",
 document.getElementById("passwordMessage").innerHTML);

 }

});

YUI Test

[82]

In the preceding code snippet, the setUp method creates an instance from
weatherapp.LoginClient and creates the loginForm object, which holds
the IDs of the HTML elements that are used in the test.

testEmptyUserName tests whether the LoginClient object is able to display an error
message when the username is not entered. It sets an empty value in the username
ield and then calls the validateLoginForm API of the LoginClient object. Then it
checks whether the validateLoginForm API produces the "(field is required)"
message in the usernameMessage ield by using the Y.Assert.areEqual assertion.

testEmptyPassword does the same thing, but with the password ield, not with the
username ield.

The following code snippet shows the second test case, which validates the formats
of the ields (username and password) in the LoginClientTest.js ile:

var fieldsFormatTestcase = new Y.Test.Case({

 name: "Fields format validation Testcase",

 setUp: function() {

 this.loginClient = new weatherapp.LoginClient();

 this.loginForm = {

 "userNameField" : "username",

 "passwordField" : "password",

 "userNameMessage" : "usernameMessage",

 "passwordMessage" : "passwordMessage"

 };

 },

 tearDown: function() {

 delete this.loginClient;

 delete this.loginForm;

 },

 testUsernameFormat: function() {

 document.getElementById("username").value =
 "someone@someDomain";/* setting username to invalid format */

 document.getElementById("password").value = "Admin@123";

 this.loginClient.validateLoginForm(this.loginForm);

 Y.Assert.areEqual("(format is invalid)",
 document.getElementById("usernameMessage").innerHTML);

 },

 testPasswordFormat: function() {

 document.getElementById("username").value =

Chapter 3

[83]

 "someone@someDomain.com";

 document.getElementById("password").value = "Admin123"; /*
 setting password to invalid format */

 this.loginClient.validateLoginForm(this.loginForm);

 Y.Assert.areEqual("(format is invalid)", document.getElementById("
passwordMessage").innerHTML);

 }

});

In the preceding code snippet, testUsernameFormat tests the validation of the
username format. It tests whether the LoginClient object should be able to
display an error message when the username format is not valid. It sets an invalid
e-mail value in the username ield and then calls the validateLoginForm API of
the LoginClient object. Finally, it checks whether the validateLoginForm API
produces the "(format is invalid)" message in the usernameMessage ield by
using the Y.Assert.areEqual assertion.

testPasswordFormat enters a password that does not comply with the application's
password rules; it enters a password that does not include a capital letter and then
calls the validateLoginForm API of the LoginClient object. It inally checks
whether the validateLoginForm API produces the "(format is invalid)"
message in the passwordMessage ield.

emptyFieldsTestcase and fieldsFormatTestcase are added to the LoginClient
test suite, the YUI console is created, the test suite is run, and the test results are
displayed in the console component, as shown in the following code snippet from
the LoginClientTest.js ile:

var suite = new Y.Test.Suite("LoginClient Test Suite");

suite.add(emptyFieldsTestcase);

suite.add(fieldsFormatTestcase);

//create the console

var console = new Y.Console({

 style: 'block',

 newestOnTop : false

});

console.render('#resultsPanel');

Y.Test.Runner.add(suite);

Y.Test.Runner.run();

YUI Test

[84]

Finally, the following code snippet shows the HTML ixture of the LoginClient test
suite in the LoginClientTest.html ile. It includes the username and password
ields, the YUI console div element, and both the source JavaScript object ile
(LoginClient.js) and the test JavaScript object ile (LoginClientTest.js).

 <label for="username">Username <span id="usernameMessage"
 class="error"></label>

 <input type="text" id="username" name="username"/>

 <label for="password">Password <span id="passwordMessage"
 class="error"></label>

 <input type="password" id="password" name="password"/>

 <div id="resultsPanel" class="yui3-skin-sam"></div>

…

<script type="text/javascript" src="../../../js-src/LoginClient.js"></
script>

<script type="text/javascript" src="LoginClientTest.js"></script>

Testing the RegistrationClient object
In the RegistrationClient object, we will verify the following functionalities:

• Validation of empty username and passwords

• Validation of matched passwords

• Validating that the username is in e-mail address format

• Validating that the password contains at least one digit, one capital and small
letter, at least one special character, and six characters or more

• Validating that the user registration Ajax functionality is performed correctly

The irst four functionalities will be skipped because they are pretty similar to the
tests that are explained in the LoginClient test suite, so let's learn how to check
whether the user registration (the registerUser test case) Ajax functionality is
performed correctly.

The registerUser test case covers the following test scenarios:

• Testing the adding of a new user through the testAddNewUser test function.
The registration client object should be able to register a valid user correctly.

• Testing the adding of a user with an existing user ID through the
testAddExistingUser test function. In this case, the registration client object
should fail when registering a user whose ID is already registered.

Chapter 3

[85]

The following code snippet shows the testAddNewUser test function of the
registerUser test case in the RegistrationClientTest.js ile. The setUp
method creates an instance from weatherapp.RegistrationClient and creates the
registrationForm object, which holds the IDs of the registration form that will be
used in the test.

var registerUserTestcase = new Y.Test.Case({

 name: "RegisterUser Testcase",

 setUp: function() {

 this.registrationClient = new weatherapp.RegistrationClient();

 this.registrationForm = {

 "userNameField" : "username",

 "passwordField1" : "password1",

 "passwordField2" : "password2",

 "userNameMessage" : "usernameMessage",

 "passwordMessage1" : "passwordMessage1"

 };

 },

 tearDown: function() {

 delete this.registrationClient;

 delete this.registrationForm;

 },

 testAddNewUser: function() {

 this.userName = "hazems" + new Date().getTime() +
 "@apache.org";

 document.getElementById("username").value = this.userName;

 document.getElementById("password1").value = "Admin@123";

 document.getElementById("password2").value = "Admin@123";

 var this_local = this;

 var Y_local = Y;

 var successCallback = function(response) {

 var resultMessage = response.xmlhttp.responseText;

 this_local.resume(function() {

 Y_local.Assert.areEqual("User is registered successfully
 ...", resultMessage);

 });

 };

 var failureCallback = function() {

YUI Test

[86]

 this_local.resume(function() {

 fail();

 });

 };

 this.registrationClient.registerUser(this.registrationForm,
 successCallback, failureCallback);

 this.wait(5000); /* wait for 5 seconds until the resume is
 called or timeout */

 }

 ...

});

In the testAddNewUser test function, the registration form is illed with a valid
generated username and valid matched passwords, and then two callbacks are
created. The irst callback is the success callback, while the second one is the failure
callback. registrationClient.registerUser is called with the registration form,
the success callback, and the failure callback parameters. this.wait(5000) waits for
a call from the resume() API, or it fails after 5000 milliseconds.

In the success callback, the resume() API is called, and the resume() function
parameter ensures that the returned response message from the server is User is
registered successfully ... using the areEqual assertion.

In the failure callback, the resume() API is also called, and the resume() function
parameter ensures that the test fails by using the fail() API because the failure
callback must not be called for a valid user registration.

The YUI Test Ajax testing of the weather application is real Ajax testing;
this requires the server to be up and running in order to perform the
test correctly.

The following code snippet shows the testAddExistingUser test function of the
registerUser test case in the RegistrationClientTest.js ile:

var registerUserTestcase = new Y.Test.Case({

 ...

 testAddExistingUser: function() {

 document.getElementById("username").value = this.userName;

 document.getElementById("password1").value = "Admin@123";

 document.getElementById("password2").value = "Admin@123";

 var this_local = this;

 var Y_local = Y;

Chapter 3

[87]

 var successCallback = function() {

 this_local.resume(function() {

 fail();

 });

 };

 var failureCallback = function(response) {

 var resultMessage = response.xmlhttp.responseText;

 this_local.resume(function() {

 Y_local.Assert.areEqual("A user with the same username is
 already registered ...", resultMessage,);

 });

 };

 this.registrationClient.registerUser(this.registrationForm,
 successCallback, failureCallback);

 this.wait(5000); /* wait for 5 seconds until the resume is called
 or timeout */

 }

});

In the testAddExistingUser test function, the registration form is illed with the
same username that is already registered in the testAddNewUser test function,
and then two callbacks are created. The irst callback is the success callback while
the second one is the failure callback. registrationClient.registerUser is
called with the registration form, the success callback, and the failure callback
parameters. The this.wait(5000) waits for a call to the resume() API or it fails
after 5000 milliseconds.

In the success callback, the resume() API is called, and the resume() function
parameter ensures that the test fails by using the fail() API because the success
callback must not be called when registering a user whose ID is already registered.

In the failure callback, the resume() API is also called, and the resume() function
parameter ensures that the returned failure response message from the server
is A user with the same username is already registered ... using the
areEqual assertion.

YUI Test

[88]

Finally, the following code snippet shows the HTML ixture of the
RegistrationClient test suite in the RegistrationClientTest.html ile.
It includes the username and password ields, the YUI console div element, and both
the JavaScript source iles, RegistrationClient.js and LoginClient.js, because
RegistrationClient.js depends on LoginClient.js and on the JavaScript test
ile RegistrationClientTest.js.

...

<label for="username">Username (Email) <span id="usernameMessage"
class="error"></label>

<input type="text" id="username" name="username"/>

<label for="password1">Password <span id="passwordMessage1"
class="error"></label>

<input type="password" id="password1" name="password1"/>

<label for="password2">Confirm your password</label>

<input type="password" id="password2" name="password2"/>

<div id="resultsPanel" class="yui3-skin-sam"></div>

...

<script type="text/javascript" src="../../../js-src/LoginClient.js"></
script>

<script type="text/javascript" src="../../../js-src/
RegistrationClient.js"></script>

<script type="text/javascript" src="RegistrationClientTest.js"></
script>

Testing the WeatherClient object
In the WeatherClient object, we will test the following functionalities:

• Getting the weather for a valid location

• Getting the weather for an invalid location (the system should display
an error message for this case)

To test the WeatherClient object, the same technique that we used in the
registerUser test case is followed. Developing this test will be left for you as
an exercise. You can get the full source code for the WeatherClientTest.js and
WeatherClientTest.html iles from the Chapter 3 folder in the code bundle
available on the book's website.

Chapter 3

[89]

To get the test source code, all that you need to do is to unzip the
weatherApplication.zip ile, and you will be able to ind all the YUI tests in the
tests folder in weatherApplication\WebContent\js\js-test\yuitest.

Running the weather application tests
In order to run the weather application tests correctly, you have to make sure that
the server is up and running or the application will not pass the Ajax tests. So, you
need to deploy this chapter's updated version of the weather application on Tomcat 6
as explained in Chapter 1, Unit Testing JavaScript Applications, and then type the three
following URLs in the browser's address bar:

• http://localhost:8080/weatherApplication/js/js-test/yuitest/

tests/LoginClientTest.html

• http://localhost:8080/weatherApplication/js/js-test/yuitest/

tests/RegistrationClientTest.html

• http://localhost:8080/weatherApplication/js/js-test/yuitest/

tests/WeatherClientTest.html

Don't worry; you do not need to do this every time you run the YUI
Test pages. Check the Integration with build management tools section
to learn how to automate the running of the YUI Test pages.

Generating test reports
In the Integration with build management tools section, YUI Test Selenium Driver
is used to generate JUnit XML reports automatically without using the YUI Test
reporting APIs. You may jump to that section if you are not interested in digging
into the YUI Test reporting APIs.

YUI Test has a powerful feature, test reporting. Once the test completes its execution
and the test result's object is retrieved, you can post the test results to the server (Java
servlet, PHP, or another server-side object) to generate the report. First of all, let's see
how to retrieve the test result's object.

In order to retrieve the test result's object, you need to use the Y.Test.Runner.
getResults() API. Unfortunately, The Y.Test.Runner.getResults() API expects
you to call it when the test is completed; in other words, it does not wait for the tests
to complete its executions. If you call the Y.Test.Runner.getResults() API and
the tests are still running, the API will return null.

YUI Test

[90]

However, to make sure that the test is completed, you have one of two options:

• The irst is to use the isRunning() API in the TestRunner interface, which
returns true if the test is still running and false if it inishes its execution.
The following code snippet shows you how to call the Y.Test.Runner.
getResults() API properly and ensure, using the isRunning() API,
that it will not be called while the test is running:

var intervalID = window.setInterval(function() {

 if (! Y.Test.Runner.isRunning()) {

 var results = Y.Test.Runner.getResults();

 // Do whatever you want with the results

 window.clearInterval(intervalID);

 }

}, 1000);

The code is simple; window.setInterval calls the Y.Test.Runner.
isRunning() API every 1000 milliseconds and waits until Y.Test.Runner.
isRunning() returns false. When Y.Test.Runner.isRunning() returns
false, the Y.Test.Runner.getResults() API can be called safely, and
then the execution of window.setInterval is stopped by calling window.
clearInterval(intervalID).

• The second option, which is the recommended one, is to subscribe in the YUI
test runner complete event (Y.Test.Runner.COMPLETE_EVENT), as shown in
the following code snippet:

function processTestResults() {

 var results = Y.Test.Runner.getResults();

 // Do whatever you want with the results

}

Y.Test.Runner.subscribe(Y.Test.Runner.COMPLETE_EVENT,
processTestResults);

You can use the YUI test runner's subscribe() API in order to subscribe in
the test runner's complete event. processTestResults is the event handler
that is called once the event is completed. In the processTestResults event
handler, it is safe to call the Y.Test.Runner.getResults() API to get the
test results.

Chapter 3

[91]

In YUI Test, there are many types of events that can be subscribed to.
There are events on the level of the test, test case, test suite, and the
test runner. The preceding code snippet is an example of an event on
the test runner level. To get a complete reference for all the YUI Test
events, check the following URL:

http://yuilibrary.com/yui/docs/api/classes/Test.
Runner.html#Events

After getting the test results, let's learn how to post the results on the server
to generate the report. The following code snippet shows how to send the
test results data in JUnit XML format to the server. This code is part of the
RegistrationClientTest.js ile:

Y.Test.Runner.add(suite);

function processTestResults() {

 var results = Y.Test.Runner.getResults();

 var reporter = new
 Y.Test.Reporter("/weatherApplication/YUIReportViewer",
 Y.Test.Format.JUnitXML);

 // Some parameters to be sent

 reporter.report(results);

}

Y.Test.Runner.subscribe(Y.Test.Runner.COMPLETE_EVENT,
processTestResults);

Y.Test.Runner.run();

After getting the test result's object, you create a Y.Test.Reporter object,
which can be constructed using the two following parameters:

• The server URL to post the test result's data to. Note that the POST data
operation is performed silently by the Y.Test.Reporter object and
does not cause the test page to navigate away because it does not get
back any response from the server. In our example, the server URL is /
weatherApplication/YUIReportViewer, which maps to a simple Java
servlet that receives the posted test results data and saves the data in a ile
inside a local directory.

YUI Test

[92]

• The report format. The four following formats are allowed for the posting
of test results:

 ° Y.Test.Format.XML: To post the test results data in XML format.

 ° Y.Test.Format.JSON: To post the test results data in JSON format.

 ° Y.Test.Format.JUnitXML: To post the test results data in JUnit
XML format.

 ° Y.Test.Format.TAP: To post the test results in TAP format. TAP
stands for Test Anything Protocol. For more information about this
format, check the following URL:

http://testanything.org/wiki/index.php/Main_Page

In order to post the test result data to the server, you need to call the report() API
of the Y.Test.Reporter object with the test result data (results). By default, the
following parameters are posted to the server when the report() API is called:

• results: The serialized test results data object

• useragent: The user-agent string that represents the browser

• timestamp: The date and time at which the report was sent

You have the ability to post extra parameters by using the addField() API,
as shown in the following code snippet:

reporter.addField("param1", "value1");

reporter.addField("param2", "value2");

In order to make the report name and the report ile extension conigurable,
the addField() API can be used in order to send this information to the
YUIReportViewer custom servlet, as shown in the following code snippet:

Y.Test.Runner.add(suite);

function processTestResults() {

 var results = Y.Test.Runner.getResults();

 var reporter = new
 Y.Test.Reporter("/weatherApplication/YUIReportViewer",
 Y.Test.Format.JUnitXML);

 // Send a custom parameter to tell the Servlet the report
 name and extension.

 reporter.addField("reportName", "registrationTestReport");

 reporter.addField("format", "xml");

Chapter 3

[93]

 reporter.report(results);

}

Y.Test.Runner.subscribe(Y.Test.Runner.COMPLETE_EVENT,
processTestResults);

Y.Test.Runner.run();

The custom YUIReportViewer servlet generates the report ile with the
[reportName].[format] name under the yuitest\reports folder. The report ile
contains the results content. The custom servlet code is included for your reference
in the following code snippet; as you can see, it is very simple code that can be
implemented easily in any other server-side technology such as PHP and ASP.NET.

public class YUIReportViewer extends HttpServlet {

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 String results = request.getParameter("results");

 String format = (request.getParameter("format") == null) ?
 "xml" : request.getParameter("format");

 String reportName = (request.getParameter("reportName") ==
 null) ? "report" : request.getParameter("reportName");

 // Generate the report result file under the reports folder...

 BufferedWriter out = null;

 String reportFullPath =
 getServletContext().getRealPath("/js/js-test/yuitest/reports")
 + "/" + reportName + "." + format;

 try {

 FileWriter fstream = new FileWriter(reportFullPath);

 out = new BufferedWriter(fstream);

 out.write(results);

 } catch (Exception e) {

 e.printStackTrace();

 } finally {

 out.close();

 }

 }

}

YUI Test

[94]

As indicated before, this book does not teach you any server-side
technology (it is outside the scope of the book); however, it is good to
mention the custom YUIReportViewer servlet code in this example
in order to show you what the server-side code will look like in the
case of generating a report.

After running the RegistrationClient test suite by browsing to http://
localhost:8080/weatherApplication/js/js-test/yuitest/tests/

RegistrationClientTest.html, the registrationTestReport.xml ile can
be accessed via http://localhost:8080/weatherApplication/js/js-test/
yuitest/reports/registrationTestReport.xml. The following code snippet
shows the RegistrationClient test report in JUnit XML format:

<testsuites>

 <testsuite name="Empty userName and Password fields Testcase"
 tests="2" failures="0" time="0.039">

 <testcase name="testEmptyUserName" time="0.003"/>

 <testcase name="testEmptyPassword" time="0.008"/>

 </testsuite>

…

 <testsuite name="RegisterUser Testcase" tests="2" failures="0"
 time="0.17">

 <testcase name="testAddNewUser" time="0.048"/>

 <testcase name="testAddExistingUser" time="0.062"/>

 </testsuite>

</testsuites>

You can produce a JSON report instead; change the format parameters of Y.Test.
Reporter, as shown in the highlighted part of the following code snippet:

function processTestResults() {

 var results = Y.Test.Runner.getResults();

 var reporter = new
 Y.Test.Reporter("/weatherApplication/YUIReportViewer",
 Y.Test.Format.JSON);

 // Send a custom parameter to tell the Servlet the report
 name and extension.

 reporter.addField("reportName", "registrationTestReport");

 reporter.addField("format", "json");

 reporter.report(results);

}

Chapter 3

[95]

After running the RegistrationClient test suite, registrationTestReport.json
can be accessed via the following location:

http://localhost:8080/weatherApplication/js/js-test/yuitest/reports/
registrationTestReport.json

You can follow the same procedure to generate YUI Test reports with
different formats. All you need to do is to change the format parameter
of the Y.Test.Reporter object, as shown in the previous examples.

Automation and integration with build

management tools
It can be dificult to run every test page individually in order to check the results, so
for example, if we have 100 YUI test pages, it means that we have to type 100 URLs
in the browser's address bar, which is a very ineficient way of performing the tests.
Fortunately, we can automate the running of the YUI test pages using Selenium
(an automation web application testing tool) integration with YUI Test. This sort
of integration can be done by the YUI Test Selenium Driver utility. Let's see how to
work it.

Coniguring YUI Test Selenium Driver
In order to conigure the YUI Test Selenium Driver utility with the YUI tests,
you need to do the following:

1. Make sure that you have installed Java 5 (v1.5 or later) on your
operating system.

2. Download the following:

 ° The Selenium Server Version 2.25.0; it can be found at
http://seleniumhq.org/download/.

 ° The Selenium Java Client Driver; it can be found at https://github.
com/yui/yuitest/blob/master/java/lib/selenium-java-

client-driver.jar.

 ° The YUI Test Selenium Driver, which can be found at https://
github.com/yui/yuitest/blob/master/java/build/yuitest-
selenium-driver.jar..

YUI Test

[96]

3. Start the Selenium Server from the command line using java -jar
selenium-server-standalone-2.25.0.jar.

4. Place the Selenium Java Client Driver (selenium-java-client-driver.
jar) in /lib/ext/, in your JRE directory.

5. After following the preceding steps, YUI Test Selenium Driver
(yuitest-selenium-driver.jar) is ready to execute the YUI tests.

Let's see how we will use the driver to automate the running of the weather
application YUI tests.

Using YUI Test Selenium Driver in the

weather application
YUI Test Selenium Driver works by communicating with the Selenium Server and
specifying on which browsers the YUI test pages are to be loaded. The server then
loads the test pages, and the JavaScript tests are executed in the speciied browsers;
once the tests are complete, the results are retrieved and then outputted into JUnit
XML report iles automatically (this is the default report format and it can be
changed to XML or TAP formats from the driver coniguration ile).

In the weather application project, a cli folder is created under the yuitest folder
to include the yuitest-selenium-driver.jar ile and the command-line batch
ile that automates the running of the test pages (in case you are working in a Unix
environment, you can create an equivalent .sh ile). The following command shows
how to automate running of the weather application test pages in the runTests.bat
ile (don't forget to make sure that Selenium Server is running before executing
this command):

java -jar yuitest-selenium-driver.jar --browsers *firefox,*iexplore
--tests tests.xml --resultsdir %~dp0gen_reports

This command executes the yuitest-selenium-driver.jar ile with the
following parameters:

• --browsers: This parameter speciies which browsers will be used in the
tests; in our case, Firefox and Internet Explorer are used.

• --tests: This parameter speciies the XML ile that includes the YUI test
pages. The content of this ile is shown in the next code snippet.

Chapter 3

[97]

• --resultsdir: This parameter speciies the location of the output report
iles. In our case, the output report iles are generated in the gen_reports
folder under the cli folder, which contains the batch ile.

Let's see the content of the tests.xml ile, which includes the weather application
test pages, in the following code snippet:

<?xml version="1.0"?>

<yuitest>

 <tests base="http://localhost:8080/weatherApplication/js/js-test/
 yuitest/tests/" timeout="30000">

 <url>LoginClientTest.html</url>

 <url>RegistrationClientTest.html</url>

 <url>WeatherClientTest.html</url>

 </tests>

</yuitest>

The tests.xml ile contains mainly three elements:

• The <yuitest> element, which represents the root element.

• The <tests> element, which includes the <url> tags of the different test
pages. It has a base attribute that is used to specify the base location of all
of the children <url> tags. In our case, this is http://localhost:8080/
weatherApplication/js/js-test/yuitest/tests/. The <tests>
element also has a timeout attribute that speciies the maximum number of
milliseconds the driver will wait for the test to complete; after this period, an
error will be thrown for the test. In our case, 30 seconds is speciied.

• The <url> element, which contains the relative paths of the pages under the
base URL speciied in the <tests> parent element.

YUI Test

[98]

While running the command, you will ind the application tests are executed in
the Internet Explorer and Firefox browsers, as shown in the following screenshot:

Once the tests are complete, the browsers will close automatically, and six JUnit
XML test reports will be generated in the gen_reports folder—three reports for the
three weather application test pages' execution results in Firefox and the other three
reports for the execution results in IE.

Now you know how to use the driver in order to automate YUI tests.
There are other parameters and features that are supported by the
YUI Test Selenium Driver. You may check all of them in the driver
documentation page in GitHub:

https://github.com/yui/yuitest/wiki/Selenium-driver

Integration with build management tools
Because the YUI Test Selenium Driver can run from the command line, it can be
integrated easily with build management tools such as Ant and Maven and also with
continuous integration tools such as Hudson. The following code snippet shows an
Ant script (ant.xml) that runs the runTests.bat ile:

 <project name="weatherApplication" default="runYUITests" basedir=".">

 <target name="runYUITests">

 <exec executable="cmd">

Chapter 3

[99]

 <arg value="/c"/>

 <arg value="runTests.bat"/>

 </exec>

 </target>

</project>

For Hudson, you can create a Hudson job that periodically executes
the runTests.bat ile as a Windows batch command. Hudson is a
continuous integration tool that provides an easy way for the software
team to integrate the code changes to the software project. It allows
the software team to produce up-to-date builds from the system easily
through the automated continuous build (it can be done many times
per day). More information about Hudson can be found at http://
hudson-ci.org/.

Summary
In this chapter, you learned what YUI Test is and how to use the JavaScript unit
testing framework to test synchronous JavaScript code. You also got to know how
to test asynchronous (Ajax) JavaScript code by using the YUI Test wait and resume
mechanism. You learned the various assertions provided by the framework, how
to get the XML and JSON test reports using the framework reporter APIs, and how
to generate the test reports automatically by using the YUI Test Selenium Driver.
You also learned how to automate the YUI tests using the YUI Test Selenium Driver
and how to integrate the automation script with Ant as an example of the build
management tools. Along the way, we applied all of these concepts to test our
weather application. In the next chapter, you will learn how to work with the
QUnit framework and how to use it to test the weather application.

QUnit
QUnit is a popular JavaScript unit testing framework. Although QUnit is used and
maintained by jQuery, it can be used for testing any independent JavaScript code.
QUnit provides a simple syntax for creating JavaScript test modules and functions
that can be run from the browser. QUnit provides a clean mechanism for testing
asynchronous (Ajax) JavaScript code. In this chapter, the QUnit framework will be
illustrated in detail and used for testing the weather application that was discussed
in Chapter 1, Unit Testing JavaScript Applications.

Coniguration
In order to conigure QUnit, the irst step is to download the two framework iles:

• The QUnit JS ile found at http://code.jquery.com/qunit/qunit-
1.10.0.js

• The QUnit CSS ile found at http://code.jquery.com/qunit/qunit-
1.10.0.css

After downloading the two iles, put them in the same folder. (Let's call this folder
lib.) At the time of this writing, the latest release of QUnit is the v1.10.0, which will
be used in this book.

Now, let's prepare the tests' runner page of the QUnit test runner page.
The following code snippet shows the BasicRunner.html page that contains
the basic skeleton of the QUnit test runner page:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>QUnit test runner</title>

 <link rel="stylesheet" href="lib/qunit-1.10.0.css">

QUnit

[102]

</head>

<body>

 <div id="qunit"></div>

 <div id="qunit-fixture"></div>

 <script src="lib/qunit-1.10.0.js"></script>

 ...The test code here...

</body>

</html>

The BasicRunner.html page includes the framework iles from the lib folder. As
you will notice, there are two div elements in the test runner page. The irst qunit div
element is used for displaying the QUnit test results while the second qunit-fixture
div element is used for holding the QUnit HTML ixtures needed for the tests.

QUnit cleans up the qunit-fixture div element before every test
run so you do not have to do this clean up manually.

Now you can run the test runner page that does not include any of the QUnit tests
yet. The following screenshot shows the BasicRunner.html page, which does not
include any tests:

Writing your irst QUnit test
A QUnit test can contain test modules and test functions. A QUnit test module is
a group of related test functions. Every test function should contain one or more
assertion(s) in order to perform the test and verify the outputs.

The QUnit module function is responsible for creating the QUnit module and the
QUnit test function is responsible for creating the QUnit test. In order to add the
test function to the module, just place the test function under the declared module,
as shown in the following code snippet:

Chapter 4

[103]

module("testing Module", {

 setup: function() {

 // setup code goes here...

 }, teardown: function() {

 // teardown code goes here...

 }

});

test("testing function1", function() {

 // assertions go here...

});

test("testing function2", function() {

 // assertions go here...

});

As shown in the preceding code snippet, a test module with the name "testing
Module" is created. The test module can contain a setup method that is called to
perform the initialization of every test function before its execution. The test module
can also contain a teardown method that is called after the execution of every test
function, for de-initializing the test. The test module contains two test functions. The
irst test function is named "testing function1" while the second test function is
named "testing function2". Every test function can contain one or more assertions.

In QUnit, you have the option to create the test functions without
including them in modules. However, it is preferred to include
tests in modules to organize them. Grouping the tests in modules
gives you the ability to run every module independently.

Let's move to testing the SimpleMath JavaScript object (which we tested using the
Jasmine and YUI Test frameworks in the previous chapters). The following code
snippet reminds you with the code of the SimpleMath object:

SimpleMath = function() {

};

SimpleMath.prototype.getFactorial = function (number) {

 if (number < 0) {

 throw new Error("There is no factorial for negative numbers");

 }

 else if (number == 1 || number == 0) {

 // If number <= 1 then number! = 1.

QUnit

[104]

 return 1;

 } else {

 // If number > 1 then number! = number * (number-1)!

 return number * this.getFactorial(number-1);

 }

}

SimpleMath.prototype.signum = function (number) {

 if (number > 0) {

 return 1;

 } else if (number == 0) {

 return 0;

 } else {

 return -1;

 }

}

SimpleMath.prototype.average = function (number1, number2) {

 return (number1 + number2) / 2;

}

In order to organize the SimpleMath QUnit tests, three modules are created for
testing the getFactorial, signum, and average APIs of the SimpleMath object.

As we did in the previous chapters, we will develop the following three test
scenarios for the getFactorial method:

• Positive number

• Zero

• Negative number

The following code snippet shows how to test the getFactorial module calculating
the factorial of a positive number (3), 0, and a negative number (-10), using QUnit:

module("Factorial", {

 setup: function() {

 this.simpleMath = new SimpleMath();

 }, teardown: function() {

 delete this.simpleMath;

 }

});

test("calculating factorial for a positive number", function() {

 equal(this.simpleMath.getFactorial(3), 6, "Factorial of three

Chapter 4

[105]

 must equal six");

});

test("calculating factorial for zero", function() {

 equal(this.simpleMath.getFactorial(0), 1, "Factorial of zero
 must equal one");

});

test("throwing an error when calculating the factorial for a negative
number", function() {

 raises(function() {

 this.simpleMath.getFactorial(-10)

 }, "There is no factorial for negative numbers");

});

The module function declares a new module called Factorial. In the setup method,
the simpleMath object is created using new SimpleMath(). tearDown is used to
clean up by deleting the created simpleMath object.

In the irst test function of the Factorial module, the QUnit equal assertion
function calls simpleMath.getFactorial(3) and expects the result to be equal to 6.
If simpleMath.getFactorial(3) returns a value other than 6, then the test function
fails. The last parameter of the QUnit equal assertion is an optional one, and it
represents the message to be displayed with the test.

In the second test function of the Factorial module, the equal assertion function
calls simpleMath.getFactorial(0) and expects it to be equal to 1. In the last
test function of the Factorial module, the test function calls simpleMath.
getFactorial(-10) and expects it to throw an error using the raises assertion.

The raises assertion takes two parameters; the irst one is the function parameter
that includes the call to the API to test, and the second one is an optional one and
represents the message that is to be displayed with the test. The raises assertion
succeeds if the API that is to be tested throws an error.

QUnit has other assertions to use instead of the equal and raises assertions; we will
discuss them in more detail later in this chapter in the Assertions section.

After inalizing the Factorial module, we come to the new module that tests the
functionality of the signum API provided by the SimpleMath object. The following
code snippet shows the Signum module:

module("Signum", {

 setup: function() {

 this.simpleMath = new SimpleMath();

 }, teardown: function() {

QUnit

[106]

 delete this.simpleMath;

 }

});

test("calculating signum for a positive number", function() {

 equal(this.simpleMath.signum(3), 1, "Signum of three must equal
 one");

});

test("calculating signum for zero", function() {

 equal(this.simpleMath.signum(0), 0, "Signum of zero must equal
 zero");

});

test("calculating signum for a negative number", function() {

 equal(this.simpleMath.signum(-1000), -1, "Signum of -1000 must
 equal -1");

});

We have three test functions in the Signum module; the irst test function tests the
signum of a positive number, the second test function tests the signum of zero, and
the last test function tests the signum of a negative number. The following code
snippet shows the Average module:

module("Average", {

 setup: function() {

 this.simpleMath = new SimpleMath();

 }, teardown: function() {

 delete this.simpleMath;

 }

});

test("calculating the average of two numbers", function() {

 equal(this.simpleMath.average(3, 6), 4.5, "Average of 3 and 6 must
equal 4.5");

});

In the Average module, the "calculating the average of two numbers"
test function ensures that the average is calculated correctly by calling the average
API using the two parameters 3 and 6, and expecting the result to be 4.5 using the
equal assertion.

Chapter 4

[107]

A very important thing that you should know is that QUnit does not
guarantee the order of executing the test functions, so you must make
every test function atomic; that is, every test function must not depend on
any other test functions. For example, do not do the following in QUnit:

 var counter = 0;

 test("test function1", function() {

 counter++;

 equal(counter, 1, "counter should be 1");

 });

 test("test function2", function() {

 counter += 20;

 equal(counter, 21, "counter should be 21");

 });

 test("test function3", function() {

 counter += 10;

 equal(counter, 31, "counter should be 31");

 });

In order to run the SimpleMath QUnit tests, we need to include the SimpleMath.
js and simpleMathTest.js (which contains the unit tests of the SimpleMath object)
iles in the test runner page, as shown in the following code snippet:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>QUnit test runner</title>

 <link rel="stylesheet" href="lib/qunit-1.10.0.css">

</head>

<body>

 <div id="qunit"></div>

 <div id="qunit-fixture"></div>

 <script src="lib/qunit-1.10.0.js"></script>

 <script src="src/simpleMath.js"></script>

 <script src="tests/simpleMathTest.js"></script>

</body>

</html>

QUnit

[108]

After clicking the SimpleMath QUnit test page testRunner.html, you will ind the
test results as shown in the following screenshot:

Assertions
An assertion is a function that validates a condition if the condition is not valid; it
throws an error that causes the test function to fail. A test function can include one or
more assertions; all the assertions have to pass in order to have the test function pass.
In the irst QUnit test example, we used the QUnit equal and raises assertions. In this
section, the most important QUnit built-in assertions will be illustrated in more detail.

The ok assertion
The ok assertion takes two parameters. The irst parameter is a condition and the
second parameter is optional and represents the message that is to be displayed with
the test. The ok assertion is passed if the condition is true. For example, the following
examples will pass:

ok(true, "true passes");

ok(4==4, "4 must equal 4");

ok("some string", "Non-empty string passes");

Chapter 4

[109]

The equal and notEqual assertions
The equal assertion has three parameters; the irst two parameters represent the
actual and expected values, and the third parameter is optional and represents the
message that is to be displayed with the test. The equal assertion is passed if the
actual parameter is equal to the expected parameter. The notEqual assertion ensures
that the actual and expected parameters are not equal.

It is very important to know that the equal and notEqual assertions use the
JavaScript == operator in order to perform the comparison, that is, they make the
comparison and neglect the types. For example, the following assertions will pass:

equal(5, 5, "5 should equal 5...");

equal(5, "5", "5 should equal '5'...");

notEqual(5, 6, "5 should not equal 6...");

notEqual(5, "6", "5 should not equal '6'...");

The deepEqual and notDeepEqual assertions
The deepEqual assertion is more powerful than the equal assertion. It makes a deep
comparison (recursively) between objects, arrays, and primitive datatypes. Unlike
the equal assertion, the deepEqual assertion uses the === operator to perform
the comparison (that is, it does not ignore the types). The notDeepEqual assertion
function does the reverse operation of the deepEqual assertion. For example, the
following assertions will pass:

// Objects comparison

var object1 = {a:1, b:2, c : {c1: 11, c2: 12}};

var object2 = {a:1, b:2, c : {c1: 11, c2: 12}};

var object3 = {a:1, b:"2", c : {c1: 11, c2: 12}};

deepEqual(object1, object2, "object1 should equal object2");

notDeepEqual(object1, object3, "object1 should not equal object3");

// Primitive comparison

deepEqual(1, 1, "1 === 1");

notDeepEqual(1, "1", "1 !== '1'");

As you will notice in the preceding code snippet, object3 does not equal object1
because the deepEqual assertion uses the === operator; this means that b:2 does not
equal b:"2".

QUnit

[110]

The expect assertion
The expect assertion is used for deining the number of assertions that the test
function must contain. If the test function is completed without the correct number of
assertions speciied in the expect parameter, the test fails. For example, the following
test function will fail:

test("test function1", function() {

 expect(3);

 ok(true);

 equal(1, 1);

});

The test fails because the expect(3) expects to see three assertions in the test
function. If we insert the third assertion, the test function passes, as follows:

test("test function1", function() {

 expect(3);

 ok(true);

 equal(1, 1);

 deepEqual("1", "1");

});

Instead of using the expect assertion, the expectation count can be passed as the
second parameter to the test function, as follows:

test("test function1", 3, function() {

 ok(true);

 equal(1, 1);

 deepEqual("1", "1");

});

The expect assertion can be useful when you have a probability
of not executing one or more assertions in your QUnit test code due
to some reason, such as an operation failure. This can happen while
testing asynchronous operations for which the execution of one or
more assertions cannot be guaranteed if the operation fails or times
out. The only remaining important, built-in assertion is the raises
assertion, and you already know how it works in the SimpleMath
object example.

Chapter 4

[111]

Developing custom QUnit assertions
Adding to the mentioned built-in QUnit assertions, QUnit enables you to develop
custom assertions to have more powerful and descriptive testing code. Let's develop
two custom assertions, which are the isPrimeNumber and sum assertions, in order to
understand how to develop custom assertions in QUnit.

The purpose of the isPrimeNumber(number, message) assertion is to check if the
passed number is a prime number, while the sum(number1, number2, result,
message) assertion checks if the sum of its irst two number arguments is equal to
the third number argument.

In order to deine a custom assertion in QUnit, you should use the QUnit.push API.
The QUnit.push API has the following parameters:

• result: If it is set to true, this means that the test succeeds, and if it is set to
false, this means that the test fails

• actual: It represents the actual value

• expected: It represents the expected value

• message: It represents the message that is to be displayed with the
test function

The main usage of the actual and expected parameters is that they are used by the
QUnit framework in order to help the developer troubleshoot the test when it fails,
as shown in the next screenshot. Let's start implementing the sum custom assertion.
The following code snippet shows the sum custom assertion code:

function sum(number1, number2, result, message) {

 var expected = number1 + " + " + number2 + " = " + result;

 var actual = expected;

 if ((number1 + number2) != result) {

 actual = number1 + " + " + number2 + " != " + result;

 }

 QUnit.push((number1 + number2) == result, actual, expected,
 message);

}

QUnit

[112]

The irst parameter of the QUnit.push API is set to the Boolean result for checking
that the summation of number1 and number2 is equal to result. When the two
numbers number1 and number2 are not equal to result, the actual and expected
parameters should have meaningful values in order to help the developer debug the
failing test. The actual parameter is set to number1 + number2 != result while
the expected parameter is always set to number1 + number2 = result.

The sum custom assertion, works just like any other QUnit assertion. You can use it
as in the following code snippet:

sum(30, 20, 50, "50 = 30 + 20");

The next test will fail and the result will be displayed, as shown in the
following screenshot:

sum(30, 20, 55, "55 != 30 + 20");

As shown in the previous screenshot, when the test fails, QUnit uses the actual and
expected parameters that are set in the custom assertion to display the Expected,
Result, and Diff items for helping the developer debug the test. The following code
snippet shows the isPrimeNumber custom assertion code:

function isPrimeNumber(number, message) {

 if (number < 2) {

 QUnit.push(false, false, true, message);

 return;

 }

 var n = Math.sqrt(number);

 for (var i = 2; i <= n; ++i) {

 if (number % i == 0) {

 QUnit.push(false, false, true, message);

 return;

 }

 }

Chapter 4

[113]

 QUnit.push(true, true, true, message);

 return;

}

If the passed number parameter is not a prime number, then the irst parameter of
the QUnit.push API is set to false in order to fail the test. The actual parameter is
set to false while the expected parameter is set to true in order to show the error
details in the test runner page. The following code snippet shows the complete code
and usage of the custom assertions:

function sum(number1, number2, result, message) {

 var expected = number1 + " + " + number2 + " = " + result;

 var actual = expected;

 if ((number1 + number2) != result) {

 actual = number1 + " + " + number2 + " != " + result;

 }

 QUnit.push((number1 + number2) == result, actual, expected,
 message);

}

function isPrimeNumber(number, message) {

 if (number < 2) {

 QUnit.push(false, false, true, message);

 return;

 }

 var n = Math.sqrt(number);

 for (var i = 2; i <= n; ++i) {

 if (number % i == 0) {

 QUnit.push(false, false, true, message);

 return;

 }

 }

 QUnit.push(true, true, true, message);

 return;

}

test("custom assertion test", function() {

 sum(30, 20, 50, "50 = 30 + 20");

 isPrimeNumber(23, "23 is prime");

});

QUnit

[114]

After running the preceding code snippet, the QUnit test runner page will display the
successful test results of the custom assertions, as shown in the following screenshot:

Testing asynchronous (Ajax) JavaScript

code
The common question that comes to mind is how to test asynchronous (Ajax)
JavaScript code using QUnit. What has been mentioned in the chapter so far is how
to perform unit testing for synchronous JavaScript code. QUnit provides two main
APIs, namely stop() and start(), in order to perform real Ajax testing. Let me
show you how to use them.

The stop and start APIs
The stop() API stops the QUnit test runner until the start() API is called or the
test function is timed out. For example:

QUnit.config.testTimeout = 10000;

test("test function1", function() {

 stop();

 window.setTimeout(function() {

 ok(true);

 start();

 }, 3000);

});

Chapter 4

[115]

As shown in the preceding code snippet, the "test function1" function stops the
QUnit test runner by calling the stop() API. The window.setTimeout function
resumes the test runner by calling the start() API after 3000 milliseconds.

In order to specify the test function timeout, you can set the global property QUnit.
config.testTimeout to the time in milliseconds. In the previous example,
it is set to 10000 milliseconds (10 seconds).

QUnit has another way of working with asynchronous operations; instead of
explicitly calling the stop() API in the test method, you can directly use the
asyncTest function as follows:

asyncTest("test function1", function() {

 window.setTimeout(function() {

 ok(true);

 start();

 }, 3000);

});

Using one of the two mentioned approaches, you can perform real Ajax testing.
The following code snippet shows you how to create a real Ajax test using the
asyncTest function:

QUnit.config.testTimeout = 10000;

asyncTest("Making a REAL Ajax testing", function() {

 var successCallback = function(response) {

 var resultMessage = response.xmlhttp.responseText;

 // Validate the result message using the QUnit assertions.

 start();

 };

 var failureCallback = function() {

 ok(false, "MUST fail");

 start();

 };

 asyncSystem.doAjaxOperation(inputData, successCallback,
 failureCallback);

});

QUnit

[116]

As shown in the previous code snippet, two callbacks are created; one of
them represents the successful callback (successCallback) that is called
if the Ajax operation succeeds, and the other one represents the failure
callback (failureCallback) that is called if the Ajax operation fails. In both
successCallback and failureCallback, a call to the start() API is made in order
to notify the QUnit asynchronous test that the server response is returned and the
test runner can resume. In successCallback, there should be calls to the QUnit
assertions in order to validate the returned Ajax response, and in failureCallback,
the ok(false) expression forces the test to fail because the failure callback should
not be called if the asynchronous operation succeeds.

If the Ajax response is not returned from the server after 10 seconds (you can set it
to whatever duration you want using QUnit.config.testTimeout), the test will
fail. In the Testing the weather application section, the two provided QUnit Ajax testing
approaches will be used in order to test the Ajax part of the weather application.

Testing the weather application
Now, we come to developing the QUnit tests for our weather application. Actually,
after you have learned how to write QUnit tests for both synchronous and
asynchronous JavaScript (Ajax) code, testing the weather application is an easy task.
As you remember from the previous chapters, we have three major JavaScript objects
in the weather application that we need for developing tests for the LoginClient,
RegistrationClient, and WeatherClient objects.

Two subfolders qunit and tests are created under the js-test folder
(thus: qunit\tests) for containing the QUnit tests, and the lib folder is created
under the qunit folder (thus: qunit\lib) for containing QUnit library iles, as
shown in the following screenshot:

Chapter 4

[117]

The tests folder contains three main JavaScript iles (LoginClientTest.js,
RegistartionClientTest.js, and WeatherClientTest.js) for testing the
weather application's corresponding JavaScript objects. The QUnit test runner ile
testRunner.html is placed directly under the qunit folder in the js-test folder
(thus: js-test\qunit). The following code snippet shows the contents of the QUnit
testRunner.html page of the weather application:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>QUnit test runner</title>

 <link rel="stylesheet" href="lib/qunit-1.10.0.css">

</head>

<body>

 <div id="qunit"></div>

 <div id="qunit-fixture"></div>

 <script src="lib/qunit-1.10.0.js"></script>

 <!-- Source files -->

 <script type="text/javascript" src="../../js-

QUnit

[118]

 src/LoginClient.js"></script>

 <script type="text/javascript" src="../../js-
 src/RegistrationClient.js"></script>

 <script type="text/javascript" src="../../js-
 src/WeatherClient.js"></script>

 <!-- Test files -->

 <script src="tests/LoginClientTest.js"></script>

 <script src="tests/RegistrationClientTest.js"></script>

 <script src="tests/WeatherClientTest.js"></script>

</body>

</html>

As shown in the testRunner.html page, both the source and test JavaScript iles are
included in the page. In each of the test iles, a QUnit module that will be responsible
for testing the corresponding JavaScript object will be created.

Testing the LoginClient object
As we did in the previous chapters, in the Testing the LoginClient object section
we will perform unit testing for the following functionalities:

• Validation of empty username and password

• Validating that the username is in e-mail address format

• Validating that the password contains at least one digit, one capital and small
character, at least one special character, and six characters or more

In order to perform this test, a module "LoginClient Test Module" that groups
all of these tests is created. The following code snippet shows the deinition of
"LoginClient Test Module":

module("LoginClient Test Module", {

 setup: function() {

 // The HTML fixture for the LoginClient.

 document.getElementById("qunit-fixture").innerHTML =

 "<label for=\"username\">Username <span
 id=\"usernameMessage\"></label>" +

 "<input type=\"text\" id=\"username\" name=\"username\"/>"
 +

 "<label for=\"password\">Password <span
 id=\"passwordMessage\"></label>" +

 "<input type=\"password\" id=\"password\"
 name=\"password\"/>";

Chapter 4

[119]

 this.loginClient = new weatherapp.LoginClient();

 this.loginForm = {

 "userNameField" : "username",

 "passwordField" : "password",

 "userNameMessage" : "usernameMessage",

 "passwordMessage" : "passwordMessage"

 };

 }, teardown: function() {

 delete this.loginClient;

 delete this.loginForm;

 }

});

The setup method of "LoginClient Test Module" appends the HTML ixture that
is needed by the LoginClient test to the qunit-fixture div (the HTML ixture
contains the username and password input ields and labels), and then creates an
instance from weatherapp.LoginClient and creates the loginForm object, which
holds the IDs of the HTML elements that are used in the test.

The following code snippet shows the empty username and password test functions
of "LoginClient Test Module":

test("validating empty username", function() {

 document.getElementById("username").value = ""; /* setting
 username to empty */

 document.getElementById("password").value = "Admin@123";

 this.loginClient.validateLoginForm(this.loginForm);

 equal(document.getElementById("usernameMessage").innerHTML,
 "(field is required)", "validating empty username ...");

});

test("validating empty password", function() {

 document.getElementById("username").value = "someone@yahoo.com";

 document.getElementById("password").value = ""; /* setting
 password to empty */

 this.loginClient.validateLoginForm(this.loginForm);

 equal(document.getElementById("passwordMessage").innerHTML,
 "(field is required)", "validating empty password ...");

});

QUnit

[120]

The "validating empty username" test function tests LoginClient to ensure that
it is able to display an error message when the username is not entered. It sets an
empty value in the username ield and then calls the validateLoginForm API of the
LoginClient object; then it veriies that the validateLoginForm API produces the
"(field is required)" message in the usernameMessage ield using the
equal assertion.

The "validating empty password" test function does the same thing but with the
password ield and not with the username ield.

The following code snippet shows the test functions of the "LoginClient Test
Module", which validate the formats of the ields (the username and the password):

test("validating username format", function() {

 document.getElementById("username").value = "someone@yahoo"; /*
 setting username to incorrect format */

 document.getElementById("password").value = "Admin@123";

 this.loginClient.validateLoginForm(this.loginForm);

 equal(document.getElementById("usernameMessage").innerHTML,
 "(format is invalid)", "validating username format ...");

});

test("validating password format", function() {

 document.getElementById("username").value = "someone@yahoo.com";

 document.getElementById("password").value = "admin@123"; /*
 setting password to incorrect format */

 this.loginClient.validateLoginForm(this.loginForm);

 equal(document.getElementById("passwordMessage").innerHTML,
 "(format is invalid)", "validating password format ...");

});

The "validating username format" test function tests the validation of the
username format. It tests the LoginClient object to ensure that it is able to
display an error message when the username format is not valid. It sets an invalid
e-mail value in the username ield and then calls the validateLoginForm API of
LoginClient. Finally, it checks that the validateLoginForm API produces the
"(format is invalid)" message in the usernameMessage ield, using the
equal assertion.

Chapter 4

[121]

The "validating password format" function enters a password that does not
comply with the application's password rules; it enters a password that does not
include a capital letter and then calls the validateLoginForm API of LoginClient.
It inally checks that the validateLoginForm API produces the "(format is
invalid)" message in the passwordMessage ield.

Testing the RegistrationClient object
In the RegistrationClient object, we will test the following functionalities:

• Validation of empty username and passwords

• Validation of matched passwords

• Validating that the username is in e-mail address format

• Validating that the password contains at least one digit, one capital and small
character, at least one special character, and six characters or more

• Validating that the user registration Ajax functionality is performed correctly

Testing of the irst four functionalities will be skipped because they are pretty
similar to the tests that are explained in "LoginClient Test Module", so let's see
how to verify that the user registration (registerUser) Ajax functionality is
performed correctly.

The registerUser tests cover the following test scenarios:

• Testing adding a new user with a unique user ID.

• Testing adding a user with an existing user ID. In this case, the registration
client should fail when registering a user whose ID is already registered.

"RegistrationClient Test Module" groups all the RegistrationClient tests.
The following code snippet shows the deinition of the "RegistrationClient Test
Module":

module("RegistrationClient Test Module", {

 setup: function() {

 // The HTML fixture for the RegistrationClient.

 document.getElementById("qunit-fixture").innerHTML =

 "<label for=\"username\">Username (Email) <span
 id=\"usernameMessage\"></label>" +

 "<input type=\"text\" id=\"username\" name=\"username\"/>" +

 "<label for=\"password1\">Password <span
 id=\"passwordMessage1\"></label>" +

 "<input type=\"password\" id=\"password1\"

QUnit

[122]

 name=\"password1\"/>" +

 "<label for=\"password2\">Confirm your password</label>" +
 "<input type=\"password\" id=\"password2\"
 name=\"password2\"/>";

 this.registrationClient = new weatherapp.RegistrationClient();

 this.registrationForm = {

 "userNameField" : "username",

 "passwordField1" : "password1",

 "passwordField2" : "password2",

 "userNameMessage" : "usernameMessage",

 "passwordMessage1" : "passwordMessage1"

 };

 }, teardown: function() {

 delete this.registrationClient;

 delete this.registrationForm;

 }

});

The setup method of "RegistrationClient Test Module" appends the HTML
ixture of the RegistrationClient test to the qunit-fixture div (the HTML
ixture contains the username and passwords input ields and labels), and then
creates an instance from weatherapp.RegistrationClient and creates the
registrationForm object, which holds the IDs of the HTML elements that are used
in the test. The following code snippet shows the irst part of the "testing the
registration feature" test function of "RegistrationClient Test Module",
which tests registering a new user using the registerUser API:

QUnit.config.testTimeout = 10000;

test("testing the registration feature", function() {

 // Register a new user with a unique user name.

 stop();

 this.userName = "hazems" + new Date().getTime() + "@apache.org";

 document.getElementById("username").value = this.userName;

 document.getElementById("password1").value = "Admin@123";

 document.getElementById("password2").value = "Admin@123";

 var local_this = this;

Chapter 4

[123]

 var newSuccessCallback = function(response) {

 var resultMessage = response.xmlhttp.responseText;

 equal(resultMessage, "User is registered successfully ...",
 "Registering a new user succeeded ...");

 start();

 // Register the created user again to check that the
 registration will fail.

 // The code will be shown in the next code snippet ...

 };

 var newFailureCallback = function() {

 ok(false, "Registering a new user failed ...");

 start();

 };

 this.registrationClient.registerUser(this.registrationForm,
 newSuccessCallback, newFailureCallback);

});

In the test function, the stop() API waits for a call from the start() API, or it
fails the test function after 10000 milliseconds. The registration form is illed with
a valid generated username and valid matched passwords, and then two callbacks
are created. The irst callback represents the success callback while the second one
represents the failure callback. registrationClient.registerUser is called with
the registration form, the success callback, and the failure callback parameters.

In the success callback, the response message returned from the server is ensured of
being equal to the "User is registered successfully ..." message using the
equal assertion, and then a call is made to the start() API to proceed with the test.

In the failure callback, the ok(false) is called in order to fail the test function,
because the failure callback should not be called if the registration is performed
successfully, and then a call is made to the start() API to proceed with the test.

The QUnit Ajax testing of the weather application is real Ajax testing;
this requires the server to be up and running in order to perform the
test correctly.

QUnit

[124]

The following code snippet shows the second part of the "testing the
registration feature" test function that was not shown in the preceding code.
The second part contains the second test scenario of the registerUser API that tests
registering the created user again in order to ensure that the registerUser API will
fail (because the username already exists):

stop();

var existingSuccessCallback = function(response) {
 ok(false, "Validating registering a user with an existing id
 failed ...");
 start();
};

var existingFailureCallback = function(response) {
 var resultMessage = response.xmlhttp.responseText;
 equal(resultMessage, "A user with the same username is already
 registered ...", "Validating registering a user with an existing
 id succeeded ...");
 start();
};

local_this.registrationClient.registerUser(local_this.
registrationForm, existingSuccessCallback, existingFailureCallback);

The stop() API waits for a call to the start() API, or it fails after the timeout
period has passed. The registration form is still holding the same username that
has already been registered in the irst test scenario of the test function, and two
callbacks are created. The irst callback (existingSuccessCallback) represents the
success callback while the second one (existingFailureCallback) represents the
failure callback. registrationClient.registerUser is called with the registration
form, the success callback, and the failure callback parameters.

In the success callback, ok(false) is called in order to fail the test function because
the success callback must not be called in this case, and then a call is made to the
start() API to proceed with the test. In the failure callback, the returned response
message from the server is ensured to equal the "A user with the same username
is already registered ..." message using the equal assertion, and then a call is
made to the start() API to proceed with the test.

The following code snippet shows the complete code of the "testing the
registration feature" function of "RegistrationClient Test Module":

QUnit.config.testTimeout = 10000;
test("testing the registration feature", function() {

 // Register a new user.
 stop();

Chapter 4

[125]

 this.userName = "hazems" + new Date().getTime() + "@apache.org";

 document.getElementById("username").value = this.userName;
 document.getElementById("password1").value = "Admin@123";
 document.getElementById("password2").value = "Admin@123";

 var local_this = this;

 var newSuccessCallback = function(response) {
 var resultMessage = response.xmlhttp.responseText;
 equal(resultMessage, "User is registered successfully ...",
 "Registering a new user succeeded ...");
 start();

 // Register the created user again (Register an existing
 user).
 stop();

 var existingSuccessCallback = function(response) {
 ok(false, "Validating registering a user with an existing id
 failed ...");
 start();
 };

 var existingFailureCallback = function(response) {
 var resultMessage = response.xmlhttp.responseText;
 equal(resultMessage, "A user with the same username is
 already registered ...", "Validating registering a user with
 an existing id succeeded ...");
 start();
 };

 local_this.registrationClient.registerUser(local_this.
registrationForm, existingSuccessCallback, existingFailureCallback);
 };

 var newFailureCallback = function() {
 ok(false, "Registering a new user failed ...");
 start();
 };

 this.registrationClient.registerUser(this.registrationForm,
 newSuccessCallback, newFailureCallback);
});

QUnit

[126]

Testing the WeatherClient object
In the WeatherClient object, we will test the following functionalities:

• Getting the weather for a valid location

• Getting the weather for an invalid location (the system should display
an error message in this case)

For the time being, this test will not be left for you as an exercise because the
other QUnit Ajax testing approach using asyncTest will be used for testing the
WeatherClient object. In order to perform the WeatherClient test, "WeatherClient
Test Module" that groups all the WeatherClient tests is created. The following code
snippet shows the deinition of "WeatherClient Test Module":

module("WeatherClient Test Module", {

 setup: function() {

 // The HTML fixture for the WeatherClient.

 document.getElementById("qunit-fixture").innerHTML =

 "<div id=\"weatherInformation\"></div>";

 this.weatherClient = new weatherapp.WeatherClient();

 this.validLocationForm = {

 'location': '1521894',

 'resultDivID': 'weatherInformation'

 };

 this.invalidLocationForm = {

 'location': 'INVALID_LOCATION',

 'resultDivID': 'weatherInformation'

 };

 }, teardown: function() {

 delete this.weatherClient;

 delete this.validLocationForm;

 delete this.invalidLocationForm;

 }

});

The setup method of "WeatherClient Test Module" appends the HTML
ixture of the WeatherClient test to the qunit-fixture div (the HTML ixture
contains the weatherInformation div element), and then creates an instance
from weatherapp. WeatherClient creates the validLocationForm object that
represents a valid location form (that contains a valid location code and the ID of the
weatherInformation div element), and inally creates the invalidLocationForm

Chapter 4

[127]

object that represents an invalid location form (that contains an invalid location code
and the ID of the weatherInformation div element). The following code snippet
shows the "getting the weather information for a valid place" test
function of "WeatherClient Test Module" that tests the getWeatherCondition
API's behavior with a valid location code:

QUnit.config.testTimeout = 10000;

asyncTest("getting the weather information for a valid place",
function() {

 var successCallback = function(response) {

 var resultMessage = response.xmlhttp.responseText;

 notEqual(resultMessage, "", "Getting the weather information
 for a valid place succeeded");

 start();

 };

 var failureCallback = function() {

 ok(false, "Getting the weather information for a valid place
 failed ...");

 start();

 };

 this.weatherClient.getWeatherCondition(this.validLocationForm,
 successCallback, failureCallback);

});

In order to test the getWeatherCondition method, the asyncTest API has been
used this time instead of the test API. As shown, there are no stop() calls because
stop() is called implicitly by the asyncTest API. By calling the stop() API
implicitly, the asyncTest API waits for a call from the start() API or it fails
the test function after 10000 milliseconds.

Two callbacks are created. The irst callback (successCallback) represents the
success callback while the second one (failureCallback) represents the failure
callback. Finally, weatherClient.getWeatherCondition is called with the valid
location form, the success callback, and the failure callback parameters.

In the success callback, the response message returned from the server is ensured
of not being equal to an empty message using the notEqual assertion (the server
response message should contain the weather information for the passed location),
and then a call is made to the start() API to proceed with the test.

QUnit

[128]

In the failure callback, ok(false) is called in order to fail the test function because the
failure callback must not be called in case you want to get weather information for a
valid location. Finally, a call is made to the start() API to proceed with the test.

The following code snippet shows the other "getting the weather information
for an invalid place" test function of "WeatherClient Test Module":

asyncTest("getting the weather information for an invalid place",
function() {

 var successCallback = function() {

 ok(false, "Getting the weather information for an invalid
 place succeeded (MUST NOT Happen)!!!");

 start();

 };

 var failureCallback = function(response) {

 var resultMessage = response.xmlhttp.responseText;

 equal(resultMessage, "Invalid location code", "Getting the
 weather information for an invalid place failed (Expected)
 ...");

 start();

 };

 this.weatherClient.getWeatherCondition(this.invalidLocationForm,
 successCallback, failureCallback);

});

As shown in the previous code snippet, the "getting the weather information
for an invalid place" test function follows the same approach as that of the
previous test function. The main difference is that it ensures that failureCallback
is called and the server response message is validated to be "Invalid location
code", and inally it is ensured that successCallback is not called.

Running the weather application tests
In order to run the weather application tests correctly, you have to make sure that
the server is up and running in order to pass the Ajax tests. So you need to deploy
this chapter's updated version of the weather application on Tomcat 6, as explained
in Chapter 1, Unit Testing JavaScript Applications, and then type the following URL in
the browser's address bar:

http://localhost:8080/weatherApplication/js/js-test/qunit/testRunner.
html

Chapter 4

[129]

The following screenshot shows the weather application's QUnit test results:

As shown in the preceding screenshot, the test modules appear in the drop-down
menu in the top-right part of the test page. You can ilter which test modules
you want to execute using this drop-down menu; for example, if you select the
LoginClient Test Module menu item, only the LoginClient test functions
will be executed, as with the other test modules.

Summary
In this chapter, you learned what QUnit is and how to use it for testing synchronous
JavaScript code. You learned how to test asynchronous (Ajax) JavaScript code using
the QUnit test and QUnit asyncTest mechanisms. You learned the assertions
provided by the framework, and how to develop your own assertion in order to
simplify your test code. You also learned how to load HTML ixtures easily in your
QUnit tests. Finally, you learned how to apply all of these concepts for testing the
weather application using QUnit. In the next chapter, you will learn how to work
with the JsTestDriver framework, and learn how to use it for testing the JavaScript
part of the weather application. Along with this, you will also learn how to automate
the QUnit and Jasmine tests using the JsTestDriver framework.

JsTestDriver
JsTestDriver (JSTD) is one of the most powerful and eficient JavaScript unit testing
frameworks. JSTD is not only a JavaScript unit testing framework but also a complete
test runner that can run other JavaScript unit testing frameworks, such as Jasmine,
YUI Test, and QUnit. JSTD provides a simple syntax for creating JavaScript test cases
that can run either from the browser or from the command line; JSTD provides a
clean mechanism for testing asynchronous (Ajax) JavaScript code. If you are familiar
with the syntax of xUnit frameworks (such as JUnit), you will ind yourself familiar
with the JSTD syntax. In this chapter, the JSTD framework will be illustrated in detail
and will be used to test the weather application that was discussed in Chapter 1, Unit
Testing JavaScript Applications.

Architecture
Before understanding how to conigure JSTD, we need to irst understand how it
works. The following igure shows the architecture of JsTestDriver:

JsTestDriver

[132]

In the irst step, the server is launched; then, the server loads the test runner code in
the different browsers once they are captured. (A browser can be captured through
the command line or by entering the server URL in the browser's address bar. Once
the browser is captured, it is called a slave browser and can be controlled from
the command line.) By sending commands to slave browsers, the server loads the
JavaScript code, executes the test cases on every slave browser, and inally returns
the results to the client.

We can supply the two following main inputs to the client (command line):

• JavaScript iles: The JavaScript source and test iles (and maybe other
helper iles)

• A coniguration ile, JsTestDriver.conf: To organize the loading of the
JavaScript source and test iles

This architecture is lexible; it allows a single server to capture any number of
browsers whether they are on the same machine or on different machines on
the network. For example, this can be useful if your code is running on a Linux
environment and you want to run your JavaScript tests against Microsoft Internet
Explorer on another Windows machine.

Coniguration
In order to conigure JSTD, you need to follow the ensuing steps:

1. Download the framework from http://code.google.com/p/js-test-
driver/downloads/list. At the time of this writing, the latest release of
JSTD is v1.3.4.b. So, the JsTestDriver-1.3.4.b.jar ile has been used for
working with JSTD in this chapter.

As recommended in the previous chapters, it is a good habit to separate
the JavaScript source and testing files in different folders for the sake of
organization.

2. The second step is to create the JSTD test coniguration ile, jsTestDriver.
conf, as shown in the following code snippet:

server: http://localhost:9876

load:

 - src/*.js

 - tests/*.js

Chapter 5

[133]

The coniguration ile is in YAML format (YAML is a recursive acronym for
YAML Ain't Markup Language. For more information about the YAML
format, check http://yaml.org/.). The server directive refers to the JSTD
server URL. If the server directive is not speciied, the server URL will be
needed to be speciied at the command line. The load directive refers to the
JavaScript iles to be loaded by the JSTD test runner in order. In the previous
code snippet, the load directive tells the test runner to load all JavaScript
source iles with the extension pattern (*.js) under the src folder and then
to load all the JavaScript test iles with the same extension pattern, but under
the tests folder.

3. After creating the JSTD test coniguration ile, you can now start the server
from the command line using the following command:

java –jar JsTestDriver-1.3.4.b.jar --port 9876

Using this command, the server starts up on port 9876. Once the server starts,
you can capture the browsers by entering the following server URL in the
browser's address bar:
http://localhost:9876/capture

In the server startup command, you have the option of launching captured
(slave) browsers as follows:

java -jar JsTestDriver-1.3.4.b.jar --port 9876 --browser [firefoxp
ath],[iepath],[chromepath]

Using the browser argument, you can launch already captured browsers for
the server to execute the JavaScript tests on.

4. After you start the server and capture the browsers (manually or from the
command line), you can execute the JSTD tests from the command line using
the following command:

java -jar JsTestDriver-1.3.4.b.jar --tests all

Sometimes, you may face the following error while executing the tests:

"java.lang.RuntimeException: Oh Snap! No server
defined!"

This error occurs because JsTestDriver is unable to see the configuration file;
in order to avoid this error, you can specify the configuration file path using
the --config parameter in the command to execute tests, as follows:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver.
conf --tests all

JsTestDriver

[134]

After executing the JSTD tests, you will see the following result in the console if you
have executed three successful tests (for example):

.......

Total 3 tests (Passed: 3; Fails: 0; Errors: 0) (2.00 ms)

Firefox 15.0 Windows: Run 3 tests (Passed: 3; Fails: 0; Errors 0) (2.00
ms)

… Other browsers here …

In order to have the java command available from the command line,
you need to install and conigure Java on your machine. It is expected
that you have already installed the JRE as indicated in Chapter 1, Unit
Testing JavaScript Applications, in order to run the Tomcat server. After
installing the JRE, all you need to do to have the java command
available from your command line is to add the JRE bin directory to
the PATH variable of your operating system.

Writing your irst JSTD test
A JSTD test can contain test cases and test functions. A JSTD test case is a group of
related test functions. Every test function should contain one or more assertions
in order to perform the test and verify the outputs. The JSTD TestCase object is
responsible for creating the JSTD test case, and in order to create the test functions
inside the test case, every test function should start with the word "test".

Every JSTD assertion represents a function that validates a condition that can return
true or false. In order to pass the test function, all of the assertions inside the test
function have to be true. If one or more assertions inside a test function are false, the
test function fails. The following code snippet shows an example of two JSTD test
cases with test functions:

TestCase1 = TestCase("Testcase1");

TestCase1.prototype.testFunction1 = function() {

 // One or more assertion(s)

};

TestCase1.prototype.testFunction2 = function() {

 // One or more assertion(s)

};

TestCase2 = TestCase("Testcase2");

Chapter 5

[135]

TestCase2.prototype.testAnotherFunction = function() {

 // One or more assertion(s)

};

As shown in the preceding code snippet, two test cases are created. The irst test
case is named Testcase1, and it contains two test functions testFunction1 and
testFunction2. The second test case is named Testcase2, and it contains a single
test function named testAnotherFunction.

Now, let's move to testing the SimpleMath JavaScript object (which we tested using
Jasmine, YUI Test, and QUnit in the previous chapters). The following code snippet
reminds you with the code of the SimpleMath object:

SimpleMath = function() {

};

SimpleMath.prototype.getFactorial = function (number) {

 if (number < 0) {

 throw new Error("There is no factorial for negative numbers");

 }

 else if (number == 1 || number == 0) {

 // If number <= 1 then number! = 1.

 return 1;

 } else {

 // If number > 1 then number! = number * (number-1)!

 return number * this.getFactorial(number-1);

 }

}

SimpleMath.prototype.signum = function (number) {

 if (number > 0) {

 return 1;

 } else if (number == 0) {

 return 0;

 } else {

 return -1;

 }

}

SimpleMath.prototype.average = function (number1, number2) {

 return (number1 + number2) / 2;

}

JsTestDriver

[136]

As was done in the previous chapters, the following three test scenarios will be
developed for the getFactorial method:

• A positive number

• Zero

• A negative number

The following code snippet shows how to test calculating the factorial of a positive
number (3), 0, and a negative number (-10) by using JSTD:

FactorialTestCase = TestCase("Factorial Testcase");

FactorialTestCase.prototype.setUp = function() {

 this.simpleMath = new SimpleMath();

};

FactorialTestCase.prototype.tearDown = function() {

 delete this.simpleMath;

};

FactorialTestCase.prototype.testPositiveNumber = function() {

 assertEquals("Factorial(3)", 6,
 this.simpleMath.getFactorial(3));

};

FactorialTestCase.prototype.testZero = function() {

 assertEquals("Factorial(0)", 1,
 this.simpleMath.getFactorial(0));

};

FactorialTestCase.prototype.testNegativeNumber = function() {

 var localThis = this;

 assertException("Factorial(-10)", function() {

 localThis.simpleMath.getFactorial(-10)

 }, "Error");

};

The TestCase object declares a new test case called "Factorial Testcase". The
setUp method is used to initialize the test functions in the test case, that is, the setUp
method is called once before the run of each test function in the test case. In the
setUp method, the simpleMath object is created using new SimpleMath(). On the
contrary, the tearDown method is used to de-initialize the test functions in the test
case; the tearDown method is called once after the run of each test function in the test

Chapter 5

[137]

case. In the factorial tests, the tearDown method is used to clean up, which deletes
the created simpleMath object.

In the testPositiveNumber test function, the assertEquals assertion function
calls simpleMath.getFactorial(3) and expects the result to be 6. If simpleMath.
getFactorial(3) returns a value other than 6, the test fails. The irst parameter of
the assertEquals assertion is optional, and it represents a message to be displayed
when the assertion fails. In JSTD, we have many other assertions to use instead of
assertEquals; we will discuss them in greater detail in the Assertions section.

In the testZero test function, the assertEquals assertion function calls
simpleMath.getFactorial(0) and expects it to be 1. In the testNegativeNumber
test function, the assertEquals assertion function calls simpleMath.
getFactorial(-10) and expects it to throw an error by using the assertException
assertion. In JSTD, the assertException assertion has three parameters; the irst
parameter is optional and represents a message to be displayed when the assertion
fails, the second parameter represents a callback that contains the function to be
tested (which must throw an error in order to make the test function pass), and the
last parameter represents the string of the error type.

After inalizing the getFactorial test case, we come to a new test case that tests
the functionality of the signum method provided by the SimpleMath object. The
following code snippet shows the signum test case:

SignumTestCase = TestCase("Signum Testcase");

SignumTestCase.prototype.setUp = function() {

 this.simpleMath = new SimpleMath();

};

SignumTestCase.prototype.tearDown = function() {

 delete this.simpleMath;

};

SignumTestCase.prototype.testPositiveNumber = function() {

 assertEquals("Signum(3)", 1, this.simpleMath.signum(3));

};

SignumTestCase.prototype.testZero = function() {

 assertEquals("Signum(0)", 0, this.simpleMath.signum(0));

};

SignumTestCase.prototype.testNegativeNumber = function() {

 assertEquals("Signum(-1000)", -1, this.simpleMath.signum(-1000));

};

JsTestDriver

[138]

We have three test functions for the signum method, the testPositiveNumber
function tests getting the signum of a positive number, the testZero function tests
getting the signum of zero, and the testNegativeNumber function tests getting the
signum of a negative number. The following code snippet shows the test case of the
average method:

AverageTestCase = TestCase("Average Testcase");
AverageTestCase.prototype.setUp = function() {
 this.simpleMath = new SimpleMath();
};

AverageTestCase.prototype.tearDown = function() {
 delete this.simpleMath;
};

AverageTestCase.prototype.testAverage = function() {
 assertEquals("Average(3, 6)", 4.5, this.simpleMath.average(3, 6));
};

In "Average Testcase", the testAverage test function ensures that the average is
calculated correctly by calling the average method, using the two parameters 3 and
6, and expecting the result to be 4.5.

Note that the irst optional message parameter in the JSTD assertions will be
displayed if the assertion fails in a way that gives an error with a descriptive
meaning. Let's assume that getFactorial(3) is returning a wrong value
(for example, 10). This means that the following assertion will fail:

assertEquals("Factorial(3)", 6, this.simpleMath.getFactorial(3));

The result of running this failing assertion will be:

Factorial Testcase.testPositiveNumber failed (1.00 ms): AssertError:
Factorial(3) expected 6 but was 10

If the irst message parameter is omitted, the result will be:

Factorial Testcase.testPositiveNumber failed (1.00 ms): AssertError:
expected 6 but was 10

In order to run the SimpleMath JSTD tests, you need to create the JSTD test
coniguration ile that points to the source and test JavaScript iles, and the
server URL, as follows:

server: http://localhost:9876

load:

 - src/*.js

 - tests/*.js

Chapter 5

[139]

The simpleMath.js ile is placed under the src folder, and the
simpleMathTest.js ile which contains the SimpleMath JSTD tests is
placed under the tests folder. The load directive asks the JSTD test runner to
load all of the JavaScript iles (*.js) under the src folder and then to load all
of the JavaScript iles under the tests folder in order to execute the JSTD tests.

Then, start the server from the command line by using the following command:

java –jar JsTestDriver-1.3.4.b.jar --port 9876

Then, capture the browsers (for example, IE and Firefox) by entering the following
URL in the browser's address bar:

http://localhost:9876/capture

Finally, you can execute the tests after you start the server and capture the browsers
manually (or from the command line) by using the following command:

java -jar JsTestDriver-1.3.4.b.jar --tests all

After executing the test cases, you will ind the following results in the console:

..............

Total 14 tests (Passed: 14; Fails: 0; Errors: 0) (8.00 ms)

Microsoft Internet Explorer 8.0 Windows: Run 7 tests (Passed: 7; Fails:
0; Errors 0) (0.00 ms)

Firefox 15.0.1 Windows: Run 7 tests (Passed: 7; Fails: 0; Errors 0) (8.00
ms)

Assertions
An assertion is a function that validates a condition; if the condition is not valid, it
throws an error that causes the test to fail. A test method can include one or more
assertions; all the assertions have to pass in order to have the test method pass. In
the irst JSTD test example, we have used the assertEquals and assertException
assertions. In this section, the other different built-in assertions provided by JSTD
will be illustrated.

JsTestDriver

[140]

The assert, assertTrue, and assertFalse([msg],
expression) assertions
The assert and assertTrue assertions do the same thing; they have two
parameters. The irst parameter is an optional message to be displayed if the
assertion fails, and the second parameter represents an expression. The assert and
assertTrue assertions are passed if the expression parameter is evaluated to true.
The assertFalse assertion does the reverse operation; it passes if the expression is
evaluated to false. For example, the following assertions work:

assert(6 == 6);
assertTrue("6 should equal 6", 6 == 6);
assertFalse(6 != 6);

The assertEquals and assertNotEquals([msg],
expected, actual) assertions
The assertEquals assertion has three parameters; the irst parameter is an optional
message to be displayed if the assertion fails, and the last two parameters represent
the expected and actual values. The assertEquals assertion is passed if the actual
value is equal to the expected value; if it is not, the assertion fails and the optional
message is displayed. The assertNotEquals assertion ensures that the actual and
expected parameters are not equal.

It is very important to know that the assertEquals and assertNotEquals
assertions use the JavaScript == operator to perform the comparison, that is, they
carry out the comparison neglecting the types. For example, the following assertions
will be passed:

assertEquals("6 should equal '6'", 6, "6");

assertNotEquals("6 should not equal 7", 6, 7);

The assertSame and assertNotSame([msg],
expected, actual) assertions
The assertSame and assertNotSame assertions are very similar to the
assertEquals and assertNotEquals assertions. The main difference between
them is that the assertSame and assertNotSame assertions use the === operator
for comparison, that is, they compare both the values and the types of the actual
and expected parameters. For example, the following assertions will be passed:

assertSame("6 is the same as 6", 6, 6);

assertNotSame("6 is not the same as '6'", 6, "6");

Chapter 5

[141]

The datatype assertions
The following set of assertions in JSTD checks the value types. Each one of these
assertions takes two parameters; the irst parameter is an optional message to be
displayed if the assertion fails, and the second parameter is the value to be tested:

• assertBoolean([msg], actual) is passed if the actual value is a Boolean

• assertString([msg], actual) is passed if the actual value is a string

• assertNumber([msg], actual) is passed if the actual value is a number

• assertArray([msg], actual) is passed if the actual value is an array

• assertFunction([msg], actual) is passed if the actual value is a function

• assertObject([msg], actual) is passed if the actual value is an object

For example, the following assertions will be passed:

assertBoolean(false);

assertString("some string");

assertNumber(1000);

assertArray([1, 2, 3]);

assertFunction(function(){ alert('test'); });

assertObject({somekey: 'someValue'});

JSTD also provides generic assertions, assertTypeOf and assertInstanceOf,
for checking the datatypes.

The assertTypeOf assertion uses the JavaScript typeof operator in order to check
the value type. It takes three parameters; the irst parameter is an optional message
to be displayed if the assertion fails, and the other two parameters represent the
value type and the value to test. For example, the following assertTypeOf assertions
will pass:

assertTypeOf("boolean", false);

assertTypeOf("string", "some string");

assertTypeOf("number", 1000);

assertTypeOf("object", [1, 2, 3]);

assertTypeOf("function", function(){ alert('test'); });

assertTypeOf("object", {somekey: 'someValue'});

JsTestDriver

[142]

In addition to all of this, you can use the assertInstanceOf assertion, which uses
the JavaScript instanceof operator in order to check the value instance. It takes
three parameters; the irst parameter is an optional message to be displayed if the
assertion fails, and the other two parameters represent the type constructor and the
value to be tested. For example, the following assertions will pass:

assertInstanceOf(Boolean, false);

assertInstanceOf(String, "some string");

assertInstanceOf(Number, 1000);

assertInstanceOf(Object, [1, 2, 3]);

assertInstanceOf(Function, function(){ alert('test'); });

assertInstanceOf(Object, {somekey: 'someValue'});

Special value assertions
The following set of assertions in JSTD checks whether a variable value belongs
to one of the special values as mentioned in the following list. Each one of these
assertions takes two parameters; the irst parameter is an optional message to be
displayed if the assertion fails, and the second parameter is the value to be tested:

• assertUndefined([msg], actual) is passed if the actual value
is undeined

• assertNotUndefined([msg], actual) is passed if the actual value
is not undeined (deined)

• assertNull([msg], actual) is passed if the actual value is null

• assertNotNull([msg], actual) is passed if the actual value is not null

• assertNaN([msg], actual) is passed if the actual value is not a number
(NaN)

• assertNotNaN([msg], actual) is passed if the actual value is not NaN

For example, the following assertions will be passed:

var someStr = "some string";

var undefinedVar;

assertUndefined(undefinedVar);

assertNotUndefined(someStr);

assertNull(null);

assertNotNull(someStr);

assertNaN(1000 / "string_value");

assertNotNaN(1000);

Chapter 5

[143]

The fail([msg]) assertion
In some situations, you may need to fail the test manually, for example, if you want
to make your own custom assertion that encapsulates speciic validation logic. In
order to do this, JSTD provides the fail() method for failing the test manually.
assertAverage is an example of a custom assertion that uses the fail() method:

assertAverage = function (number1, number2, expected, failureMessage)
{

 var actual = (number1 + number2) / 2;

 if (actual != expected) {

 fail(failureMessage + ": Expected = " + expected + " while
 Actual = " + actual);

 }

}

The assertAverage custom assertion can be called by simply using the following
line of code:

assertAverage(3, 4, 3.5, "Average is incorrect");

The fail() method has an optional message parameter that is displayed as
a failure message.

There are other remaining built-in assertions in JSTD; however, the
only remaining important built-in assertion that you have to know
is assertException, and you already learned how it works in the
SimpleMath object test example.

Testing asynchronous (Ajax) JavaScript

code
The common question that comes to mind is how to test asynchronous (Ajax)
JavaScript code using JSTD. What has been mentioned in the chapter so far is how to
perform unit testing for the synchronous JavaScript code. Fortunately, JSTD provides
the AsyncTestCase object in order to perform asynchronous JavaScript testing
(Ajax testing). In the following section, you will understand how to work with the
AsyncTestCase object in order to develop asynchronous tests in JSTD.

JsTestDriver

[144]

AsyncTestCase, queue, and callbacks
AsyncTestCase extends TestCase by allowing the test methods to have a queue
parameter. The queue parameter can contain a list of inline functions (steps) that are
executed in sequence. Every inline function has a callbacks parameter that allows
creating different callbacks for testing the asynchronous operations. JSTD mainly has
two types of callbacks:

• Success callbacks: These represent the success path. The success callback
must be called if the Ajax operation succeeds. In order to handle the
operation timeout, if the success callback is not called after a speciic amount
of time (30 seconds, by default), the test function fails.

• Error callbacks: These represent the error path. The error callback must not
be called if the Ajax operation succeeds. If the error callback is called, the test
function fails.

The JSTD queue parameter contains a list of inline functions that are
executed in sequence, which is helpful if you want to test a group of
dependent Ajax operations.

The following code snippet shows an example of real Ajax testing using JSTD:

AsynchronousTestCase = AsyncTestCase("Asynchronous Testcase");

AsynchronousTestCase.prototype.testAjaxOperationsGroup1 =
function(queue) {

 queue.call('Testing operation1 ...', function(callbacks) {

 var successCallback =
 callbacks.add(function(successParameters) {

 // Make the assertions for the successParameters...

 });

 var failureCallback = callbacks.addErrback('Unable to
 register the user');

 // call asynchronous API

 asyncSystem.doAjaxOperation(inputData, successCallback,
 failureCallback);

 });

 queue.call('Testing operation2 ...', function(callbacks) {

 // will be called after 'Testing operation1 ...'

 });

};

Chapter 5

[145]

AsynchronousTestCase.prototype.testAjaxOperationsGroup2 =
function(queue) {

 //...

};

As shown in the preceding code snippet, an asynchronous test case, "Asynchronous
Testcase", is created. It has two test methods: testAjaxOperationsGroup1 and
testAjaxOperationsGroup2. Every test method has a queue parameter. In the
testAjaxOperationsGroup1 test method, the queue object includes two inline
functions, "Testing operation1 ..." and "Testing operation2 ...", using the
queue.call() API.

The queue.call() API has two parameters; the irst parameter is
optional and represents the title of the inline function, and the second
parameter represents the inline function.

Every inline function has a callbacks parameter. The callbacks parameter allows
creating the success and failure callbacks in order to test and validate the Ajax
operations. In the "Testing operation1 ..." inline function, two callbacks are
created; one of them is the success callback (successCallback) and it is called if
the Ajax operation succeeds. The success callback is created using the callbacks.
add() API. The other callback is the failure callback (failureCallback), and it is
called if the Ajax operation fails. The failure callback is created using the callbacks.
addErrback() API.

If the Ajax response is not returned from the server after 30 seconds, the success
callback will cause the test to fail. In the next section, the AsyncTestCase, queue, and
callbacks objects will be used in order to test the (asynchronous) Ajax part of the
weather application.

Testing the weather application
Now, we come to developing the JSTD tests for our weather application. Actually,
after you know how to write JSTD tests for both synchronous and asynchronous
JavaScript (Ajax) code, testing the weather application is an easy task. As you
remember from the previous chapters, we have three major JavaScript objects
in the weather application that we need to develop tests for: the LoginClient,
RegistrationClient, and WeatherClient objects.

JsTestDriver

[146]

Two subfolders, jstd and tests, are created under the js-test folder
(thus: jstd\tests) to contain the JSTD tests, as shown in the following screenshot:

As shown in the preceding screenshot, there are three JSTD test iles
(LoginClientTest.js, RegistrationClientTest.js, and WeatherClientTest.
js) that test the main three JavaScript objects of the weather application.

Using the JSTD DOC annotation, you can load the HTML ixtures (in
an inline style) in your JSTD tests. For example:

FixtureTestCase = TestCase("Fixture Testcase");

FixtureTestCase.prototype.testSomeThing = function()
{

 /*:DOC += <div id="someDiv"></div> */

 assertNotNull(document.getElementById('someDiv'));

};

Chapter 5

[147]

Testing the LoginClient object
As we did in the previous chapters, in the Testing the LoginClient object section
we will perform unit testing for the following functionalities:

• Validation of empty username and password

• Validating that the username is in e-mail address format

• Validating that the password contains at least one digit, one capital
and small letter, at least one special character, and six characters or more

In order to perform this test, one test case is created that tests both the validation
of the empty ields (the username and password) and the validation of the ields'
formats. The following code snippet shows the validation of the empty ields for
"LoginClient Testcase":

LoginClientTestcase = TestCase("LoginClient Testcase");

LoginClientTestcase.prototype.setUp = function() {

 /*:DOC += <label for="username">Username <span
 id="usernameMessage" class="error"></label>

 <input type="text" id="username" name="username"/>

 <label for="password">Password <span id="passwordMessage"
 class="error"></label>

 <input type="password" id="password" name="password"/>*/

 this.loginClient = new weatherapp.LoginClient();

 this.loginForm = {

 "userNameField" : "username",

 "passwordField" : "password",

 "userNameMessage" : "usernameMessage",

 "passwordMessage" : "passwordMessage"

 };

};

LoginClientTestcase.prototype.tearDown = function() {

 delete this.loginClient;

 delete this.loginForm;

};

LoginClientTestcase.prototype.testEmptyUserName = function() {

 document.getElementById("username").value = ""; /* setting
 username to empty */

 document.getElementById("password").value = "Admin@123";

JsTestDriver

[148]

 this.loginClient.validateLoginForm(this.loginForm);

 assertEquals("(field is required)",
 document.getElementById("usernameMessage").innerHTML);

};

LoginClientTestcase.prototype.testEmptyPassword = function() {

 document.getElementById("username").value = "someone@yahoo.com";

 document.getElementById("password").value = ""; /* setting
 password to empty */

 this.loginClient.validateLoginForm(this.loginForm);

 assertEquals("(field is required)",
 document.getElementById("passwordMessage").innerHTML);

};

The setUp method creates an instance from weatherapp.LoginClient and creates
the loginForm object, which holds the IDs of the HTML elements that are used in the
test. The HTML ixture of LoginClientTestCase is loaded using the DOC annotation.

testEmptyUserName tests whether the LoginClient object is able to display an error
message when the username is not entered. It sets an empty value in the username
ield and then calls the validateLoginForm API of the LoginClient object. It then
checks whether the validateLoginForm API produces the "(field is required)"
message in the usernameMessage ield by using the assertEquals assertion.

testEmptyPassword does the same thing, but with the password ield, not with the
username ield.

The following code snippet shows the second part of "LoginClient Testcase",
which validates the formats of the ields (username and password):

LoginClientTestcase.prototype.testUsernameFormat = function() {

 document.getElementById("username").value =
 "someone@someDomain"; /* setting username to invalid format */

 document.getElementById("password").value = "Admin@123";

 this.loginClient.validateLoginForm(this.loginForm);

 assertEquals("(format is invalid)",
 document.getElementById("usernameMessage").innerHTML);

};

LoginClientTestcase.prototype.testPasswordFormat = function() {

 document.getElementById("username").value =

Chapter 5

[149]

 "someone@someDomain.com";

 document.getElementById("password").value = "Admin123"; /*
 setting password to invalid format */

 this.loginClient.validateLoginForm(this.loginForm);

 assertEquals("(format is invalid)",
 document.getElementById("passwordMessage").innerHTML);

};

testUsernameFormat tests the validation of the username format. It tests whether
the LoginClient object is able to display an error message when the username
format is not valid. It sets an invalid e-mail value in the username ield and then calls
the validateLoginForm API of the LoginClient object. Finally, it checks, by using
the assertEquals assertion, whether the validateLoginForm API produces the
"(format is invalid)" message in the usernameMessage ield.

testPasswordFormat enters a password that does not comply with the application's
password rules—it enters a password that does not include a capital letter—and
then calls the validateLoginForm API of the LoginClient object. Finally, it checks
whether the validateLoginForm API produces the "(format is invalid)"
message in the passwordMessage ield.

Testing the RegistrationClient object
In the RegistrationClient object, we will test the following functionalities:

• Validation of empty username and passwords

• Validation of matched passwords

• Validating that the username is in e-mail address format

• Validating that the password contains at least one digit, one capital and small
letter, at least one special character, and six characters or more

• Validating that the user registration Ajax functionality is performed correctly

Testing of the irst four functionalities will be skipped because they are pretty
similar to the tests that are explained in the LoginClient test case, so let's explain
how to check whether the user registration (registerUser) Ajax functionality is
performed correctly.

JsTestDriver

[150]

The registerUser test case should cover the following test scenarios:

• Testing adding a new user, that is, the registration client should be able to
register a valid user correctly.

• Testing adding a user with an existing user ID (username). In this case,
the registration client should fail when registering a user whose ID is
already registered.

The RegistrationTestcase asynchronous test case is created in order to validate
the user registration Ajax functionality. The following code snippet shows the
irst part of the RegistrationTestcase test case, which tests adding a new user.
The setUp method creates an instance from weatherapp.RegistrationClient
and creates the registrationForm object, which holds the IDs of the registration
form that will be used in the test. Using the DOC annotation, the HTML ixture of
RegistrationTestcase is loaded:

RegistrationTestcase = AsyncTestCase("Registration Testcase");

RegistrationTestcase.prototype.setUp = function() {

 /*:DOC += <label for="username">Username (Email) <span
 id="usernameMessage" class="error"></label>

 <input type="text" id="username" name="username"/>

 <label for="password1">Password <span id="passwordMessage1"
 class="error"></label>

 <input type="password" id="password1" name="password1"/>

 <label for="password2">Confirm your password</label>

 <input type="password" id="password2" name="password2"/>*/

 this.registrationClient = new weatherapp.RegistrationClient();

 this.registrationForm = {

 "userNameField" : "username",

 "passwordField1" : "password1",

 "passwordField2" : "password2",

 "userNameMessage" : "usernameMessage",

 "passwordMessage1" : "passwordMessage1"

 };

};

RegistrationTestcase.prototype.tearDown = function() {

 delete this.registrationClient;

 delete this.registrationForm;

};

Chapter 5

[151]

RegistrationTestcase.prototype.testRegisterUser = function(queue) {

 var this_local = this;

 queue.call('Registering a new user ...', function(callbacks) {

 this_local.userName = "hazems" + new Date().getTime() +
 "@apache.org";

 document.getElementById("username").value =
 this_local.userName;

 document.getElementById("password1").value = "Admin@123";

 document.getElementById("password2").value = "Admin@123";

 var successCallback = callbacks.add(function(response) {

 var resultMessage = response.xmlhttp.responseText;

 assertEquals("User is registered successfully ...",
 resultMessage);

 jstestdriver.console.log("[Success] User is registered
 successfully ...");

 });

 var failureCallback = callbacks.addErrback('Unable to
 register the user');

 // call asynchronous API

this_local.registrationClient.registerUser(this_local.
registrationForm, successCallback, failureCallback);

 });

 //...

};

In the testRegisterUser test method, an inline function ('Registering a new
user ...'), tests the creation of a new user using queue.call(). The registration
form is illed with a valid generated username and valid matched passwords, and
then two callbacks are created using the callbacks parameter. successCallback
which represents the success callback, while failureCallback represents the failure
callback. registrationClient.registerUser is called with the registration form,
the success callback, and the failure callback parameters. The 'Registering a new
user ...' inline test function waits for a call to either the success or failure callback,
or it fails after the timeout period passes.

JsTestDriver

[152]

In successCallback, the callback checks whether the returned response message
from the server is "User is registered successfully ..." using the
assertEquals assertion. The failure callback displays the "Unable to register
the user" message if the registerUser test case fails.

The jstestdriver.console.log API can be used for JSTD logging
in the console. In the example, it is used to display the "operation
successful" message.

The following code snippet shows the second inline function, 'Registering a user
whose id is already existing ...', of the testRegisterUser test method. It
tests registering a user with an existing ID:

queue.call('Registering a user whose id is already existing ...',
function(callbacks) {

 document.getElementById("username").value = this_local.userName;

 document.getElementById("password1").value = "Admin@123";

 document.getElementById("password2").value = "Admin@123";

 var failureCallback = callbacks.add(function(response) {

 var resultMessage = response.xmlhttp.responseText;

 assertEquals("A user with the same username is already registered
 ...", resultMessage);

 jstestdriver.console.log("[Success] User is not created because
 the user id is already registered ...");

 });

 var successCallback = callbacks.addErrback('[Error] A user with the
 same id is created !!!');

 // call asynchronous API

 this_local.registrationClient.registerUser(this_local.
registrationForm, successCallback, failureCallback);

});

The registration form is illed with the existing user ID (that is already registered
in the irst inline test function) and with a valid password, and the failure and the
success callbacks are created. Then, registrationClient.registerUser is called
with the registration form, the success callback, and the failure callback parameters.

Chapter 5

[153]

In the failure callback (which must be called if the registerUser test case works
correctly), the callback checks whether the returned response message from the
server is "A user with the same username is already registered ...",
using the assertEquals assertion. The success callback displays the "[Error] A
user with the same id is created !!!" message if the registerUser test case
creates a new user with an existing user ID.

Testing the WeatherClient object
In the WeatherClient object, we will unit test the following functionalities:

• Getting the weather for a valid location

• Getting the weather for an invalid location (the system should display
an error message for this case)

To test the WeatherClient object, the same technique that we used in the
registerUser test case is followed. Developing this test will be left for you as
an exercise; you can get the full source code of the WeatherClientTest.js ile
from the Chapter 5 folder in the code bundle available on the book's website.
To view the source code for the JavaScript tests, all you need to do is unzip the
weatherApplication.zip ile, and you will be able to ind all the JSTD tests
under weatherApplication/WebContent/js/js-test/jstd/tests.

Coniguring the proxy
In order to allow sending Ajax requests from the JSTD server to the backend server,
we need to access the backend server through a proxy so as to avoid the "security
permission denied" error that occurs due to the cross-domain request(s). Fortunately,
JSTD provides a gateway (proxy) that can be used for this purpose. The following
code snippet shows the complete JsTestDriver.config ile of the weather
application JSTD test:

server: http://localhost:9876

gateway:
 - {matcher: "*", server: "http://localhost:8080"}

load:
 - ../../js-src/*.js
 - tests/*.js

plugin:
 - name: "coverage"
 jar: coverage-1.3.4.b.jar

 module: "com.google.jstestdriver.coverage.CoverageModule"

JsTestDriver

[154]

In the coniguration ile, there are two newly introduced directives (that are not
explained in the irst JSTD test example), the gateway and plugin directives. The
plugin directive is used to deine a JSTD plugin. For this example, it deines the
code coverage plugin that is used to generate the test reports (this plugin will be
illustrated in detail in the Generating test reports section). The gateway directive
can be used to route the requests that match the matcher attribute's pattern to
the corresponding server URL speciied in the server attribute. For the weather
application tests, all of the Ajax requests (which are represented using the "*"
pattern) will be routed to the backend server in http://localhost:8080, which
hosts the weather application backend APIs.

In the matcher attribute, you can use the following varieties of patterns:

• Literal matchers: For example, "/matchedService"

• Suffix matchers: For example, "/matchedService/*"

• Prefix matchers: For example, "*.json"

Running the weather application tests
In order to run the weather application tests correctly, you have to make sure that
the Tomcat server is up and running and that this chapter's updated version of the
weather application is deployed on the server as explained in Chapter 1, Unit Testing
JavaScript Applications. After this, you need to follow these steps:

1. Launch the command prompt and change directory (cd) to the "${INSTALL_
PATH}\weatherApplication\WebContent\js\js-test\jstd\" path in the
deployed weather application.

2. Start the JSTD server by typing the command java -jar JsTestDriver-
1.3.4.b.jar --port 9876.

3. Capture the browsers (for example, Firefox and Internet Explorer) by
entering the following URL in the browser's address bar:
http://localhost:9876/capture

4. Finally, run the JSTD test command as follows:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver.conf
--tests all

Chapter 5

[155]

The following result snippet shows the output of running the JSTD tests of the
weather application:

........................

Total 24 tests (Passed: 24; Fails: 0; Errors: 0) (1297.00 ms)

 Microsoft Internet Explorer 8.0 Windows: Run 12 tests (Passed: 12;
 Fails: 0; Errors 0) (610.00 ms)

 Registration Testcase.testRegisterUser passed (32.00 ms)

 [LOG] [Success] User is registered successfully...

 [LOG] [Success] User is not created because the user id is
 already registered...

 WeatherClient Testcase.testGetWeatherForValidPlace passed (328.00
 ms)

 [LOG] [Success] Weather information is retrieved successfully...

 WeatherClient Testcase.testGetWeatherForInvalidPlace passed
 (250.00 ms)

 [LOG] [Success] The weather information is not retrieved for the
 invalid place...

 Firefox 15.0.1 Windows: Run 12 tests (Passed: 12; Fails: 0; Errors
 0) (1297.00 ms)

 Registration Testcase.testRegisterUser passed (493.00 ms)

 [LOG] [Success] User is registered successfully...

 [LOG] [Success] User is not created because the user id is
 already registered...

 WeatherClient Testcase.testGetWeatherForValidPlace passed (539.00
 ms)

 [LOG] [Success] Weather information is retrieved successfully...

 WeatherClient Testcase.testGetWeatherForInvalidPlace passed
 (252.00 ms)

 [LOG] [Success] The weather information is not retrieved for the
 invalid place...

Generating test reports
JSTD can generate test reports from the test results by using the code coverage
plugin. The code coverage plugin can also produce code coverage iles—in the Linux
code coverage (LCOV) format—which include the test code coverage statistics.

JsTestDriver

[156]

Code coverage is a software testing measure. It shows how much the
source code of a program has been tested. It has many criteria for this
measurement, for example:

• Line coverage measures the percentage of the program lines that
are covered by the test

• Function coverage measures the percentage of the program
functions that are covered by the test

• Branch coverage measures the percentage of the program
branches (for example, if … else) that are covered by the test

In order to generate the test reports from the JSTD tests, you need to do
the following:

1. Download the code coverage plugin ile (coverage-1.3.4.b.jar) from the
download page of JSTD, which can be found at the following location:

http://code.google.com/p/js-test-driver/downloads/list

2. Add the code coverage plugin declaration to the JsTestDriver.conf ile,
as follows:

plugin:

 - name: "coverage"

 jar: coverage-1.3.4.b.jar

 module: "com.google.jstestdriver.coverage.CoverageModule"

This declaration tells JSTD to include the plugin whose name is coverage
from the com.google.jstestdriver.coverage.CoverageModule module
that resides in the coverage-1.3.4.b.jar ile.

3. Finally, you need to specify the --testOutput parameter in the test running
command. The --testOutput parameter speciies the path in which JSTD
will generate the test report iles. For example:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver.conf
--tests all --testOutput reports

This command tells JSTD to generate the test reports under the
reports directory.

Chapter 5

[157]

The following screenshot shows the generated report iles after performing the three
preceding steps:

As shown in the preceding screenshot, there are nine generated iles. The
jsTestDriver.conf-coverage.dat ile is the generated LCOV ile that contains the
code coverage statistics (currently, the JSTD code coverage plugin generates the code
coverage based on the line coverage criteria). The other eight iles are JUnit XML
report iles that have the following naming format:

TEST-[BrowserName_Version_Platform].[TestCaseShortName]Testcase.xml

In the weather application, there are four test cases that have four XML iles
per browser:

• "LoginClient Testcase"

• "Registration Validation Testcase"

• "Registration Testcase"

• "WeatherClient Testcase"

As a sample for the generated test report iles, the following code snippet shows the
"LoginClient Testcase" JUnit XML report ile for Firefox. The displayed JUnit XML
report ile is named TEST-Firefox_1501_Windows.LoginClientaTestcase.xml.

<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="Firefox_1501_Windows.LoginClient Testcase" errors="0"
failures="0" tests="4" time="0.013">
<testcase classname="Firefox_1501_Windows.LoginClient Testcase"
name="testEmptyUserName" time="0.0040"/>
<testcase classname="Firefox_1501_Windows.LoginClient Testcase"
name="testEmptyPassword" time="0.0010"/>
<testcase classname="Firefox_1501_Windows.LoginClient Testcase"
name="testUsernameFormat" time="0.0060"/>
<testcase classname="Firefox_1501_Windows.LoginClient Testcase"
name="testPasswordFormat" time="0.0020"/>
</testsuite>

JsTestDriver

[158]

Now, let's learn how to generate user-friendly code coverage reports in JSTD.
Fortunately, the JSTD-generated LCOV iles can be converted to user-friendly
HTML reports using the LCOV visualizer tool that can be found at http://ltp.
sourceforge.net/coverage/lcov.php.

The LCOV visualizer works on a Red Hat Linux environment. In order to convert the
LCOV iles to HTML reports, you should do the following:

1. Download the latest LCOV visualizer RPM (lcov-X.Y-Z.noarch.rpm) ile
from http://ltp.sourceforge.net/coverage/lcov.php

2. Install the downloaded RPM ile in your Red Hat Linux environment by
using the following command:

rpm -i lcov-1.9-1.noarch.rpm

3. In order to make sure that the LCOV visualizer tool is installed correctly,
type the genhtml command at the command line, and you should see the
following output:

genhtml: No filename specified

Use genhtml --help to get usage information

4. Run the genhtml command on the JSTD-generated LCOV ile in order to
generate the HTML test coverage report shown in the following screenshot:

Note that the jsTestDriver.conf-coverage.dat ile has the format shown
in the following code snippet:

SF:[PATH]\Workspaces\weatherApplication\WebContent\js\LoginClient.
js

DA:1,2

...

end_of_record

Chapter 5

[159]

SF:[PATH]\weatherApplication\WebContent\js\RegistrationClient.js

DA:1,2

...

end_of_record

SF:[PATH]\weatherApplication\WebContent\js\WeatherClient.js

DA:1,2

...

end_of_record

SF:[PATH]\weatherApplication\WebContent\js\LoginClientTest.js

DA:10,2

...

end_of_record

SF:[PATH]\weatherApplication\WebContent\js\RegistrationClientTest.
js

DA:12,2

...

end_of_record

SF:[PATH]\weatherApplication\WebContent\js\WeatherClientTest.js

DA:8,2

...

end_of_record

As shown in the LCOV generated ile, the generated SF attributes contain
the full paths of both the JavaScript source and test iles. So, you have to
make sure that these paths are updated if you change the location of the
JavaScript iles.

If you run the genhtml command and the paths of the SF
attributes are not correct, you will encounter the following error:

"mkdir: cannot create directory `': No such file or
directory

genhtml: ERROR: cannot create directory !"

JsTestDriver

[160]

5. If the genhtml command is passed successfully, you will ind the generated
HTML code coverage report iles; click on the index.html ile to see the
HTML report shown in the following screenshot:

You can drill down in the report by clicking on the js directory link to see
the test result details of each JavaScript ile.

The generated LCOV HTML report is placed under the lcov-
html folder, which is under the jstd folder; you can access the
generated HTML report on your Tomcat server by using the
following URL:

http://localhost:8080/weatherApplication/js/js-
test/jstd/lcov-html/index.html

Integration with other JavaScript test

frameworks
As we know from the deinition of JSTD, it is not only a JavaScript test framework
but also a complete test runner that can run other JavaScript frameworks on top of it,
using adapters. Fortunately, JSTD has many ready-made adapters, developed by the
open source community, that enable many JavaScript frameworks (such as Jasmine,
QUnit, and YUI Test) to integrate with JSTD. The integration of JSTD with both
Jasmine and QUnit is highly required because these testing frameworks do not have
an out-of-the-box mechanism for executing the tests from the command-line interface
(unlike YUI Test, which can run from the command line using YUI Test Selenium

Chapter 5

[161]

Driver, as illustrated in detail in Chapter 3, YUI Test). Having the ability to execute
the tests from the command-line interface allows automating the running of tests by
using the build and the continuous integration tools.

In this section, the required steps and tricks that are needed for integrating our
previously written Jasmine and QUnit tests (the weather application) with the JSTD
runner will be illustrated.

Before digging into the details of this integration, let's see the structure of the
integration folder, which contains the JSTD-Jasmine and JSTD-QUnit integration
iles in the weather application:

As shown in the preceding screenshot, the integration folder contains two
subfolders—the jasmine folder and the qunit folder. The jasmine folder and the
qunit folder each contain the following subfolders:

• jstd-adapter: These contain the JSTD adapter iles
• lib: These contain the JavaScript framework library iles (whether Jasmine

or QUnit)

JsTestDriver

[162]

• spec and tests: These contain the Jasmine and QUnit test iles, respectively
• reports: These contain the report iles

The jasmine folder and the qunit folder contain the following iles:

• JsTestDriver-1.3.4.b.jar: The JSTD JAR ile.
• coverage-1.3.4.b.jar: The JSTD code coverage JAR ile.
• jsTestDriver-*.conf: The JSTD coniguration iles.
• Two batch iles that can start the JSTD server and execute the Jasmine

(or QUnit) tests. These two iles will work with you if you are using
Windows; if you are working in a Linux environment, you can create
equivalent .sh iles to start up the server and execute the tests without
having to remember the commands.

Integrating JSTD with Jasmine
In order to integrate the Jasmine tests of the weather application with JSTD,
you need to:

1. Download the JasmineAdapter.js ile from the following URL:

https://github.com/ibolmo/jasmine-jstd-adapter/blob/master/src/

JasmineAdapter.js

2. Place the downloaded JasmineAdapter.js ile under the /integration/
jasmine/jstd-adapter folder.

3. Create a coniguration ile, named jsTestDriver-jasmine.conf, that
contains the JSTD-Jasmine coniguration, which is shown in the following
code snippet:

server: http://localhost:9876

gateway:

 - {matcher: "*", server: "http://localhost:8080"}

load:

 - lib/jasmine-1.2.0/jasmine.js

 - lib/plugins/jasmine-jquery/jquery.js

 - jstd-adapter/JasmineAdapter.js

 - lib/plugins/jasmine-jquery/jasmine-jquery.js

 - ../../../../js-src/*.js

 - spec/*.js

plugin:

 - name: "coverage"

 jar: coverage-1.3.4.b.jar

 module: "com.google.jstestdriver.coverage.CoverageModule"

Chapter 5

[163]

In the load directive, you need to load the following iles in order:

 ° The Jasmine framework file

 ° The jQuery file

 ° The Jasmine JSTD adapter file

 ° The Jasmine jQuery plugin file

 ° The JavaScript source files

 ° The Jasmine JavaScript test files

This is basically what is needed in order to have Jasmine tests running on top of the
JSTD test runner. However, you need to take the loadFixtures API of the Jasmine
jQuery plugin into consideration. Due to the changes of the paths between JSTD and
Jasmine, the loadFixtures API will not work correctly. In order to run the loading
of the ixture correctly, you have two options:

• Replace the loadFixtures API with the jasmine.getFixtures().set API
and load the ixtures in an inline style (which is the approach followed in the
weather application's JSTD-Jasmine tests)

• Conigure the Jasmine loadFixtures API to work with JSTD

In order to conigure the loadFixtures API to work with JSTD, you need to do
the following:

1. Specify explicitly the ixture path by using jasmine.getFixtures().
fixturesPath, and start the ixture path with /test, as follows:

jasmine.getFixtures().fixturesPath = '/test/spec/javascripts/
fixtures/';

loadFixtures("loginFixture.html");

2. Load the HTML ixtures using the serve directive in the JSTD-Jasmine
coniguration ile jsTestDriver-jasmine.conf, as shown in the following
code snippet:

server: http://localhost:9876

gateway:

 - {matcher: "*", server: "http://localhost:8080"}

serve:

 - spec/javascripts/fixtures/*.html

load:

 - lib/jasmine-1.2.0/jasmine.js

 - lib/plugins/jasmine-jquery/jquery.js

 - jstd-adapter/JasmineAdapter.js

 - lib/plugins/jasmine-jquery/jasmine-jquery.js

 - ../../../../js-src/*.js

JsTestDriver

[164]

 - spec/*.js

plugin:

 - name: "coverage"

 jar: coverage-1.3.4.b.jar

 module: "com.google.jstestdriver.coverage.CoverageModule"

After applying the preceding steps, you can now start the JSTD server as usual,
using the following command:

java -jar JsTestDriver-1.3.4.b.jar --port 9876

Then, capture two browsers (for example, Firefox and IE) by entering the following
URL in the browser's address bar:

http://localhost:9876/capture

Finally, you can run the Jasmine tests on top of the JSTD test runner by executing the
JSTD test running command:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver-jasmine.conf
--tests all --testOutput reports

The output in the console will be as follows:

Total 26 tests (Passed: 26; Fails: 0; Errors: 0) (1538.00 ms)

Microsoft Internet Explorer 8.0 Windows: Run 13 tests (Passed: 13; Fails:
0; Errors 0) (922.00 ms)

Firefox 15.0.1 Windows: Run 13 tests (Passed: 13; Fails: 0; Errors 0)
(1538.00 ms)

In the reports folder under the /integration/jasmine folder, you will ind 18
JUnit XML report iles (nine iles for the tests on Firefox and nine for the tests on IE).
Every JUnit XML report ile contains the test results of a single Jasmine test suite.

Integrating JSTD with QUnit
In order to integrate the QUnit tests of the weather application with JSTD, you need
to do the following:

1. Download the equiv.js and QUnitAdapter.js iles from the
following URL:

https://github.com/exnor/QUnit-to-JsTestDriver-adapter

2. Place the two downloaded iles in the jstd-adapter folder under the /
integration/qunit folder.

Chapter 5

[165]

3. Create a coniguration ile, named jsTestDriver-qunit.conf, that
contains the JSTD-QUnit coniguration, which is as shown in the following
code snippet:

server: http://localhost:9876

gateway:

 - {matcher: "*", server: "http://localhost:8080"}

load:

 - lib/qunit-1.10.0.js

 - jstd-adapter/equiv.js

 - jstd-adapter/QUnitAdapter.js

 - ../../../../js-src/*.js

 - tests/*.js

plugin:

 - name: "coverage"

 jar: coverage-1.3.4.b.jar

 module: "com.google.jstestdriver.coverage.CoverageModule"

As you may have noticed in the preceding code snippet, you need to load the
following iles in order, in the load directive:

 ° The QUnit framework file

 ° The QUnit JSTD adapter files (equiv.js and QUnitAdapter.js)

 ° The JavaScript source files

 ° The QUnit JavaScript test files

This is basically what is needed in order to have the QUnit tests working on the top
of the JSTD test runner. However, you need to take the loading of HTML ixtures
into consideration. In order to load the HTML ixtures in the JSTD-QUnit tests, you
can use the standard JSTD DOC annotation shown in the following code snippet:

 module("LoginClient Test Module", {

 setup: function() {

 /*:DOC += <label for="username">Username <span
 id="usernameMessage" class="error"></label>

 <input type="text" id="username" name="username"/>

 <label for="password">Password <span id="passwordMessage"
 class="error"></label>

 <input type="password" id="password" name="password"/>*/

 //...

JsTestDriver

[166]

 }, teardown: function() {

 //...

 }

});

test("validating empty username", function() {

 //...

});

test("validating empty password", function() {

 //...

});

test("validating username format", function() {

 //...

});

test("validating password format", function() {

 //...

});

After making this change in the QUnit modules, you can now run them safely on the
top of the JSTD test runner.

Start the JSTD server as usual, using the following command:

java -jar JsTestDriver-1.3.4.b.jar --port 9876

Capture two browsers (for example, Firefox and IE) by entering the following URL in
the browser's address bar:

http://localhost:9876/capture

Run the QUnit tests on top of the JSTD test runner, as follows:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver-qunit.conf
--tests all --testOutput reports

The output in the console will be as follows:

Total 24 tests (Passed: 24; Fails: 0; Errors: 0) (1150.00 ms)

Microsoft Internet Explorer 8.0 Windows: Run 12 tests (Passed: 12; Fails:
0; Errors 0) (826.00 ms)

Firefox 15.0.1 Windows: Run 12 tests (Passed: 12; Fails: 0; Errors 0)
(1150.00 ms)

Chapter 5

[167]

In the reports folder of the JSTD-QUnit integration, you will ind six JUnit XML
iles (three iles for the tests on Firefox and three iles for the tests on IE). Every JUnit
XML report ile contains the test results of a single QUnit module.

Integration with build management tools
Because the JSTD tests can run from the command line, JSTD can be integrated easily
with build management tools such as Ant and Maven and also with continuous
integration tools such as Hudson. The following code snippet shows an Ant script
that runs the runAllTests.bat ile in the jstd\tests folder.

<project name="weatherApplication" default="runJSTDTests" basedir=".">

 <target name="runJSTDTests">

 <exec executable="cmd">

 <arg value="/c"/>

 <arg value="runAllTests.bat"/>

 </exec>

 </target>

</project>

For Hudson, you can create a Hudson job that periodically executes
the runAllTests.bat ile as a Windows batch command (if you are
working on a Linux environment, you can create a job that periodically
executes the Linux shell script ile).

As a result of running the tests from the command line, you can also integrate the
Jasmine and the QUnit tests, which run on top of the JSTD runner with Ant, Maven,
and Hudson.

Thanks to JSTD, we can automate the running of the Jasmine and the QUnit tests
and automate the generation of the test and code coverage reports for these
frameworks, which do not have a mechanism provided for integration with the
command-line interface.

Integration with the IDEs
In addition to all of the powerful features of JSTD just mentioned, it can also be
integrated with different integrated development environments (IDEs) such as
Eclipse and IntelliJ. Thanks to this integration, you can start the JSTD server and
run the tests without having to know JSTD commands. Let's see how JSTD can work
with Eclipse.

JsTestDriver

[168]

Eclipse integration
In order to work with JSTD on the Eclipse IDE, you need to:

1. Install the JSTD Eclipse plugin.

i. In order to install the JSTD plugin in Eclipse, go to Install new
Software in the Help menu.

ii. Then, add the following installation URL as an update site:

http://js-test-driver.googlecode.com/svn/update/

iii. Check the JsTestDriver Plugin for Eclipse checkbox and click
on Next. Finally, click on the Next button in the Install details
window, accept any agreements, apply the changes, and restart
Eclipse.

2. After installing the JSTD Eclipse plugin, you will need to create a
JsTestDriver run coniguration by selecting Run Conigurations from the
Run menu and then selecting the Js Test Driver Test item by right-clicking
on it, and clicking on New. You will see the JSTD run coniguration form as
shown in the following screenshot:

Chapter 5

[169]

3. In the JSTD run coniguration form, you will need to enter the name of the
run coniguration (weatherApplicationConfig), select the web project and
the JSTD coniguration ile, and click on the Apply and Close buttons. You
will then need to start the JSTD server and capture the browsers from the
server panel as shown in the following screenshot:

4. Using the play and stop buttons in the server panel, you can start and stop
the JSTD server. In order to capture one or more browsers, just copy the URL
in the server panel and paste in the address bar of the browsers, and they
will automatically be captured. Once the browsers are captured, they will be
highlighted in the server panel, as shown in the preceding screenshot.

5. Finally, in order to execute the JSTD tests, select Run Conigurations from
the Run menu, select the weatherApplicationConfig run coniguration,
and click on the Run button. You will see the output of the JSTD test results,
as shown in the following screenshot:

JsTestDriver

[170]

As shown in the preceding screenshot, the server panel displays the test result
information, which contains the test name, the test duration, and the browser on
which the test is performed.

You can apply these steps again in order to run the Jasmine and QUnit tests
(on the top of JSTD) from the Eclipse IDE; the main difference is that you will need to
specify the corresponding JSTD test coniguration ile in the JSTD run coniguration
form, that is, jsTestDriver-jasmine.conf for Jasmine and jsTestDriver-qunit.
conf for QUnit.

Summary
In this chapter, you learned what JsTestDriver (JSTD) is, the JSTD architecture,
the JSTD coniguration, and how to use JSTD for testing synchronous JavaScript
code. You learned how to test asynchronous (Ajax) JavaScript code using the
JSTD AsyncTestCase object. You learned the various assertions provided by
the framework and how to generate the test and code coverage reports using
the framework's code coverage plugin. You also learned how to use JSTD as a
test runner for other JavaScript unit testing frameworks, such as Jasmine and
QUnit, in order to enable the execution of the tests of these frameworks from
the command-line interface. You learned how to integrate the tests of the JSTD
(and the tests of the JavaScript frameworks on the top of JSTD) with build and
continuous integration tools, such as Ant and Hudson. You learned how to work
with the JSTD framework in one of the most popular IDEs, Eclipse.

Index

Symbols

<tests> element 97
<url> element 97
<yuitest> element 97

A

adapters 160
andCallFake method 50, 51
Ant 98
areEqual function 75
areNotEqual function 75
areNotSame function 75
areSame function 75
assert assertion 140
assertEquals assertion 140
assertFalse assertion 140
assertion 74
assertions, JSTD test

about 139
assert 140
assertAverage custom assertion 143
assertEquals 140
assertFalse 140
assertNotEquals 140
assertNotSame 140
assertSame 140
assertTrue 140
datatype assertions 141
fail([msg]) assertion 143
special value assertions 142

assertions, QUnit test
custom QUnit assertions, developing 111
deepEqual assertion 109
equal assertion 109

expect assertion 110
notDeepEqual assertion 109
notEqual assertion 109
ok assertion 108

assertions, YUI test
areEqual 75
areNotEqual 75
areNotSame 75
areSame 75
assert 74
datatype 75, 76
fail 77
special values 76

assertNotEquals assertion 140
assertNotSame assertion 140
assertSame assertion 140
assertTrue assertion 140
asynchronous (Ajax) JavaScript code,

Jasmine test
runs() function 45, 46
spyOn() function 49-51
testing 45
waitsFor() function 47-49
waits() function 46, 47

asynchronous (Ajax) JavaScript code, JSTD
about 143
AsyncTestCase 144
callbacks parameter 144
TestCase 144

asynchronous (Ajax) JavaScript code, QUnit
test

start API 114
stop() API 114
testing 114

asynchronous (Ajax) JavaScript code, YUI
test

[172]

resume() function 78
testing 78
wait() function 78

B
BasicRunner.html page 102
BDD 31

Behavior-driven development. See BDD
boundary testing 35

C

callbacks parameter 145
code coverage 156
coniguration ile 132
console object 67
Continuous integration (CI) 9
custom Jasmine matchers

developing 43, 44
custom QUnit assertions

developing 111, 112

D

datatype assertions 75, 141, 142
deepEqual assertion 109
describe keyword 36
displaySuccessMessage method 24, 28
displayWeatherInformation method 20, 23
DIV element 20
doAjaxOperation method 51

E

Eclipse 167
Eclipse integration, JSTD

about 168
working 168-170

equal assertion 109
error callbacks 144
expect assertion 110

F

Factorial Testcase 70
fail() method 77
fail([msg]) assertion 143

G

genhtml command 160
getFactorial method 34
getFactorial test case 71
getWeatherCondition method 20, 23

H

handleRegistrationError method 24, 28
handleWeatherInfoError method 20, 23
HTML code, weather forecasting

application
exploring 15

HTML ixtures
about 51
jasmine-jquery, coniguring 52, 53
loadFixtures module 53, 54

Hudson
about 98
URL 99

Hudson job 99

I

IntelliJ 167
invokeWeatherClient function 20
isInstanceOf assertion 76
isPrimeNumber custom assertion code 112
isTypeOf() method 76

J

Jasmine
about 31
coniguring 31, 32
download link 31
test, writing 32-38

JasmineAdapter.js ile
URL 162

jasmine-jquery plugin
coniguring 52, 53

Jasmine matchers
about 39
toBe 39, 40
toBeDeined 40
toBeFalsy 41

[173]

toBeGreaterThan 42
toBeLessThan 42
toBeNull 41
toBeTruthy 41
toBeUndeined 40
toContain 42
toMatch 43

Jasmine spec 33
Jasmine suite 32
JavaScript applications

complexities, in testing 11
testing 11, 12

JavaScript code, weather forecasting
application

exploring 15
JavaScript Object Notation (JSON) object

16
JavaScript source iles 132
Java servlets 13
JSTD

about 131
architecture 131, 132
coniguring 132-134
downloading 132
integrating, with build management tools

167
integrating, with IDEs 167
 integrating, with Jasmine 162, 163
integrating, with Jasmine 164
 integrating, with JavaScript test

frameworks 160
integrating, with JavaScript test frameworks

160
integrating, with QUnit 164-166

JSTD-build management tools integration
167

JSTD Eclipse plugin
installing 168

JSTD-IDEs integration
about 167
Eclipse integration 168-170

JSTD-Jasmine integration 162-164
JSTD-QUnit integration 164-166
JSTD test

about 134
assertions 139

creating 134-139

JsTestDriver. See JSTD
JUnit XML report iles 96

L

Linux code coverage (LCOV) format 155
loadFixtures module 53, 54
LoginClient JavaScript object 16
LoginClient object

about 16
testing 58

M

Maven 98

N
notDeepEqual assertion 109
notEqual assertion 109

O

ok assertion 108

Q

QUnit
about 101
coniguring 101

QUnit CSS ile
URL 101

QUnit JS ile
URL 101

QUnit module function 102
QUnit.push API 111, 114
QUnit test

assertions 108
writing 102-107

R

registerUser function 24, 26
RegistrationClient object

testing 61, 62
resume() function 78
runs() function 45, 46

[174]

S

Selenium
used, for automating YUI test 95

Selenium Java Client Driver
download link 95

Selenium Server Version 2.25.0
download link 95

server panel 169
signum method 34
SimpleMath JavaScript object 33
slave browser 132
Smalltalk 7
spyOn() function 49-51
stop() API 114
success callbacks 144

T

TAP
about 92
URL 92

TDD
about 10, 11
lowchart 10, 11

teardown method 103
testAddExistingUser test function 87
testAddNewUser test function 85

Test Anything Protocol. See TAP
testAverage test function 72

Test-Driven Development. See TDD
testEmptyPassword 82
testEmptyUserName tests 82
Test-First approach 10
testing Module 103
testPasswordFormat 83
tests.xml ile

<tests> element 97
<url> element 97
<yuitest> element 97

toBeDeined matcher 40
toBeFalsy matcher 41
toBeGreaterThan matcher 42
toBeLessThan matcher 42
toBe matcher 40
toBeNull matcher 41

toBePrimeNumber matcher 43
toBeSumOf matcher 43
toBeTruthy matcher 41
toBeUndeined matcher 40
toContain matcher 42
toEqual matcher 40
toHaveBeenCalledWith matcher 50
toMatch matcher 43
toThrow matcher 36
traditional unit testing 10

U

unit testing
about 7, 8
need for 8, 9

V

validateEmptyFields method 17
validateLoginForm function 16
validateLoginForm JavaScript function 16
validateLoginForm method 16
validatePassword method 18
validateRegistrationForm method 24
validateUserName method 18

W

wait() function 78
waitsFor() function 47-49
waits() function 46
weather application, Jasmine test

LoginClient object, testing 56-58
RegistrationClient object, testing 59-62
testing 55
tests, running 63
WeatherClient object, testing 63

weather application, JSTD test
LoginClient object, testing 147-149
proxy, coniguring 153
RegistrationClient object, testing 149-152
running 154, 155
testing 145, 146
test reports, generating 155-160
WeatherClient object, testing 153

[175]

weather application, QUnit test
LoginClient object, testing 119, 120
RegistrationClient object, testing 121-124
running 128
testing 116, 117
WeatherClient object, testing 126-128

weather application, YUI test
LoginClient object, testing 80-84
RegistrationClient object, testing 84-87
running 89
testing 79, 80
test reports, generating 89-95
WeatherClient object, testing 88

weather forecasting application
about 13-15
HTML code, exploring 15-28
JavaScript code, exploring 15-28
running 28
server-side part 13
use cases 13
user registration page 14, 15
YUI Test Selenium Driver, using 96

weatherForm object 20
weatherInformation div element 23
weatherInformationReady method 22
WeatherProxyServlet 20

X

xUnit 65

Y

Yahoo! User Interface. See YUI
YAML format

about 133
URL 133

YUI
about 65
test results, displaying 65
test runner page 65
writing 67-73

YUIReportViewer servlet 93
YUIReportViyuitest-selenium-driver.jar ile

96
YUI Test

about 65
assertions 74
asynchronous (Ajax) JavaScript code,

testing 78
automating, Selenium used 95

YUI Test Selenium Driver
about 95
build management tools, integrating with

98
coniguring 95, 96
download link 95
using, in weather application 96-98
working 96

YUI Test.Suite object 67

Thank you for buying

JavaScript Unit Testing

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

JavaScript Testing Beginner's
Guide
ISBN: 978-1-849510-00-4 Paperback: 272 pages

Test and debug JavaScript the easy way

1. Learn different techniques to test JavaScript, no
matter how long or short your code might be.

2. Discover the most important and free tools to
help make your debugging task less painful.

3. Discover how to test user interfaces that are
controlled by JavaScript.

4. Make use of free built-in browser features to
quickly ind out why your JavaScript code is
not working, and most importantly, how to
debug it.

Object-Oriented JavaScript
ISBN: 978-1-847194-14-5 Paperback: 356 pages

Create scalable, reusable high-quality JavaScript
applications, and libraries

1. Learn to think in JavaScript, the language of the
web browser

2. Object-oriented programming made accessible
and understandable to web developers

3. Do it yourself: experiment with examples that
can be used in your own scripts

Please check www.PacktPub.com for information on our titles

Learning Ext JS 4
ISBN: 978-1-849516-84-6 Paperback: 504 pages

Sencha Ext JS for a beginner

1. Learn the basics and create your irst classes

2. Handle data and understand the way it works,
create powerful widgets and new components

3. Dig into the new architecture deined by Sencha
and work on real world projects

Appcelerator Titanium: Patterns

and Best Practices
ISBN: 978-1-849693-48-6 Paperback: 120 pages

Take your Titanium development experience to the
next level, and build your Titanium knowledge on
CommonJS structuring, MVC model implementation,
memory management and much more

1. Full step-by-step approach to help structure
your apps in an MVC style that will make them
more maintainable, easier to code and more
stable

2. Learn best practices and optimizations both
related directly to JavaScript and Titanium
itself

3. Learn solutions to create cross-compatible
layouts that work across both Android and the
iPhone and utilize the new Appcelerator Cloud
Services to bring your apps to the market faster
than every before

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Unit Testing JavaScript Applications
	What unit testing is
	Why we need unit testing
	What Test-Driven Development (TDD) is
	Complexities in testing JavaScript applications
	Weather forecasting application
	Exploring the application's HTML and JavaScript code
	Running the weather application

	Summary

	Chapter 2: Jasmine
	Configuration
	Writing your first Jasmine test
	The nested describe blocks
	Jasmine matchers
	The toBe matcher
	The toBeDefined and toBeUndefined matchers
	The toBeNull matcher
	The toBeTruthy and toBeFalsy matchers
	The toContain matcher
	The toBeLessThan and toBeGreaterThan matchers
	The toMatch matcher
	Developing custom Jasmine matchers

	Testing asynchronous (Ajax) JavaScript code
	The runs() function
	The waits() function
	The waitsFor() function
	The spyOn() function

	HTML fixtures
	Configuring the jasmine-jquery
	The loadFixtures module

	Testing the weather application
	Testing the LoginClient object
	Testing the RegistrationClient object
	Testing the WeatherClient object
	Running the weather application tests

	Summary

	Chapter 3: YUI Test
	Writing your first YUI test
	Assertions
	The assert assertion
	The areEqual and areNotEqual assertions
	The areSame and areNotSame assertions
	The datatype assertions
	Special value assertions
	The fail assertion

	Testing asynchronous (Ajax) JavaScript code
	The wait and resume functions

	Testing the weather application
	Testing the LoginClient object
	Testing the RegistrationClient object
	Testing the WeatherClient object
	Running the weather application tests
	Generating test reports

	Automation and Integration with build management tools
	Configuring YUI Test Selenium Driver
	Using YUI Test Selenium Driver in the
weather application
	Integration with build management tools

	Summary

	Chapter 4: QUnit
	Configuration
	Writing your first QUnit test
	Assertions
	The ok assertion
	The equal and notEqual assertions
	The deepEqual and notDeepEqual assertions
	The expect assertion
	Developing custom QUnit assertions

	Testing asynchronous (Ajax) JavaScript code
	The stop and start APIs

	Testing the weather application
	Testing the LoginClient object
	Testing the RegistrationClient object
	Testing the WeatherClient object
	Running the weather application tests

	Summary

	Chapter 5: JsTestDriver
	Architecture
	Configuration
	Writing your first JSTD test
	Assertions
	The assert, assertTrue, and assertFalse([msg], expression) assertions
	The assertEquals and assertNotEquals([msg], expected, actual) assertions
	The assertSame and assertNotSame([msg], expected, actual) assertions
	The datatype assertions
	Special value assertions
	The fail([msg]) assertion

	Testing asynchronous (Ajax) JavaScript code
	AsyncTestCase, queue, and callbacks

	Testing the weather application
	Testing the LoginClient object
	Testing the RegistrationClient object
	Testing the WeatherClient object
	Configuring the proxy
	Running the weather application tests
	Generating test reports

	Integration with other JavaScript test frameworks
	Integrating JSTD with Jasmine
	Integrating JSTD with QUnit

	Integration with build management tools
	Integration with the IDEs
	Eclipse integration

	Summary

	Index

