
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Mobile JavaScript Application
Development

Adrian Kosmaczewski

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org


Mobile JavaScript Application Development
by Adrian Kosmaczewski

Copyright © 2012 Adrian Kosmaczewski. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Melanie Yarbrough

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-06-14 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449327859 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Mobile JavaScript Application Development, the cover image of a dacelo rufous-
collard kingfisher, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32785-9

[LSI]

1339700863

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449327859
http://www.allitebooks.org


Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

1. HTML5 for Mobile Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
A Bit of History 1
Declarations and Meta Tags 2

A Minimal HTML5 Document 2
Doctype 2
Charset 2
JavaScript and Stylesheets 3
New and Obsolete Elements 3

HTML5 Applications 3
Add Web Apps to Home Screen in iOS 4
Add Web Apps to Home Screen in Android 5
Metadata for HTML5 Applications 5

HTML5 Application Cache 8
Manifest Files in Apache 11
Manifest Files with PHP 11
Manifest Files in IIS 11
Manifest Files in .NET 12
Debugging Manifest Files 13

Testing for HTML5 Features 13
Geolocation 14
Device Orientation 15
Device Motion 15
Network Connectivity 17
Canvas 18
CSS3 Animations and Transitions 20

Transitions 20
Animations 22
Final Considerations 23

Client-Side Storage 24
SQL Storage 25

iii

www.allitebooks.com

http://www.allitebooks.org


Rich Media Tags 26
Conclusion 27

2. JavaScript Productivity Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
About JavaScript 29

Some Coding Tips 30
Object Literals 30
Single or Double Quotes? 31
JavaScript Base Types 32
Dynamic Overloading of Base Types 32
Functions 33
How to Organize Code in namespaces 34
Create Objects and Arrays the Easy Way 34
Create a Singleton Object 35
Scheduling Function Execution 36
Concatenating Strings 36
Iterating Over Arrays 37
Using toString() for Reflection 37
Easy Code Injection 38
Object-Oriented Programming in JavaScript 39

The self Trick 40
More Ways to Do the Same Thing 40
Another Common Way to Create Custom Types 41
Passing Options 42

Conclusion 43

3. jQuery Mobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Supported Platforms 45

Compatibility 46
Compatibility with Older Mobile Platforms 47

Key Features 47
At a Glance 48
To Do List Application 48

The HTML File 49
Pages 50
Lists 52
Buttons 54
Customizing the Look and Feel 55
Navigation 56
Page Lifecycle 56
Forms 57
Plug-ins 58
Storage 59

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Codiqa 61
ThemeRoller 62
Conclusion 63

4. Sencha Touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Introduction and History 65
Characteristics 65
Supported Platforms 66
Key Features 66

GUI Controls 66
CSS Transitions and Animations 68
Touch Event Management 68
Application Data Support 68

JavaScript Idioms 68
Descriptive Dictionary Pattern 69
Object Orientation in Sencha Touch 70

Creating a To Do List App 72
Create the HTML 72
Starting the Application Code 73
Transitions 75
Creating Instances 75
Stores, Proxies, Writers, and Readers 76
The Data Model 78
Creating the List 79
Creating a To Do Item Form 80
A Controller to Rule Them All 82
Reacting to Events 85
Navigation 85

Using Sencha Architect 2 86
Conclusion 88

5. PhoneGap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91
Introduction 91

Supported Platforms 92
Supported Features 92
Basic Usage 93

Installing PhoneGap 94
Creating an iOS Application 94
Creating an Android Application 98

With Eclipse 98
With IntelliJ IDEA 100

Creating a Windows Phone Application 102
Accessing Native Functionality 103

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org


Plug-ins 103
The JavaScript Bridge 104

PhoneGap Kitchen Sink 104
The deviceready Event 104
Multitasking Events 106
Network Connectivity Events 106
Battery Events 107
Accelerometer 108
Address Book 109
Audio Recording and Playback 112
Camera 114
Connection Status 115
Filesystem 116
Location and Compass 118
Notifications 120
Storage 121

Conclusion 122

6. Debugging and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Your Browser Web Inspector 125

Inspect the HTML of your app 126
Log Messages in the Console 127
Set Breakpoints in Your JavaScript Code 127

iWebInspector 127
Adobe Shadow 128
Testing 131

Jasmine 131
Siesta 134

Conclusion 139

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Preface

Introduction
The most important current trend in the software development world is, without a hint
of a doubt, the mobile frontier, and in particular, the rise of the smartphone and the
touch tablet.

When I started my career as a developer, back in 1996, I was writing web applications
running on Netscape Navigator 3 and Internet Explorer 31. The world was a very dif-
ferent place back then, particularly in this industry. I used HoTMetaL Pro and Notepad
to code my pages, as well as the editor bundled with Netscape Navigator.

Since then I have written applications for both the web and the desktop, using tech-
nologies such as Classic ASP, VBScript, ASP.NET, PHP, C+\+, Ruby on Rails, Django,
etc. For my editing needs, I have migrated to EditPlus, later TextMate, now Vim2.

But without any doubt, the most important moment in recent technological history
was the introduction of the iPhone in January 2007. The impressive growths of iOS,
Android, and other platforms has completely transformed the landscape of software
engineering, while at the same time opening new possibilities for companies. The rise
of the iPhone was followed by the explosion of the Android platform, and in all that
turmoil, BlackBerry and Windows Mobile have lost their leadership, even if they still
remain relevant in the current landscape.

This new panorama has a darker side, one already known in the desktop development
world: platform fragmentation.

Fragmentation
The latest statistics at the time of this writing indicate that Android is leading the
smartphone race with more than 51% of all sales in the last quarter of 2011, with iOS
holding around 43% during the same period. BlackBerry, once the biggest name in the

1. I’m not really fond of those times, mind you.

2. Some of you might think that I have travelled back in time. Well, in a sense, you are right!

vii

www.allitebooks.com

http://www.allitebooks.org


smartphone world, accounted for less than 6%, while Windows Phone, Bada, and
Symbian, together with other more or less known platforms, shared the remaining
percentage points3.

These numbers clearly show that the smartphone market is very different from the PC
market; there is not really a winner (at least not at the time of this writing), and com-
panies wanting to take advantage of this new communication channel have to make
substantial investments in order to be present in as many pockets as possible. Many
applications have to be written in at least two or three platforms (usually iOS, Android,
and BlackBerry) to reach a sizeable chunk of the market.

In any case, the smartphone is poised to take over the cellphone market in years to
come; at the end of 2010, 10% of the mobile phone market was dominated by smart-
phones, with a yearly growth of more than 100%. The most pessimistic statistics indi-
cate that by 2013 more than 50% of the mobile phone market will be dominated by
smartphones, most of them featuring a touchscreen. This figure has been reached in
the USA, where more than 50% of all mobile phones can be considered “smartphones”
since February 20124.

A lot has changed since 2007, indeed. But, just like in the case of its desktop counterpart,
the Web appears like the most important cross-platform solution available to software
engineers today.

Growth of the Mobile Web
One of the breakthroughs of this new breed of mobile devices is the availability of fully
fledged mobile web browsers , supporting most of the current standards like HTML5,
CSS, JavaScript, and many other standard technologies. Many of us remember watch-
ing Steve Jobs demonstrating the capabilities of the Mobile Safari browser in the first
iPhone, recognizing that a new era had started precisely that day. Mobile browsers
should not only be as capable as their desktop counterparts, they had features beyond
the imaginable, they were fast, and they were fully standards-compliant.

The growth in power of the mobile web has brought new possibilities; particularly in
countries with low penetration of technology, like Latin America or Africa, smart-
phones appear like a cheaper way5 to access online information and services. For ex-
ample, in 2010, more than 30% of all web access from Africa was made through a
smartphone6; in Latin America, this number fluctuates between 10% and 15%. All of
these countries have seen a huge increase in the proportion of web content consumed

3. Source: TechCrunch.

4. Source: Nielsen Wire

5. At least, cheaper than buying a laptop!

6. Source: “The Great Rise of the Mobile Web” at The Next Web.

viii | Preface

www.allitebooks.com

http://techcrunch.com/2012/01/09/ios-marketshare-up-from-26-in-q3-to-43-in-octnov-2011/
http://blog.nielsen.com/nielsenwire/online_mobile/smartphones-account-for-half-of-all-mobile-phones-dominate-new-phone-purchases-in-the-us/
http://thenextweb.com/mobile/2011/01/06/the-great-rise-of-the-mobile-web/:
http://www.allitebooks.org


through smartphones in the latest years, following the progression in power and ca-
pabilities of these new devices.

Worldwide, the average web usage proportion on mobile devices was around 8% at
the time of this writing7, a huge increase from the 1.5% in 2009. It is estimated that, in
2015, more than 50% of all web requests will come from mobile devices!

New Paradigms
All of this represents a huge shift in our software development habits, a radical change
from the usual wisdom that states that the mobile web is just an afterthought; today,
we have to see the mobile site as the primary channel of our web presence, because the
usage of the web from the desktop is going to be eventually lower than that of the mobile
web.

But this new perspective raises a few questions, too:

• How many platforms do I have to test my sites in?

• Do I have to care about low-end mobile phones?

• Which libraries can I use to speed up my developments?

• What is the level of standard support in the major mobile browsers?

This book will provide some answers to these questions. In particular, it will take an
opinionated, hands-on approach to help you quickly solve problems and find answers
as fast as possible.

To do that, we are going to concentrate our efforts in the following technologies, which
are currently the most promising and which show the most interesting roadmap:

• PhoneGap

• Sencha Touch

• jQuery Mobile

Even if this book is centered around these technologies, this does not mean that there
are not other, very promising and interesting technologies available for you to try; here
are some names and links that might interest you: SproutCore, iWebKit, We-
bApp.net, jQTouch, Jo, iUI, and zepto.js. We are not, however, going to talk about
them in this book.

At the end of this book, Bibliography contains a long list of references,
including books and websites, that you can use as reference for your
future developments.

7. Source: StatCounter Global Stats

Preface | ix

http://www.sproutcore.com/
http://snippetspace.com/
http://webapp-net.com/
http://webapp-net.com/
http://jqtouch.com/
http://joapp.com/
http://code.google.com/p/iui/
http://zeptojs.com/
http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-201111-201204-bar


We are also going to pay attention to many other aspects of application development,
including testing and debugging, providing a quick overview of the most relevant tech-
niques and tools available for mobile web developers today.

Who Should Read This Book
This book is tailored for web developers familiar with the following technologies:

• HTML

• CSS

• JavaScript

It does not matter if you have mobile software engineering experience, but of course if
you do, well, it will be a huge help! Mobile applications are a world of their own, and
they present challenges that common desktop applications don’t deal with, such as:

• Small screen sizes

• Reduced battery life

• Little memory and disk specifications

• Rapidly changing networking conditions

This book deals only with client-side considerations (apart from some exceptions re-
garding HTML5 application manifests) so developers should be able to apply the tech-
niques and frameworks shown in this book with any server-side technology.

Book Structure
When going through the pages of this book, you are going to see that the core moti-
vation behind these pages is to help you understand by doing. We are going to leave the
theory to others, and we are going to concentrate our efforts into writing code and
trying to become better at creating web applications.

This Book Is About “Web Apps”

Please pay attention to the fact that this book focuses on the creation of
web applications for touch screen smartphones, not simple websites; al-
though web applications use the same tools and languages as normal
websites, there are important differences in terms of usability, moneti-
zation, marketing, and distribution that must be taken into account.
Web applications also have important consequences in the enterprise
world, which we are going to discuss as well in this book.

The first chapter, Chapter 1 begins by providing an introduction to HTML5 from the
perspective of the mobile application developer. The chapter goes through the major

x | Preface



features introduced by the latest version of the HTML standard, including the appli-
cation cache, the new tags, and the new APIs exposed by modern mobile browsers.

Then, Chapter 2 provides an overview of advanced concepts such as object orientation,
closures and the importance of coding conventions. The idea is to highlight common
“gotchas” that dazzle developers coming from other languages such as Java or C#.

Then we are going to dive into the real subject, and we are going to use Sencha Touch
and jQuery Mobile to write the same kind of application (namely, a “to do list” kind
of app) using both. This will help you understand how different these two technologies
are, and how you have to adapt your mindset to each in order to achieve your goals.

Chapter 3 will introduce you to one of the hottest mobile application frameworks of
the moment; this chapter will provide an introduction to the core concepts, the avail-
able widgets, and will guide the reader in the development of a creation of a “to do list”
kind of application.

Chapter 4 will take you to the core concepts behind one of the most powerful JavaScript
frameworks available today. We are going to review the architecture, widgets and idi-
oms required to build Sencha Touch applications.

Finally, we are going to wrap these applications in the Chapter 5 chapter, to be deployed
as a native iOS, Android or Windows Phone application; we are going to learn how to
do that, and which other capabilities PhoneGap brings to the table as well.

The book ends with a chapter called Chapter 6, providing tips and tricks to enable
developers to increase the quality of their applications, using the latest and best tools
available.

What You Need
The code samples in this book were created using OS X 10.7 “Lion”, and were tested
on iOS and Android devices running the latest software versions available at the time
of this writing (iOS 5, Android 4).

As for software, the sample applications were written on Mac OS X “Lion” using Vim,
MacVim with the Janus extensions and some other modifications by the author of this
book, and were then converted into native applications using PhoneGap. They were
deployed using the following IDEs:

• Xcode 4.3

• IntelliJ IDEA Community Edition

• Eclipse

• Visual Studio Express for Windows Phone

Preface | xi

http://www.vim.org
http://code.google.com/p/macvim/
https://github.com/carlhuda/janus
http://github.com/akosmasoftware/dotfiles
http://github.com/akosmasoftware/dotfiles


We will be using both Eclipse and IDEA to show how to create native Android apps
with web technologies, and Visual Studio Express will help us create them for Windows
Phone 7.

It is also recommended to use a local development web server; for example the one
bundled with your operating system, or for greater flexibility on OS X, we recommend
using MAMP.

The usual web developer workflow consists of an endless series of edit-save-refresh
sequences; to simplify our work, I recommend using a tool like LiveReload (available
in the Mac App Store) which provides a simple mechanism, and reloads automatically
any browser connected to a particular web app.

Finally, a fundamental element are simulators and emulators. The Android emulator
(shown in Figure P-2) is bundled with the standard Android SDK, available from Goo-
gle. As for the iOS Simulator (shown in Figure P-1), it is available with the free iOS
SDK and the developer tools available from Apple (which are also available when
downloading Xcode for free from the Mac App Store).

To access the local web server from these emulators and simulators, use the following
URLs:

• From the iOS Simulator (shown in Figure P-1), you can use “http://localhost” (and
the corresponding port, for example “8888” for MAMP)

• From the Android Emulator (shown in Figure P-2), use the IP “10.0.2.2”

xii | Preface

http://www.mamp.info/en/index.html
http://livereload.com/
http://developer.android.com/sdk/index.html
http://developer.apple.com/ios
http://developer.apple.com/ios


Figure P-1. iOS Simulator

Code of the Book
You can download all the code samples of this book from Github. The project contains
an installation script named install.sh that will download all the required libraries for
the samples to run; it will also get a copy of the PhoneGap Kitchen Sink Project by Jens-
Christian Fischer, which is described in detail in Chapter 5.

The code of the book is distributed using a liberal BSD license, and will be updated in
the future to reflect the changes and updates to the libraries used.

Preface | xiii

https://github.com/akosma/Mobile-JavaScript-Application-Development
https://github.com/jcfischer/pgkitchensink


Acknowledgements
This book would not have been possible without the help of countless software devel-
opers, who spend days and nights in front of their computers to create the amazing
pieces of software that make up our world. In particular, Github and Stack Overflow
are probably the most important sources of information for software developers ever
created. My thanks to the amazing teams behind those systems. You rock.

Thanks to Mats Bryntse from bryntum.com, who provided a pre-release copy of his
Siesta testing framework, including Sencha Touch 2 support.

I am also in debt to the many people who have read and commented on the early drafts
of this book: first to my editor, Simon St. Laurent, who has provided guidance and
feedback during the whole process. To Maximiliano Firtman, who has been instru-
mental in providing me with the contact with O’Reilly, and who has clearly brought
order to the world of the mobile web. To Jens-Christian Fischer, with whom I have had
the tremendous privilege of setting up an unprecedented series of successful mobile
web trainings in Zürich. To Bertrand Dufresne, organizer of the JavaScript Genève
developer group, and whose @jsgeneve Twitter account has been an endless stream of
inspiration. To Anice Hassim and Kishyr Ramdial from immedia, South Africa, met a
cold morning of April 2010 while waiting to buy our first iPads in NYC, and with whom
we have organized countless training sessions around the mobile web in South Africa.

Figure P-2. Android Emulator

xiv | Preface

http://github.com
http://stackoverflow.com
http://www.bryntum.com/
http://twitter.com/jsgeneve


And finally to Gabriel Garcia Marengo, who has read the manuscript and provided
great feedback.

But most important, I want to thank my wife, Claudia, for without her there is no
possible happiness.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Mobile JavaScript Application Develop-

Preface | xv



ment by Adrian Kosmaczewski (O’Reilly). Copyright 2012 Adrian Kosmaczewski,
978-1-449-32785-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/mobile_JS_appdev

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

xvi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/mobile_JS_appdev
mailto:bookquestions@oreilly.com
http://www.oreilly.com


Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xvii

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


www.allitebooks.com

http://www.allitebooks.org


CHAPTER 1

HTML5 for Mobile Applications

This chapter will introduce some basic concepts about HTML5, and will explain the
impact of the new features of the standard in mobile applications. We are going to see
how different aspects of HTML5 are brought together, how they impact our markup
code, and how they can be used in a mobile environment.

A Bit of History
HTML5 was born as a reaction to the direction that the W3C was giving to the HTML
5 standards (note the difference in the names, one with a space, the other without).
The HTML5 standard, proposed by the WHATWG group, primarily proposed by Op-
era, Mozilla, and Apple, was designed with the core principle of simplification of the
whole HTML specification.

Another important element of the HTML5 specification is the strong focus in applica-
tions . Apple and others providers have foreseen, five years ago, the implications and
opportunities provided by a standardized, distributed, simplified application develop-
ment framework, available in every mobile device on the planet, and they have pushed
forward to offer advanced app development possibilities to developers using these
technologies.

Finally, another important thing to know is that HTML5 is built upon HTML 4.01,
which guarantees backwards compatibility, but adds lots of additional information to
the specification, such as:

• Error handling

• Required JavaScript APIs

• Implementation details

• Rendering of HTML5 engines

At the time of this writing, the HTML5 specification has the “Working Draft” status
at the W3C.

1



Declarations and Meta Tags
For those developers used to the quirks and verbosity of HTML, HTML5 is a welcome
simplification. Let’s see one by one the most important differences for markup devel-
opers.

A Minimal HTML5 Document
In its most minimally useful form, an empty HTML5 document looks like this:

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <title>title</title>
    <link rel="stylesheet" href="style.css">
    <script src="script.js"></script>
  </head>
  <body>
    <!-- page content -->
  </body>
</html>

Let’s see in detail the major changes brought by HTML5.

Doctype
This is the most visible change. HTML5 documents must start with this, über-simple
DOCTYPE declaration:

<!DOCTYPE html>

It could not be any simpler.

Charset
Another welcome simplification is the new charset meta tag; this is what it used to look
like:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

And this is the new version:

<meta charset="utf-8">

This should be proof enough that simplicity was a major requirement in the develop-
ment of HTML5!

2 | Chapter 1: HTML5 for Mobile Applications



JavaScript and Stylesheets
Finally, <link> and <script> tags are stripped of their “type” parameter, which is not
required anymore: ,

<link rel="stylesheet" href="style.css">
<script src="app.js">

The new HTML5 spec clearly expects style sheets to be CSS files, and scripts to be
JavaScript; no more ambiguity here. Oh, and by the way, you do not need to add a
closing / to your standalone tags anymore; if you want, you can, but pay attention to
the fact that HTML5 is not based in XHTML, but in HTML 4.01.

New and Obsolete Elements
Many underused (or downright harmful) tags have been rendered obsolete by HTML5:
<frame>, <frameset>, <noframes>, <acronym>, <font>, <big>, <center>, <strike>. This
also includes attributes such as bgcolor, cellspacing, and valign. Just use CSS for them!

The specification also brings new elements to the HTML family: have you heard about
<canvas>, <audio>, <video>, <mark>, <time>, <meter>, <progress>, <section>, <header>,
or <article>? Well, be prepared, as HTML5 will brings definition to the word web
semantics.

HTML5 Applications
According to the biography by Walter Isaacson, when the first iPhone was released to
the public in 2007, Steve Jobs was not fond of the idea of allowing third-party devel-
opers write apps for it. He was aiming for a closed platform, where only Apple would
deploy its own services, and where external applications would be created using web
technologies. As a matter of fact, in the 2007 edition of the WWDC1 Apple did not
introduce a native, official SDK for the iPhone, but rather proposed the idea of building
applications using web technologies2.

As explained at the beginning of this chapter, Apple was one of the “founding fathers”
of the original HTML5 specification, together with Opera and the Mozilla Foundation.
Many parts of this standard specifically target the use of web technologies as a means
to build fully fledged applications, capable of many feats reserved so far to desktop
applications:

• Offline storage

• Network connectivity

• Multimedia

1. Apple’s yearly Worldwide Developers Conference, held in San Francisco.

2. The native SDK would be announced later in October that year, to be finally released in March 2008.

HTML5 Applications | 3



• Sockets and threads

• Drawing and animation

• Advanced form controls

In addition, iPhone pioneered the concept of “adding a web app to the home screen”
of the device, allowing users to create bookmarks to their preferred web applications,
just like any other app installed in the device.

We are going to see, one by one, the many new features proposed by HTML5 in terms
of application development, including sample HTML and JavaScript code for each one
of them.

Add Web Apps to Home Screen in iOS
Both iOS and Android allow users to install special bookmarks to web apps on their
home screens; this allows users to keep bookmarks to specific web applications, and
to access them with a single touch.

In the case of iOS, as shown in Figure 1-1, users can install web applications directly
from Safari, by tapping on the action button (in the middle of the toolbar at the bottom
of the screen) and then selecting the button labeled “Add to Home Screen,” as shown
in Figure 1-1.

Figure 1-1. Adding to home screen

4 | Chapter 1: HTML5 for Mobile Applications



Of course, it can be challenging to show this to the user, so thankfully you can use the
excellent Add to Home Screen script by Matteo Spinelli, which shows a very simple
pop-up window, directly on the screen of Safari (on the iPhone, the iPod touch, or the
iPad) with the required instructions to perform the operation. This pop up can be
configured to appear one or many times, it can be customized to include icons or text,
and is also available in many languages! An excellent tool to consider. You can see a
screenshot of it in Figure 1-2.

Add Web Apps to Home Screen in Android
In Android devices, adding a web application to the home screen is a bit more difficult,
but not impossible:

a. In the browser, add a bookmark for the current page:

1. Tap the menu button.

2. Select “Bookmarks.”

3. Select the location marked with a star and the “Add” text.

4. Tap OK.

b. Tap the “Home” button.

c. On the home screen:

1. Tap the menu button.

2. Select “Add.”

3. Select “Shortcut.”

4. Select “Bookmark.”

5. Select the bookmark to your app.

You will have now an icon on your home screen that will take you directly to the web
application.

Metadata for HTML5 Applications
You can use the following HTML <meta> and <link> tags in your main HTML file, to
specify several features of your application, used by iOS and some of them also by
Android, when your application is added to the home screen of your device.

You can check the complete reference of HTML5 application-related
meta tags in the Supported Meta Tags page of the Apple Safari Developer
Library site.

HTML5 Applications | 5

http://cubiq.org/add-to-home-screen
http://developer.apple.com/library/safari/#documentation/appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html


The first is the apple-mobile-web-app-capable tag; this will allow the application, once
it is installed on the home screen of your device, to run on full screen mode, usually
called the standalone mode. From your own JavaScript code, you can then check

Figure 1-2. The Add to Home script by Matteo Spinelli

6 | Chapter 1: HTML5 for Mobile Applications



whether the application is running in standalone mode by checking the window.naviga
tor.standalone property:

<meta name="apple-mobile-web-app-capable" content="yes" />

Trailing slash or not?

As you can see in the examples in this chapter, HTML5 does not impose
trailing slashes at the end of tags, as XHTML would require. Remember
that HTML5 is backwards-compatible with HTML 4, and that trailing
slashes (or closing tags) are optional (but of course recommended).

The following tag, viewport, allows developers to disable the typical pinching and
zooming available to users of Mobile Safari:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no">

The apple-touch-icon element specifies the icon to be displayed on the home screen of
the device when the HTML5 application is used in standalone mode:

<link rel="apple-touch-icon" href="icon.png"/>

You can also specify several different sizes and resolutions, to be used on different
devices:

<link rel="apple-touch-icon" sizes="72x72" href="touch-icon-ipad.png" />
<link rel="apple-touch-icon" sizes="114x114" href="touch-icon-iphone4.png" />

The files referenced in the apple-touch-icon tag must have the sizes ex-
plained in the Technical Q&A QA1686 by Apple, which specifies all the
possible icon sizes for iOS application, including those required in de-
vices with Retina displays, such as the iPhone 4, the iPhone 4S, or the
new iPad released in 2012. If no size is specified, then the file must be
57 pixels in width and height.

For the complete reference of file names for web app icons, check the
Configuring web applications section in the iOS Developer Library from
Apple.

By default, the icon specified for the standalone application will feature a glare effect,
applied automatically by iOS; if you do not want to have that effect, because your
designer has already applied some visual pizazz to your icon, you can do two different
things:

1. You can name your file apple-touch-icon-precomposed.png.

2. You can use the rel="apple-touch-icon-precomposed" attribute in your link tag, as
shown in the following code snippet:

<link rel="apple-touch-icon-precomposed" href="icon.png"/>

HTML5 Applications | 7

http://developer.apple.com/library/ios/#qa/qa1686/_index.html
http://developer.apple.com/library/ios/#DOCUMENTATION/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html


Another useful tag allows developers to change the look and feel of the status bar,
shown on top of every iPhone application; this status bar can be changed only when
your HTML file already contains the apple-mobile-web-app-capable tag, and when it
is running on standalone mode:

<meta name="apple-mobile-web-app-status-bar-style" content="black">

The final element, apple-touch-startup-image specifies a file that is shown by iOS when
the web application is starting. This is a visual trick that creates the illusion of the
application starting up faster than it really does.

The file referenced by the apple-touch-startup-image tag must have ex-
actly 320 x 460 pixels. If the file has a different size, it will not be shown
by the system.

<link rel="apple-touch-startup-image" href="Default.png" />

HTML5 Application Cache
In their most simple nature, mobile web applications require a network connection to
offer their services. The world, however, is far from an ideal place, and we all know
that network connections are shaky at best. Tunnels, big buildings, airplanes, elevators,
trains, and the countryside are all typical environments where our smartphones are cut
off from the network. We need, however, to be able to use our applications in those
situations as well, and this is why working offline is one of the most important re-
quirements for mobile apps.

The ability of a web application to work offline is a big feature of HTML5. HTML5
uses the newly introduced cache manifest feature3 to list the resources to fetch while
connected to server and maintain while to be used while offline.

HTML5 cache manifests are simple text files, specifying the list of files that have to be
kept in the browser after they have been requested. They can also contain references
to files or URLs that cannot be kept offline (for technical or legal reasons), and the
mobile browser uses this information to speed up the rendering of the application.

Let’s take a look at a simple cache manifest, taken from an application written by the
author of this book:

CACHE MANIFEST
# version 7

CACHE:
index.html
icon.png

3. The official documentation of the HTML5 application cache is available at the W3C site.

8 | Chapter 1: HTML5 for Mobile Applications

http://www.w3.org/TR/html5/offline.html


app.js
style.css
/_libs/sencha/sencha-touch.js
/_libs/sencha/resources/css/sencha-touch.css

NETWORK:
http://maps.gstatic.com/
http://maps.google.com/
http://maps.googleapis.com/
http://mt0.googleapis.com/
http://mt1.googleapis.com/
http://mt2.googleapis.com/
http://mt3.googleapis.com/
http://khm0.googleapis.com/
http://khm1.googleapis.com/
http://cbk0.googleapis.com/
http://cbk1.googleapis.com/
http://www.google-analytics.com/
http://gg.google.com/
http://google-maps-utility-library-v3.googlecode.com/

FALLBACK:
offline.html

The application cache is simply a text file (encoded in UTF-8) that consists of major
sections:

A CACHE section
This part specifies the relative and/or absolute URLs of the resources that the device
should keep offline.

A NETWORK section
This part of the application cache lists the URLs of the resources that cannot (or
must not) be kept offline. For example, in this case (a real cache manifest from an
application written by the author) we are specifying all the URLs of the Google
Maps API, which, according to Google’s Terms of Service, cannot be cached offline.

A FALLBACK section
This section provides a URL that will be served whenever a resource specified in
the NETWORK section is required when the application is offline.

Once your application cache manifest file is defined, you can use it in your HTML files
as follows:

<!DOCTYPE html>
<html lang="en" manifest="app.manifest">  <!--  -->
  <head>
    <meta charset="utf-8">
    <title>title</title>
    <link rel="stylesheet" href="style.css">
    <script src="script.js"></script>
  </head>
  <body>
    <!-- page content -->

HTML5 Application Cache | 9

https://developers.google.com/maps/
https://developers.google.com/maps/


  </body>
</html>

Here we are specifying the application cache manifest file that belongs to this HTML
file.

According to Maximiliano Firtman’s Mobile HTML5 site, shown in Figure 1-3, the
HTML5 application cache is supported by most major mobile platforms today.

Figure 1-3. Mobile HTML5 site by Maximiliano Firtman

Cache manifests are very flexible, but they have one important restrictions; to be rec-
ognized as such, they must be served with the text/cache-manifest MIME type. In the
following sections, you’ll learn how to configure some popular web server platforms
and technologies, in order to serve HTML5 Application Cache manifests properly.

The HTML5 Application Cache is a very interesting technology, but it
also has several quirks and gotchas that are not always easy to spot or
to debug. Please read the article “Application Cache is a Douchebag” in
A List Apart, which provides excellent details about all the potential
problems, and how to solve them.

10 | Chapter 1: HTML5 for Mobile Applications

www.allitebooks.com

http://mobilehtml5.org/
http://www.alistapart.com/articles/application-cache-is-a-douchebag/
http://www.allitebooks.org


Manifest Files in Apache
For example, in Apache, you can use the following line in your local .htaccess file to
force all files ending with the .manifest extension to be served with this MIME type:

AddType text/cache-manifest .manifest

Manifest Files with PHP
A very simple technique to return HTML5 application cache manifests is to create a
short PHP file (in this case, named manifest.php) with the following contents:

<?php
header("Content-Type: text/cache-manifest");
?>
CACHE MANIFEST
# version 7

CACHE:
index.html
icon.png
app.js
...

As you can see, using the header function we can set the proper MIME type. To use
this manifest, just place this attribute in your HTML file:

<html manifest=”manifest.php”>

However, be aware that some older versions of iOS actually expect the HTML5 man-
ifest to have the .manifest extension to work, even if the file is returned with the proper
MIME type. As usual, testing is required!

Manifest Files in IIS
To deliver HTML5 manifest files from servers running Windows 7, Windows Server
2008, Windows Server 2008 R2, or Windows Vista with IIS, you can define new MIME
types in your server following these steps:

1. Open the IIS manager.

2. In the “Features” view, select “MIME types.”

3. In the “Actions” panel, select “Add.”

4. The “Add MIME Type” dialog box appears; type the .manifest file extension; in
the corresponding text field.

5. Enter the following MIME type in the other text box: “text/cache-manifest.”

6. Click OK.

7. Restart IIS and you are done.

HTML5 Application Cache | 11



For more information, including command-line actions for doing this, check out the
Microsoft Technet site.

Manifest Files in .NET
If you do not want (or cannot) modify the configuration of your web server, you can
define custom MIME types directly in .config files. For that, you can create a Web.con
fig file with the following contents4:

<?xml version="1.0"?>
<configuration>
    <system.webServer>
        <staticContent>
            <remove fileExtension=".manifest"/>
            <mimeMap fileExtension=".manifest" mimeType="text/cache-manifest"/>
        </staticContent>
    </system.webServer>
</configuration>

Another option, explained by Stephen Walther in his blog, consists in a custom handler
(named Manifest.ashx in this example) that sets the proper MIME type and outputs
the contents of a text file:

using System.Web;

namespace JavaScriptReference {
    public class Manifest : IHttpHandler {
        public void ProcessRequest(HttpContext context) {
            context.Response.ContentType = "text/cache-manifest";
            context.Response.WriteFile(context.Server.MapPath("Manifest.txt"));
        }

        public bool IsReusable {
            get {
                return false;
            }
        }
    }
}

Then, from your HTML5 file, you need to reference the URL of the handler configured
in your ASP.NET application:

<html manifest=”Manifest.ashx”>

This option is a bit more complex, but it might prove useful as a way to automatically
create manifest files, reading the contents of folders and such.

4. This is explained by James Skemp in his blog post.

12 | Chapter 1: HTML5 for Mobile Applications

http://technet.microsoft.com/en-us/library/cc725608(v=ws.10).aspx
http://stephenwalther.com/blog/archive/2011/01/26/creating-html5-offline-web-applications-with-asp-net.aspx
http://strivinglife.com/words/post/Supporting-HTML5-manifest-files-on-IIS-7-using-Webconfig.aspx


Debugging Manifest Files
As cool as HTML5 application manifests are, they are quite tricky to troubleshoot and
debug; there are, however, a couple of tricks that are useful and that every mobile web
developer should keep in mind while working with them:

• Some versions of iOS 4 not only expect your manifest files to have the text/cache-
manifest MIME type, they also expect the file to have the .manifest extension; if
your application is not caching data properly in older versions of iOS, remember
to rename your manifest file accordingly.

• To force a refresh of the local cache, you have to update the manifest file; however,
this happens only when the actual contents of the file have changed (that is, you
cannot just touch the file to trigger the change). The easiest way is then to add a
version line (seen in the example at the beginning of this section) which can be
augmented whenever required, even if the actual contents of the file are not
changed.

• In iOS 5, it is very easy to remove all files from the offline application cache; just
open the Settings application on your device, select the Safari settings, scroll to the
bottom, and select the “Advanced” entry; in that section you will see a “Website
Data” entry, where you can see the amount of data stored by each website you
visited on your device. Clicking the “Edit” button helps you remove individual
entries; you can also remove all website data just by using the “Clear Cookies and
Data” button in the main Safari settings.

Testing for HTML5 Features
Given the tremendous array of HTML5 technologies in place, a valid question would
be, “How can I be sure that feature xyz is available in this particular combination of
operating system and browser?” To answer this question, you could take the long road
and check a site such as Mobile HTML5 by Maximiliano Firtman, and start writing
lots of spaghetti-like if & else statements all over the place.

Please, do not do this5. The recommended technique for any kind of HTML5 applica-
tion these days is feature detection. In this approach, you do not care about the specifics
of a particular operating system or browser version; just ask the browser (whichever it
is) for a particular feature, and you are done.

Even better, there is a library that does this for you: Modernizr provides a cross-platform
library that exposes a simple, useful Modernizr global variable, where you can ask for
a number of features in your JavaScript code:

if (Modernizr.geolocation) {
    // this browser supports geolocation

5. I mean, of course check Maximiliano’s site, but do not write spaghetti code!

Testing for HTML5 Features | 13

http://mobilehtml5.org/
http://www.modernizr.com/


}

if (Modernizr.touch) {
       // this is a touchscreen-enabled browser
}
else {
       // no touchscreen, so you should use the common mouse interactions
}

The number of properties exposed by the Modernizr object is outstanding: fontface,
opacity, cssanimations, applicationcache, localstorage, webgl… and the list goes on.
Check the Modernizr documentation for more information about all the possibilities
offered by this library.

Even better, when you use Modernizr in older browsers without HTML5 features (think
IE6), it will load what it calls “polyfills,” that is, small bits of JavaScript which will
provide the same interface as their HTML5 counterparts! This way you can create just
one application, using as many HTML5 features as required, and your code will work
gracefully in older or newer versions of your favorite browser.

Modernizr supports IE6+, Firefox 3.5+, Opera 9.6+, Safari 2+, Google Chrome mobile,
Mobile Safari on iOS, Android’s browser, Opera Mobile, Firefox Mobile, and (still
under development at the time of this writing) Blackberry 6+. You can create a pro-
duction-ready Modernizr script, only with the features that you need, from the Mod-
ernizr download page.

We are going to use Modernizr in the following sections of this chapter, to test for the
existence of the features we are going to talk about.

Geolocation
One of the new possibilities offered by HTML5 is being able to access the geolocation
data from within a web application. There is a very simple JavaScript API that allows
you to do this:

function success(position) {
    // Did we get the position correctly?
    console.log(position.coords.latitude);
}

function error(error) {
    switch(error.code) {
        case error.TIMEOUT:
            console.log('Timeout');
            break;

        case error.POSITION_UNAVAILABLE:
            console.log('Position unavailable');
            break;

        case error.PERMISSION_DENIED:

14 | Chapter 1: HTML5 for Mobile Applications

http://www.modernizr.com/docs/
http://www.modernizr.com/download/
http://www.modernizr.com/download/


            console.log('Permission denied');
            break;

        case error.UNKNOWN_ERROR:
            console.log('Unknown error');
            break;
    }
}

if (Modernizr.geolocation) {
    navigator.geolocation.getCurrentPosition(success, error);
}

For privacy reasons, the browser will ask the user permission to use this information.
Coupled with the Google Maps API, you can create compelling geolocation-enabled
application directly from your browser.

Device Orientation
Another cool element of the HTML5 umbrella is the device orientation API. This API
allows you to detect the position of the orientation of the device in space, and to redraw
your user interface accordingly:

function handleOrientation(eventData) {
    // alpha is the compass direction the device is facing in degrees
    var alpha = eventData.alpha;

    // gamma is the left-to-right tilt in degrees, where right is positive
    var gamma = eventData.gamma;

    // beta is the front-to-back tilt in degrees, where front is positive
    var beta = eventData.beta;

    var data = [alpha, beta, gamma];

    console.log('Orientation changed: ' + data.join(', '));
}

if (Modernizr.deviceorientation) {
    window.addEventListener('deviceorientation', handleOrientation, false);
}

The device orientation event returns only the rotation data, which includes how much
the device is leaning side-to-side (beta), front-to-back (gamma), and if the phone or
laptop has a compass, the direction the device is facing (alpha).

Device Motion
Similar to the orientation API, the device motion API of HTML5 returns information
about the acceleration of the current device. Acceleration data is returned as a coordi-
nate frame with three axes, x, y, and z. The x-axis runs side-to-side across the mobile

Device Motion | 15



phone screen and is positive towards the right side. The y-axis runs front-to-back across
the mobile phone screen and is positive towards as it moves away from you. The z-axis
comes straight up out of the mobile phone screen and is positive as it moves up.

The device motion event is a superset of the device orientation event. It returns data
about the rotation information and also acceleration information about the device. The
acceleration data is returned in three axes: x, y, and z. They are measured in meters per
second squared (m/s^2). Because some devices might not have the hardware to exclude
the effect of gravity, the event returns two properties, accelerationIncludingGravity
and acceleration, which excludes the effects of gravity (when this is the case, the ac-
celeration data will be null):

function handleDeviceMotion(eventData) {
    // Grab the acceleration including gravity from the results
    var acc = eventData.accelerationIncludingGravity;
    var accData = [
        Math.round(acc.x),
        Math.round(acc.y),
        Math.round(acc.z)
    ];

    // Display the raw acceleration data
    var rawAcc = "[" + accData.join(", ") + "]";

    // Z is the acceleration in the Z axis, and tells us if the device is facing up, 
or down
    var facingUp = -1;
    if (acc.z > 0) {
        facingUp = +1;
    }

    // Convert the value from acceleration to degress
    // acc.x|y is the acceleration according to gravity, we'll assume we're on Earth 
and divide
    // by 9.81 (earth gravity) to get a percentage value, and then multiply that by 90 
to convert to degrees.
    var tiltLR = Math.round(((acc.x) / 9.81) * -90);
    var tiltFB = Math.round(((acc.y + 9.81) / 9.81) * 90 * facingUp);
    var tilt = [tiltLR, tiltFB];

    console.log('Acceleration: ' + rawAcc);
    console.log('Facing up? ' + facingUp);
    console.log('Tilt: ' + tilt.join(', '));
}

if (Modernizr.devicemotion) {
    window.addEventListener('devicemotion', handleDeviceMotion, false);
}

16 | Chapter 1: HTML5 for Mobile Applications



Network Connectivity
Mobile web applications storing their resources offline might need to know whether
the device is online or not, for example to update their information, ping a remote server
or provide some supplementary service. To do that, HTML5 introduces a small yet very
useful API: the network connectivity API.

function deviceOnline(e) {
    console.log('device is online');
}

function deviceOffline(e) {
    console.log('device is offline');
}

if (Modernizr.applicationcache) {
    window.addEventListener("online", deviceOnline, false);
    window.addEventListener("offline", deviceOffline, false);
}

The new online and offline events are triggered whenever the connectivity status of
the current device changes, allowing the developer to perform some operation in that
moment.

The network connectivity API also provides an imperative way to ask the current device
whether the device is connected or not:

if (Modernizr.applicationcache) {
    if (navigator.onLine) {
        console.log('This device is online');
    }
    else {
        console.log('This device is offline');
    }
}

Pay attention to the fact that the event is spelled online while the property on the
navigator object is spelled onLine… this is a common source of errors.

Network connectivity = Internet access

You must be aware that this API is not reliable; your device might be
connected to a network, yet not have a proper Internet access. For ex-
ample, routers could be down, you could have a self-assigned IP address,
and many other situations could provide a “false positive” in the API
calls above. In those cases, you should always provide error callbacks
to your XMLHttpRequest calls, so that you are able to fail gracefully in
some situations.

This API is a perfect companion for the HTML5 Application Manifest; taking your
application offline and being able to tell (with certain accuracy) whether you are online

Network Connectivity | 17



or not, can help you create more sophisticated applications covering different and
complex use cases.

Canvas
The new <canvas> object is, together with CSS3 animations, one of the few HTML5
features that are available in nearly all modern browsers at the time of this writing6.

The Canvas API allows developers to perform 2D drawing on a section of the web page;
this section, conveniently called the canvas, is implemented through the new <can
vas> object, originally introduced in the WebKit project by Apple.

To use the Canvas API you have to first define a <canvas> element in your HTML file:

<canvas id="canvasObject" width="320" height="480">
Any text displayed here will be used as fallback, in case the current browser
does not support the canvas object.
</canvas>

Once this is in place, the rest happens in JavaScript code:

if (Modernizr.canvas) {
    var canvasObject = document.getElementById('canvasObject'); 

    if (canvasObject) {
        var context = canvasObject.getContext('2d'); 
        if (context) {
            context.fillRect(0, 0, 150, 100); 

            // This sample comes from
            // http://dev.opera.com/articles/view/html-5-canvas-the-basics/
            context.fillStyle   = '#00f'; // blue
            context.strokeStyle = '#f00'; // red
            context.lineWidth   = 4;

            // Draw some rectangles.
            context.fillRect  (0,   0, 150, 50);
            context.strokeRect(0,  60, 150, 50);

            // Draw an image
            var image = new Image();
            image.src = "http://someserver.com/somepath/file.gif"
            image.onload = function () {
                // Loading an image can take a while; hence the callback on the onload
                // event... which is executed asynchronously.
                context.drawImage(image, 10, 40);
            }
        }
    }
}

6. Source: Mobile HTML5 by Maximiliano Firtman

18 | Chapter 1: HTML5 for Mobile Applications

http://mobilehtml5.org/


Here we retrieve a pointer to the <canvas> element in our HTML file, defined in the
previous snippet.

Here we get a reference to the 2D drawing context of the <canvas> element; there
are apparently plans to provide a 3D context one day, but there are no standard or
complete implementations available yet.

… and from here on we actually draw something!

The most important thing to know about the Canvas drawing API is that it is a stateful
API, whose design is based on a real painter canvas, where every paint stroke goes on
top of the previous one. The Canvas API provides functions that allows developers to
draw the following primitives:

• Rectangles

• Ellipses (and circles, of course)

• Arbitrary lines and paths, with any stroke width and color

• Arbitrary images, loaded from any URL

• Text

• Gradients

Finally, the <canvas> object also exposes a .toDataURL method, which takes a MIME
type as parameter, allowing the end user to export any drawing to another format:

if (Modernizr.datauri) {
    var url = canvas.toDataURL("image/png");
    window.open(url);
}

The code above works in some mobile browsers that understand special URLs starting
with the ... text, which allows images to
be inlined using their base64 representation. This works in most recent smartphone
browsers, like Safari on iOS and the Android browser, and thankfully Modernizr pro-
vides a datauri test that allows us to wrap the code properly, and eventually to provide
a fallback solution.

A Tool for Generating Canvas Drawings

There is a very interesting tool for the Mac, that can be used to draw
complex illustrations, and to export them as <canvas> code: Opacity.
This commercial tool allows to export any drawing (within limitation)
as JavaScript code targeting the <canvas> object, so you and your design
team might want to check it out.

Canvas | 19

http://likethought.com/opacity/


CSS3 Animations and Transitions
In October 2007 the WebKit browser engine included for the first time the capability
to animate effects using CSS properties. These properties were lated introduced in the
CSS3 standard, which is commonly considered part of the overall HTML5 technology
umbrella.

Why are animations and transitions a part of CSS and not, say, JavaScript functions or
objects 7? It turns out that considering them as presentational rather than behavioral
parts of a web page has several advantages:

• It allows to separate animation and transitions from other JavaScript behaviors,
which basically simplifies the development of applications.

• CSS animations and transitions can be hardware-accelerated, by executing them
in the GPU rather than in the CPU of your device; this is even more important in
relatively low powered mobile devices.

Familiar to Core Animation and Flash developers

The specification of CSS3 animations and transitions will appear very
familiar to iOS and Adobe Flash developers; concepts like timing func-
tions, keyframes, animatable properties and other keywords will reso-
nate in those developers having experience with iOS and OS X Core
Animation framework, as well as in those who have been exposed to
Flash movies and animations.

Transitions
You can think of transitions as simple animations, that occur when certain values of
some CSS property is changed.

The simplest possible transition can be achieved with the following CSS code:

li.animatedHover {
    -webkit-transition-property: background-color, color;
    -webkit-transition-duration: 500ms;
    -moz-transition-property: background-color, color;
    -moz-transition-duration: 500ms;
    -o-transition-property: background-color, color;
    -o-transition-duration: 500ms;
    -ms-transition-property: background-color, color;
    -ms-transition-duration: 500ms;
    transition-property: background-color, color;
    transition-duration: 500ms;

7. Actually, the whole “Animations are presentation or behavior” debate was fueled by long discussions
about the relative merits of both approaches to the same problem; for example, Jonathan Snook first
expressed concern and disagreement about considering animations and transitions as presentation and
later changed his mind.

20 | Chapter 1: HTML5 for Mobile Applications

www.allitebooks.com

http://www.webkit.org/blog/138/css-animation/
http://snook.ca/archives/javascript/css_animations_in_safari/
http://snook.ca/archives/javascript/css_animations_in_safari/
http://snook.ca/archives/html_and_css/shifting-opinion-css-animations
http://www.allitebooks.org


    background-color: green;
    color: white;
}

li.animatedHover:hover {
    background-color: yellow;
    color: black;
}

As you can see, unfortunately we have to specify the individual prefixes
for all browser vendors (like -webkit, -moz, etc) to make sure that these
transitions are enabled in most browsers. You might want to use a lan-
guage like SASS or LESS to remove duplication and to streamline the
generation of your CSS stylesheets.

The above CSS styles can be used in any <li> element that has the animatedHover class:

<ol>
    <li class="animatedHover">First</li>
    <li class="animatedHover">Second</li>
    <li class="animatedHover">Third</li>
    <li class="animatedHover">Fourth</li>
    <li class="animatedHover">Fifth</li>
</ol>

If you move your mouse over any of these elements, you are going to see that the
transition between green and yellow is animated; the following CSS properties are used:

• transition-property instruction in the CSS file specifies which properties to ani-
mate. You can use the all keyword to indicate that all properties should be con-
sidered for an animation, but this should be used with care.

• transition-duration specifies the duration of the operation 8

• transition-delay can be used to introduce a certain time (specified in ms or s)
before the transition is triggered.

• transition-timing-function specifies the acceleration pattern of the animation:

• ease, which is the default value.

• linear, which specifies no acceleration at all.

• ease-in, which specifies acceleration only when the animation starts.

• ease-out, which specifies acceleration only when the animation stops.

• ease-in-out, which specifies acceleration at the beginning and a deceleration at the
end of the animation.

8. In this case, in milliseconds, but you can also specify s to specify a time in seconds; this is part of the CSS3
standard.

CSS3 Animations and Transitions | 21

http://sass-lang.com/
http://lesscss.org/


Animations
Animations are very similar to transitions, but they introduce some complexity of their
own. To begin with, they also allow developers to define transitions between values of
specific CSS properties; you can use all the properties that you commonly use for tran-
sitions.

However, they also provide the capacity of specifying keyframes, which should be fa-
miliar to developers having experience with Adobe Flash. Animations can also be re-
peated a certain number of times, and they can also be played backwards.

Let’s implement a simple animation; let’s consider a square, red <div id="animated
Block"></div> element in our page, with a bit of CSS to animate it around the page.

#animatedBlock {
    height: 100px;
    width: 100px;
    display: block;
    position: absolute;
    top: 200px;
    left: 200px;
    background-color: red;
}

(This is not a book about design, which means that I can draw extremely ugly boxes
to demonstrate concepts!) Now let’s define an animation to our block:

#animatedBlock {
    height: 100px;
    width: 100px;
    display: block;
    position: absolute;
    top: 200px;
    left: 200px;
    background-color: red;

    -webkit-animation-delay: 300ms;
    -webkit-animation-name: pulsating-animation; 
    -webkit-animation-duration: 10s;
    -webkit-animation-iteration-count: infinite; 
    -webkit-animation-timing-function: ease-in;
    -webkit-animation-direction: normal;
    -webkit-animation-play-state: running; 
    -webkit-animation-direction: alternate; 
}

@-webkit-keyframes pulsating-animation
{
    0% {
        height: 100px;
        width: 100px;
    }

    100%

22 | Chapter 1: HTML5 for Mobile Applications



    {
        height: 300px;
        width: 300px;
    }
}

Very important: Do not quote this value! The animation name is used as is, and of
course you can specify any kind of name.

The infinite value specifies that the animation will never stop (at least, not until
the animation-play-state property is set to paused).

The animation-play-state property can also be set to paused to stop the animation.
This can be done using JavaScript code as well.

If animation-direction is set to normal then the animation jumps back to the default
position at start without animation. The alternate keyword makes the animation
return to the default state with an animation played backwards.

The example above will make the <div> element grow in size, back and forth, from 100
pixels to 300 pixels in 10 seconds. This will be repeated forever, with a timing function
that accelerates the movement when the animation starts, and where the same anima-
tion is played backwards before repeating itself.

The @-webkit-keyframes section defines, for the animation named pulsating-anima
tion, the different values of the animatable properties taken into account in this se-
quence; the browser takes this information to interpolate the intermediate values to
provide the final animation on the page.

Final Considerations
Before you start using CSS3 transitions and animations in your sites and applications,
you might want to remember the following facts:

• It is important to know which properties can be animated: the official W3C page
for CSS Transitions provides an extensive list of properties that are “animatable”;
for example, beyond the background-color and color properties we have just seen,
the following properties are also animatable: border-color font-size, height, opac
ity, text-shadow, z-index, left, top, right, bottom, margin, and padding (including
all of their flavors).

• Beware of usability, accessibility and health issues related with animations on a
computer screen; the fact that you are able to animate elements does not mean that
you should do it.

• Nearly all modern mobile browsers support CSS3 transitions and animations; In-
ternet Explorer 10 (at least in its developer previews), Firefox since version 5, Safari
since 4, Chrome since 9, Opera since 10.6 9, iOS since 3.2 and Android since 2.1.

CSS3 Animations and Transitions | 23

http://www.w3.org/TR/css3-transitions/#animatable-properties-
http://www.w3.org/TR/css3-transitions/#animatable-properties-


Client-Side Storage
One of the most exciting new features about HTML5 is the set of new specifications
that enables client-side storage options for HTML5 web applications. Web Storage is
a very simple API, composed of two different global objects that can store and retrieve
strings:

• localStorage is persisted even if the user closes the browser

• sessionStorage is not persisted, and is removed when the user closes the browser
window

These two objects act as global dictionaries, that can be populated and queried using
any key (which must be a string, too):

if (Modernizr.localstorage) {
    // Just append key values to this dictionary!
    // It's that easy. However only strings are supported!
    localStorage.someData = "some data here";

    // You can also use the common 'dictionary' syntax
    localStorage['some complex key'] = 'some complex data there';
}

if (Modernizr.sessionstorage) {
    // This data will only persist while the current
    // browser window is open!
    sessionStorage.someData = "some data here";

    // Similarly, you can also use the 'dictionary' syntax:
    sessionStorage['just keep this for now'] = true;
}

HTML5 web applications are able to store up to 5 MB of data in the local browser,
which is usually more than enough for mobile applications. In some particular cases,
though, applications might require users to store more than 5 MB. For those cases, iOS
provides developers with a bonus feature. Your application can continue storing data
until it reaches the limit of 5 MB, and when it goes beyond that limit, Safari will ask
the user for extending the maximum. You can see this mechanism in action when
opening the Financial Times Web Application on an iPad, as shown in Figure 1-4.

In the case of SQL Storage (described in the following section), the
maximum limit can be set to 50 MB, as described in this StackOverflow
question.

9. At the time of this writing, Opera supports only transitions, not animations, but apparently they will be
supported in version 12, currently in beta.

24 | Chapter 1: HTML5 for Mobile Applications

http://apps.ft.com/ftwebapp/
http://stackoverflow.com/a/6281947/133764:
http://stackoverflow.com/a/6281947/133764:


Developers can use the web inspector included in WebKit-based browsers, such as
Safari and Chrome, to inspect and modify the contents of the localStorage and ses
sionStorage objects, as shown in Figure 1-5.

SQL Storage
Once part of the original HTML5 specification, the Web SQL Database is a very im-
pressive piece of technology, allowing you to create, update, and edit items stored in a
local SQL database on the browser. Similar to localStorage items, web SQL databases
allow you to persist structured data in your browser, allowing developers to use the full
power of the SQLite database engine embedded in most mobile browsers these days.

The code below shows a snippet of code, required to create a new database, and to
execute a transactional SQL statement. The API is asynchronous, and requires the
developer to specify a callback function to be executed once the SQL operations are
completed:

this.db = openDatabase('geomood', '1.0', 'Geo-Mood Checkins', 8192);
this.db.transaction(function(tx) {
    tx.executeSql("create table if not exists " +
                  "checkins(id integer primary key asc, time integer, latitude float," +
                            "longitude float, mood string)",
                  [],
                  function() { console.log("done"); }
  );
});

Even if many modern mobile browsers support this feature, unfortunately the W3C
Web Application Working Group no longer maintains it, and some consider this API

Figure 1-4. Financial Times web application requesting more data

Client-Side Storage | 25

http://sqlite.org/
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/webdatabase/


as deprecated. The proposed replacement is the IndexedDB API which is (at the time
of this writing) only supported by Google Chrome for Android and Firefox. In any case,
a good rule of thumb is to ignore this otherwise excellent idea.

Rich Media Tags
Probably the most hyped feature of HTML5 are the new media elements <canvas>,
<video>, and <audio>. They have been tailored to bring native media functionality to
the browser without the need for a plug-in (which usually was Adobe Flash).

Not all is perfect, though, as different browser vendors still do not support the same
media formats, and care must be taken to ensure that all HTML5-compliant browsers
can play the same audio and video. This usually can be done by nesting different formats
in the same <audio> tag:

<audio>
    <source src="audio.ogg">
    <source src="audio.mp3">
</audio>

Figure 1-5. Inspecting the local storage in the WebKit inspector

26 | Chapter 1: HTML5 for Mobile Applications

http://www.w3.org/TR/IndexedDB/
http://caniuse.com/indexeddb


To solve these incompatibilities in the case of video, solutions such as SublimeVideo,
created by the Swiss company Jilion, allow web developers to use a cross-browser
HTML5 player in their applications.

Conclusion
HTML5 is a breakthrough specification in terms of simplicity, extensibility, and focus
on applications. It is strongly suggested to start using HTML5 documents in all your
applications, and do not forget to validate them using the excellent HTML5 Valida-
tor by Henri Sivonen!

Conclusion | 27

http://sublimevideo.net/
http://jilion.com
http://validator.nu/
http://validator.nu/




CHAPTER 2

JavaScript Productivity Tips

This chapter will provide some basic syntax elements about JavaScript, just to get all
readers to the same level. If you are comfortable with advanced JavaScript idioms, feel
free to skip this chapter altogether. We are going to use the examples in this chapter to
“stretch our legs” and get comfortable with the language1.

Not for Beginners

This chapter is meant for developers familiar with the basics of Java-
Script; it will not go through all the features of the language, but in
particular over those that really make a difference when writing a large
JavaScript application. And, of course, the criteria for choosing those
features is entirely under the highly subjective perspective of the author
of this book!

About JavaScript
JavaScript is the world’s most misunderstood language, which means that, as Yoda
would say, you must unlearn what you have learned. However complicated it might
seem at first, it is quite easy to write and understand the most complex of JavaScript
codes with just some examples.

This page provides an excellent complement of information to know JavaScript better,
as well as the Wikipedia page.

1. The code samples in this chapter are adapted from a series of articles in the Open Kosmaczewski blog by
the author of this book.

29

http://www.crockford.com/javascript/javascript.html
http://www.imdb.com/title/tt0080684/quotes?qt=qt0358473
http://developer.mozilla.org/en/docs/A_re-introduction_to_JavaScript
http://en.wikipedia.org/wiki/JavaScript
http://kosmaczewski.net/javascript-tips-tricks-2/


Some Coding Tips
When you are writing JavaScript code, the following tips might be of help:

• In JavaScript, all the properties of an object are public, virtual, and overridable;
that means that you can override the default implementation of any method on
any object, or on any “class,” and provide your own implementation; this is, as
you can imagine, great and terrible at the same time.

• Always add semicolons at the end of your statements; they are not mandatory, but
they are strongly recommended. In this book, all code examples use semicolons.

• Always write the closing bracket whenever you open one; JavaScript expressions
can have lots of embedded curly, round, and square brackets, and closing them as
soon as you open them will save you lots of debugging hours.

• Always use the “var” keyword when defining variables. Otherwise, the variables
will be created on the “Global Object” of JavaScript, and this is a bad thing for two
reasons:

1. Variables created in the “Global Object” are not garbage collected in some
browsers!

2. You are polluting the global namespace! If you use a variable called location in
your code, and you forget to use the var keyword, your variable will be defined
in the global namespace and will override the standard location object… which
is not a good idea, for all the reasons you can imagine!

• The default return value of JavaScript function (that is, when there is not a
return statement) is undefined. Is not null, but undefined. This is a very important
thing to remember when debugging code.

• Validate your JavaScript code with JSLint. JSLint can also be installed locally in
your development machine, and some editors like Vim allow to automatically ex-
ecute JSLint when you save JavaScript files (in the case of Vim, that’s thanks to the
jslint.vim or the javascriptlint.vim plug-ins).

Object Literals
First of all, every object in JavaScript is a map (or hash), and you can access properties
and methods using either the dot.syntax or the ["array"] syntax:

var obj = {
    age: 42,
    "first and last name": "John Smith", // yes, you can do that
    address: {
        street: "32 Kingston St.",
        city: "Springfield",
        zip: 12345
    },
    greet: function() {
        console.log('hello! my name is ' +

30 | Chapter 2: JavaScript Productivity Tips

www.allitebooks.com

http://jslint.com/
http://www.vim.org/
http://www.vim.org/scripts/script.php?script_id=2729
http://github.com/joestelmach/javaScriptLint.vim
http://www.allitebooks.org


        this["first and last name"] + ' and my age is ' + this.age.toString());
    }
};

console.log(obj["first and last name"]); // shows "John Smith"
console.log(obj.age === obj["age"]); // shows "true" ('===' is the identity operator)
console.log(typeof obj); // shows "object"
obj.greet();

Since the dot.syntax and the ["array"] syntaxes are equivalent, you must by now
imagine that every “dot” in your code means a search into a dictionary (or literal object).
So, the fewer “dots” you use when calling an object, function or expression, the faster it is!

To achieve this, use shortcuts:

var a = {
    very: {
        interesting: {
            JavaScript: {
                object: {
                    reference: "longer than needed, but it's just an example!"
                }
            }
        }
    }
};

var shortcut = a.very.interesting.JavaScript.object.reference;
console.log(shortcut);

Single or Double Quotes?
I regularly teach these concepts to developers all over the world, yet the same question
always pops up: strings in JavaScript, double or single quotes?

It turns out that both are interchangeable; you can use either as you want. However,
certain rules and protocols apply:

• You can create strings using either apostrophes or quotes. You can also mix them
as you want, but always keep the nesting order when using them.

• In general, it is considered good practice and style to use single quotes whenever
possible. This is particularly useful when JavaScript has to manipulate HTML
strings, where double quotes are considered the standard:

var singleQuoted = 'single quoted string';
var doubleQuoted = "double quoted string";

// External single quotes are preferred in general, by convention
var html = '<p class="header">This is some HTML snippet</p>';

Single or Double Quotes? | 31



JavaScript Base Types
JavaScript is an object-oriented language without classes; the language standard de-
fines, however, seven core object types, that could be assimilated to classes in other
languages, and that are actually referred to as classes sometimes in the literature.

The following are the seven core JavaScript types that are part of the ECMA standard:

• Object (root type, like in Java)

• String

• Number

• Array

• Date

• RegExp

• Function

For a handy reference of the core JavaScript API, download and print this cheat sheet.

The types enumerated above are always present, in all JavaScript implementations
(Adobe Flash ActionScript, Microsoft JScript, ECMAScript, etc.).

When JavaScript runs in a web browser, other types and objects are added, like Win-
dow, Document, and others. These objects are part of the DOM (Document Object
Model) and are browser-specific (and based on W3C standards).

Dynamic Overloading of Base Types
It is important to know that, since JavaScript is a dynamic language, that Functions are
used as classes, are fully fledged objects, and that you can add methods to a class on the
fly, usually called (dynamic overloading):

String.prototype.doSomething = function() {
  console.log(this);
}

"hello!".doSomething();

This behavior is simple to understand, and will be familiar to developers who have used
Python, Ruby, or Objective-C in the past.

32 | Chapter 2: JavaScript Productivity Tips

http://www.addedbytes.com/cheat-sheets/javascript-cheat-sheet/


Functions
Functions are the basic block in JavaScript. You use them everywhere, you can pass them
as parameters, attach them as event handlers, override them, delete them, etc. Func-
tions can be anonymous or not:

// In the example below, dont forget the semicolon!
// However, its name will not appear in the debugger
var anonymous = function() {
    console.log('anonymous function!');
};

// This the classic syntax, without a semicolon at the end!
function nonAnonymous() {
    console.log('non anonymous!');
}

// This is similar to the above, but is more
// debugger-friendly, as the name of the function
// will be printed in the debugger.
var nonAnonymous2 = function nonAnonymous2() {
    console.log('non anonymous too!');
};

// This is the syntax for adding event handlers in jQuery
$('field').bind('tap', function(event, data) {
    console.log('binding an anonymous function!');
    event.preventDefault();
});

You can also nest functions into functions, creating what is usually called closures in
Lisp and other functional languages. Closures can access the variables created in the
stack of their parent function:

function external() {
    var privateVar = 'a private var'; 

    function internal() {
        console.log(privateVar); 
    }
    return internal; 
}

var func = external(); 

func(); 

This variable is “private” in the sense that the code outside of the external function
cannot access it directly. Remember that variables in JavaScript have function scope,
which means that only those functions defined inside of external can see it.

The internal function prints in the console the contents of the privateVar variable.

The external function returns the internal function.

Functions | 33



We assign to the func variable the result of the execution of the external function.
This object is a function…

…that we execute as soon as we can. And the result will be the string “a private var”
being shown in the console of the browser.

How to Organize Code in namespaces
When you use lots of libraries in your code, you can easily pick up a function name
that corresponds to a pre-existing name in some library that you might have included.
To avoid that, you should create namespaces that encapsulate the code of your appli-
cation:

var net = {
    kosmaczewski: {
        adrian: {
            blog: {
                articles: {},
                images: {},
                snippets: {},
                tutorials: {},
                rants: {}
            }
        }
    }
};

// Shortcut (for performance purposes)
var blog = net.kosmaczewski.adrian.blog;

Then, you can start adding members (functions, types, variables, etc.) to that name-
space:

blog.rants.NewRant = function() {
    this.whatever = 'value';
    // code here...
}

blog.images.takePhoto = function() {
    return 'a nice picture';
}

blog.articles.numberOfPosts = 700;

Create Objects and Arrays the Easy Way
To create objects and arrays in JavaScript, you can of course use the constructor+meth-
ods syntax:

var obj = new Object();
var arr = new Array();

34 | Chapter 2: JavaScript Productivity Tips



obj.prop = "value";
obj.method = function() {
    console.log('method');
};

arr.push(23);
arr.push("yeah");
arr.push(obj);

arr[2].method();
console.log(arr);

While the above syntax is OK, many JavaScript interpreters can handle the following
object literal syntax, completely 100% equivalent version, much faster and more Java-
Script-like (by this I mean that you are more likely to find this in JavaScript libraries):

var obj = {
    prop: "value",
    method: function() {
        console.log('method');
    }
};
var arr = [23, "yeah", obj];

arr[2].method();
console.log(arr);

Create a Singleton Object
If you need to create a singleton, yet complex object, do not fall in the classical way of
doing things; do not create a class and then instantiate just one instance! Since JavaScript
objects can be created on the fly, you can use object literals for that.

However, if you need to create just one object, with a complex structure, you can use
the following trick:

var Singleton = function() {
    var privateValue = "private value";

    return {
        prop: "value",

        method: function() {
            console.log(privateValue);
        }
    };
}();

Singleton.method();  // 

The trick is in line 11 of the preceding example:

}();

Create a Singleton Object | 35



Do you see the parentheses after the closing bracket and before the semicolon? Well,
this triggers the execution of the function, which returns a literal object with methods
and properties, and which can reference private members (since they are closures).

This pattern is very common in the Sencha Touch and Ext.js frameworks!

Scheduling Function Execution
Adding a method to the Function class, you can schedule its execution a couple of
milliseconds in the future, encapsulating the Window.setTimeout() method:

Function.prototype.schedule = function(msec) {
    this.timeout = setTimeout(this, msec);
}

Function.prototype.cancelSchedule = function() {
    clearTimeout(this.timeout);
}

function doSomething() {
    console.log('doSomething');
}

doSomething.schedule(5000);

The Sencha Touch framework has a method that does exactly this, called defer().

Concatenating Strings
If you have to concatenate strings, avoid using the + operator whenever possible; an
Array instance can be used as a Java StringBuffer or a .NET StringBuilder, as follows:

var s = ["a", "long", "array", "of", "strings"];
s.push("is");
s.push("here");
document.write(s.join("<br>"));

The above code will display the following output on the web page:

a
long
array
of
strings
is
here

The use of the join() method is considered as slightly faster than using the + operator,
which implies much more object copies in memory, which in turn triggers the garbage
collector much more often.

36 | Chapter 2: JavaScript Productivity Tips



Iterating Over Arrays
When you operate on array objects, you usually end up writing code like this:

function operate(obj) {
    console.log(obj);
}

var arr = [54, 25, 68];
for (var i = 0; i < arr.length; ++i) {
    operate(arr[i]);
}

But things do not have to be that awful all the time:

Array.prototype.each = function(func) {
    for (var i = 0, len = this.length; i < len; i += 1) {
        func(this[i]);
    }
}

function operate(obj) {
    console.log(obj);
}

var arr = [54, 25, 68];
arr.each(operate);

Now you have code that is much easier to read, and in particular, it has been tailored
for performance!

Using toString() for Reflection
Let’s suppose that you have the following code:

function Thing() {
    var privateField = "PRIVATE";

    var privateMethod = function() {
        console.log('Private method');
    }

    return {
        publicField: "PUBLIC",

        publicMethod: function() {
            console.log('Public method');
        }
    };
}

// Creating a new instance of "Thing"
var thingy = new Thing();

Using toString() for Reflection | 37



// You want to see what's inside, right?
console.log(thingy);

The last instruction in the preceding code shows a laconic “[object Object]” that does
not tell much about what is inside your object. Actually, the console.log() function,
when applied to any JavaScript object, will call the toString() method to its parameter,
so try adding a toString() to your objects instead:

function Thing() {
    var privateField = "PRIVATE";
    var self = this;

    var privateMethod = function() {
        console.log('Private method');
    }

    return {
        publicField: "PUBLIC",

        publicMethod: function() {
            console.log('Public method');
        },

        toString: function() {
            var re = /function (.*)\(\) {/g;
            var a = self.constructor.toString().split("\n")[0];
            var cls = "Class " + re.exec(a)[1];
            var s = [cls, "", "This is the public API of this class:"];
            for (var item in this) {
                s.push(item);
            }
            return s.join("\n");
        }
    };
}

// Creating a new instance of "Thing"
var thingy = new Thing();

// You'll get a very rudimentary reflection output
console.log(thingy);

With this code, you will get this output in a dialog box:

Class Thing

This is the public API of this class:
publicField
publicMethod

Easy Code Injection
This code allows you to inject arbitrary code around any function, like if you were doing
some AOP-like operations:

38 | Chapter 2: JavaScript Productivity Tips



Function.prototype.wrap = function(before, after) {
    before();
    this();
    after();
};

function doBefore() {
    console.log('do before');
}

function doAfter() {
    console.log('do after');
}

function test() {
    console.log('inside test');
}

// test();
test.wrap(doBefore, doAfter);

Object-Oriented Programming in JavaScript
In terms of object orientation, JavaScript has many different syntaxes to provide the
same operations. Remember that JavaScript is an object-oriented language without
classes; developers can create objects at runtime, and objects have a property called the
prototype, which points to the Function object that acts as class of the current object.

Functions are also used to represent classes when doing (object-oriented JavaScript).
There are several possible ways to write object-oriented JavaScript code, but they all
turn around the concept of the Function class:

function Thing() {
    var privateField = "PRIVATE";
    var self = this; 

    var privateMethod = function() {
        console.log('Private methods can be called from public methods');
        self.anotherPublicMethod();
    }

    this.publicField = "PUBLIC";

    this.publicMethod = function() {
        privateMethod();
        console.log('From the public method;\nthis is a public value: ' + 
this.publicField +
        '\nand this is a private value: ' + privateField);
    };

    this.anotherPublicMethod = function() {
        console.log('You need a trick to call this from a private method!');
    };

Object-Oriented Programming in JavaScript | 39



}

// Creating a new instance of "Thing"
var thingy = new Thing();
thingy.publicMethod();            

This is required to be able to use the proper this reference in the privateMethod
function below. A priori, this points to the currently executing function, which is
not the behavior that most developers expect. See the following section for a detailed
discussion about this idiom.

You can also call thingy["publicMethod"]() here; remember that both the array and
the dot syntaxes are valid and equivalent for accessing object members.

As you can see, methods are just function objects attached as any other property. You
can attach any other function to this property, changing the behavior of your class on
the fly.

The self Trick
As you can see in the previous code, there is a variable called self (it could have any
name) that is equal to this. This is a trick that allows private methods to access public
methods, and you will see it in many JavaScript libraries. The problem can be sum-
marized as follows:

var privateMethod = function() {
    console.log('Private methods can be called from public methods');
    this.anotherPublicMethod();
}

You cannot write the preceding code because this in that context means the private
Method() function. What we want is the this that points to the current Thing() instance.
Yes, it is a bit complex, but it works perfectly well, because the privateMethod() func-
tion is a closure and can access the stack variables of the Thing() function. Since self
points to the right object, you can now call the public method that you want.

In summary, this points always to the immediately containing function object where
you are located.

More Ways to Do the Same Thing
Another way to define the Thing class above would be like this, but it has the drawback
that you cannot access the private members, since you are attaching the public members
to the prototype of the function, and as such, you are outside of the main context of
the function, Thing():

function Thing() {
    var privateField = "PRIVATE";

    var privateMethod = function() {

40 | Chapter 2: JavaScript Productivity Tips

www.allitebooks.com

http://www.allitebooks.org


        console.log('Private methods can be called from public methods');
    }
}

Thing.prototype.publicField = "PUBLIC";

Thing.prototype.publicMethod = function() {
    // privateMethod(); cannot be called here! We are outside of the "Thing()"
    // context
    console.log('From the public method;\nthis is a public value: ' +
        this.publicField + '\nbut you cannot access a private value!');
};

// Creating a new instance of "Thing"
var thingy = new Thing();
thingy.publicMethod();

// You can also call the public method as follows:
thingy["publicMethod"]();

The preceding syntax can also be written as follows:

function Thing() {
    var privateField = "PRIVATE";

    var privateMethod = function() {
        console.log('Whatever');
    }
}

function Thing_publicMethod() {
    console.log('Implementation');
};

function Thing_anotherPublicMethod() {
    console.log('More implementation');
};

// "Header file" with the interfaces, all together
Thing.prototype.publicMethod = Thing_publicMethod;
Thing.prototype.anotherPublicMethod = Thing_anotherPublicMethod;

// Creating a new instance of "Thing"
var thingy = new Thing();
thingy.publicMethod();

which makes all the public methods appear together, like in a good old C or C++
interface header file. Again, some developers might prefer this approach, but you lose
the capability of referencing the private members of your class.

Another Common Way to Create Custom Types
This is another syntax that can be used to create types in JavaScript:

Object-Oriented Programming in JavaScript | 41



function Thing() {
    var privateField = "PRIVATE";

    var privateMethod = function() {
        console.log('Private methods can be called from public methods');
    }

    return {
        publicField: "PUBLIC",

        publicMethod: function() {
            privateMethod();
            console.log('From the public method;\nthis is a public value: ' + 
this.publicField +
            '\nand this is a private value: ' + privateField);
        }
    };
}

// Creating a new instance of "Thing"
var thingy = new Thing();
thingy.publicMethod();

In this last way of doing things, we are encapsulating the public interface of the class
inside the return statement of the class, returning a dictionary (or literal) of members
(fields and methods). This creates a neat separation of the public and private parts,
with the neat advantage of allowing access to the private fields.

To use this last writing style, remember two things:

• Always remember to separate every member in the return clause with commas.

• Always remember to put the return and the opening curly bracket in the same
line! That is, you must write return {, otherwise, since semicolons are optional,
the function will return null!

In this book, the syntax above will be preferred and used most often,
particularly when dealing with jQuery Mobile applications.

Passing Options
A rather common use case is to pass certain options when instantiating an object.
Equally common is it to have a set of default options. If options are passed, they should
override the default options. We can allow for this flexibility by writing our function
definition like this:

function Thing(options) {
  // ...
  var self = this;

42 | Chapter 2: JavaScript Productivity Tips



  self.settings = {
    foo: options.foo || "default",
    complex: {
      bar: options.complex.bar || "default bar",
      baz: options.complex.baz || 42
    }
  }

  // ... rest of class

}

Now we can instantiate a new Thing() with a hash of options:

var default_thing = new Thing();
var custom_thing = new Thing({foo: "Hello World",
                              complex: { baz: 1773 } } )

and either the default values are used, or they are overwritten with the ones passed as
parameters to the object instantiation.

Conclusion
Great! We have seen in this chapter some useful tricks to keep in mind while you read
the code examples in this book, and for your next JavaScript applications. The next
chapters will dive into larger frameworks, which all use the idioms and patterns show
in the last few pages.

Conclusion | 43





CHAPTER 3

jQuery Mobile

jQuery Mobile1 is an open source JavaScript UI framework built upon the popular
jQuery library, created by John Resig during the last decade.

The development of jQuery Mobile started mid-2010, and quickly became one of the
most popular JavaScript frameworks ever. Today jQuery Mobile is used in more mobile
web applications than any other framework.

jQuery Mobile is an open source project, hosted on Github and with a very complete
website, full of documentation, samples, and references to applications created with
the framework.

At the time of this writing, the current stable version of jQuery Mobile
is version 1.1.0. On the other hand, the latest available version of jQuery
is 1.7.2.

Supported Platforms
jQuery Mobile works on the vast majority of all modern desktop, smartphone, tablet,
and ereader platforms. In addition, feature phones and older browsers are also sup-
ported because of a progressive enhancement approach. This is probably one of the
most important characteristics of jQuery Mobile.

To provide a quick summary of the browser support in jQuery Mobile, the team has
created a simple A (full), B (full minus Ajax), C (basic) grade system with notes of the
actual devices and versions where the library has been tested on. The visual fidelity of
the experience is highly dependent on CSS rendering capabilities of the device and
platform, so not all A grade experience will be pixel-perfect.

1. Not to be mistaken with jQTouch, which is a jQuery plug-in, now developed and maintained by Sencha,
the same company behind Sencha Touch.

45

https://github.com/jquery/jquery-mobile
http://jquerymobile.com/
http://jquerymobile.com/


Compatibility
Users of the most advanced mobile browsers can enjoy the full enhanced experience,
with Ajax-based animated page transitions; at the time of this writing, this list includes
the following operating system/browser combinations:

• iOS since version 3.2

• Android since 2.1

• Windows Phone since version 7

• Blackberry since version 6, including Playbook

• Palm WebOS since 1.4

• Firebox Mobile since 10 beta

• Skyfire since 4.1

• Opera Mobile since 11.5

• Meego since 1.2

• Samsung bada since 2.0

• UC Browser

• Kindle and Kindle Fire

• Nook Color since 1.4.1

An impressive list! All major touchscreen smartphone platforms available today are
represented and supported by jQuery Mobile.

On desktop platforms, jQuery Mobile is compatible with Windows, Linux, and Mac
OS X versions of the following browsers:

• Safari since version 4

• Chrome since 11

• Firefox since 4

• Internet Explorer since 7

• Opera since 10

One of the greatest benefits from the above lists is that jQuery Mobile is truly one of
the most widely compatible mobile frameworks available in the market today. Even
better, its large support of desktop browsers allows developers to use many different
platforms to build and test their applications. Given that most recent versions of these
browsers include developer tools, it also increases its developer appeal.

46 | Chapter 3: jQuery Mobile



In Chapter 6 we are going to see in detail how to use the developer
consoles of most popular desktop browsers to build mobile applica-
tions. For the moment, suffice it to say that you can build your jQuery
Mobile applications using any of the desktop browsers mentioned
above, and their respective developer tools.

Compatibility with Older Mobile Platforms
But what if our users or requirements specify some older platform? Will jQuery Mobile
help us in that case?

jQuery Mobile applications are built on top of standard HTML tags. This means that
every jQuery Mobile application is built with graceful degradation by default. Older
platforms, not able to display the latest CSS and JavaScript quirks, will quietly default
to displaying the HTML structure of these applications, which might or might not be
the ideal solution; but there, is, at least, a default answer.

For example, the following browsers have enhanced experience, except without Ajax
navigation features:

• Blackberry 5.0

• Opera Mini 5.0 to 6.5

• Nokia Symbian^3

And some other browsers can only enjoy a basic, non-enhanced HTML experience:

• Blackberry 4.x

• Windows Mobile 6 and older

• Older smartphone platforms, including featurephones

Key Features
These are the key features of jQuery Mobile:

• Built on jQuery for familiar and consistent jQuery syntax and minimal learning
curve

• Compatible with all major mobile and desktop platforms: iOS, Android, Black-
berry, Palm WebOS, Nokia/Symbian, Windows Mobile, Opera Mobile/Mini,
Firefox Mobile, and all modern desktop browsers

• Lightweight size (around 20k compressed for all mobile functionality) and minimal
image dependencies for speed

• HTML5 Markup-driven configuration of pages and behavior for fast development
and minimal required scripting

Key Features | 47



• Progressive enhancement approach brings core content and functionality to all
mobile, tablet, and desktop platforms and a rich, installed application-like expe-
rience on newer mobile platforms

• Automatic initialization by using HTML5 data-role attributes in the HTML
markup to act as the trigger to automatically initialize all jQuery Mobile widgets
found on a page

• Accessibility features such as WAI-ARIA are also included to ensure that the pages
work for screen readers (e.g., VoiceOver in iOS) and other assistive technologies

• Touch and mouse event support streamline the process of supporting touch,
mouse, and cursor focus-based user input methods with a simple API

• UI widgets enhance native controls with touch-optimized, themable controls

• Powerful theming framework and ThemeRoller application make highly branded
experiences easy to build

At a Glance
The most important thing to know about jQuery Mobile is that it is a UI library, not a
jQuery plug-in. It is a library that will take valid HTML tags as input, and will format
them using predefined styles and adapting them to the current browser capabilities. It
is not a complete framework like .NET, Java, or even Sencha Touch, which provide
lower-level services like serialization, storage, or networking. jQuery Mobile relies upon
JavaScript and the HTML5 features supported by the hosting browser to offer extended
functionality.

This first characteristic determines the tremendous mobile browser support of jQuery
Mobile, while at the same time explaining why developers have to roll their own Java-
Script code to implement complex behaviors, to implement storage, or to interact with
the hardware features exposed by the host browser (geolocation, compass, etc.).

Another important characteristic of jQuery Mobile is that it does not impose any kind
of structure to the JavaScript code of your system; the main component of the appli-
cation being the HTML files that define the semantic of the user interface, but not its
ultimate look and feel. In general, developers will apply behavior using standard jQuery
syntaxes and idioms, just as with any regular web page.

To Do List Application
To demonstrate how to create applications with jQuery Mobile, we are going to build
a very simple application with it: a to do list application, shown in Figure 3-1. The
application will have the following set of features:

• The application has two screens: a task list and a task form.

• Upon launch, the task list is shown.

48 | Chapter 3: jQuery Mobile



• The user can select a task from the list, or create a new one with a specific button
on the interface.

• The task form allows the user to modify the parameter of a single task.

• When editing an existing task, the user can remove it from the list just by tapping
on a “Delete task” button at the bottom of the screen.

Given that jQuery Mobile is just a UI framework, and as such does not provide a built-
in persistence mechanism, we are going to use one of the most hyped new features of
HTML5: the local storage.

The HTML File
The core section of the application is, undoubtedly, the HTML file. jQuery Mobile is
not a JavaScript-intensive framework, but rather one that relies upon special HTML
tags and attributes to get the work done. However, we are going to use JavaScript later,
to add behavior to the whole thing.

First things first: this is the basic HTML5 file we need. Let’s name it index.html:

<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8">
        <meta name="apple-mobile-web-app-capable" content="yes">

Figure 3-1. To Do App in jQuery Mobile

To Do List Application | 49



        <meta name="viewport" content="initial-scale = 1.0, user-scalable = no">
        <title>To Do List</title>
        <link rel="stylesheet" href="../../_libs/jqm/jquery.mobile-1.1.0.min.css">
        <script src="../../_libs/jqm/jquery-1.7.2.min.js"></script>
        <script src="../../_libs/jqm/jquery.mobile-1.1.0.min.js"></script>
        <script src="app.js"></script> 
    </head>
    <body>
    </body>
</html>

We are also going to create a file named app.js, which will contain the JavaScript
code that will bring the behavior to our application. Let’s just create the file alongside
our index.html file.

As you can see, we require a very basic <head> structure, with just the following files
included:

• The latest jQuery library

• The latest jQuery Mobile JavaScript file

• The latest jQuery Mobile CSS file

• Our own app.js file

Pages
A jQuery Mobile application consists of pages. Following Apple’s own definition of
screens in the world of iOS, each page represents a screenful of data. What is a page?
In jQuery Mobile parlance, a page is a simple <div> element with the data-
role="page" tags:

<div data-role="page" id="indexPage">
</div>

You can have as many data-role="page" element in your HTML file. However, many
developers choose to separate their pages in different HTML files, and have jQuery
Mobile manage the navigation among these files. We are going to use this approach,
which is recommended, for having a more organized application. But keep in mind that
nothing prevents you from using a single HTML file instead.

Accessing Pages from JavaScript

Just like any other HTML element, you can access jQuery Mobile
page elements using the typical jQuery syntax: var indexPage = $
('#indexPage') would return a pointer to the HTML <div> defined in
the previous snippet. As you might imagine, it is then fundamental to
have different IDs for every element.

This is great news for web developers, who are able to reuse their current
knowledge of web applications in the realm of mobile web apps.

50 | Chapter 3: jQuery Mobile

www.allitebooks.com

http://www.allitebooks.org


A jQuery Mobile page is usually composed of three basic elements: a header, a con
tent, and a footer, as you might have guessed:

<div data-role="page" id="indexPage">
    <div data-role="header">
        Header
    </div>

    <div data-role="content">
        Content
    </div>

    <div data-role="footer">
        Footer
    </div>
</div>

Let’s stop for a minute, and see what we have here in Figure 3-2.

Figure 3-2. First Screen with jQuery Mobile

As you can see, our first page already features a basic structure, but visually it is not
very appealing. Furthermore, neither the header nor the footer stay in place when you
scroll the application with your finger. Let’s make things nicer with a couple of at-
tributes:

<div data-role="page" id="indexPage" data-theme="b">
    <div data-role="header" data-position="fixed" data-theme="b">
        <h1>Header</h1>
    </div>

    <div data-role="content">
        Content
    </div>

    <div data-role="footer" data-position="fixed" data-theme="b">
        <h1>Footer</h1>
    </div>
</div>

And let’s see how this looks in Figure 3-3.

To Do List Application | 51



Figure 3-3. A nicer screen

Much nicer indeed! Even better, the header and the footer stay in place when the user
scrolls the application; exactly the behavior we want in our application. The data-
role, data-theme, and data-position tags provide metadata information that is used by
jQuery Mobile to render the page properly.

What is with those data- attributes?

jQuery Mobile uses data- attributes to apply styles, semantics, and even
behavior to standard HTML elements. HTML5 is flexible enough so
that it can be extended with nonstandard attributes, as long as they start
with the data- prefix. Given that browsers usually ignore unknown tags
and attributes, it is safe to assume that these extensions downgrade
gracefully.

Thanks to this trick, jQuery Mobile is able to display enhanced content
in the latest browsers, while displaying standard web content in older
browsers, not supporting the latest JavaScript and CSS features.

Lists
Lists are a pervasive widgets in most UI toolkits. They are fundamental to show se-
quential data, to layout screen widgets in order, and to provide choices and perspective
to the user. We have said previously that jQuery Mobile uses standard HTML tags,
which are styled and presented as touchscreen controls when rendered in the modern
browsers.

52 | Chapter 3: jQuery Mobile



Lists are no exception to this rule, and jQuery Mobile uses standard <ul> tags, with
their typical child <li> elements, to represent lists. Of course, the <ul> element will be
“augmented” with data-role="listview" tag providing the required metadata, so that
jQuery Mobile displays them as users expect them in touchscreen smartphones.

This is how you create a list in jQuery Mobile:

<div data-role="content">
    <ul data-role="listview">
      <li>First element</li>
      <li>Second element</li>
      <li>Third element</li>
    </ul>
</div>

And Figure 3-4 shows how the list appears when rendered.

Figure 3-4. A simple list

As you can imagine, we are going to use this list to represents the different to-do items
entered by our user. For that, it is very important for the user to be able to touch an
individual item in the list to edit it, and ideally to be able to mark tasks as done in this
very screen as well.

For that, we are going to add simple <a> tags inside of our <li> elements, and jQuery
Mobile will transform them automatically into touchable elements:

<div data-role="content">
    <ul data-role="listview" data-theme="c">
      <li><a href="#first">First element</a></li>
      <li><a href="#second">Second element</a></li>

To Do List Application | 53



      <li><a href="#third">Third element</a></li>
    </ul>
</div>

Finally, we are also going to add a button at the right-most end of each row, which will
be used by the user to set any task as done. This is very easy to achieve, just by adding
a secondary <a> element inside the <li>:

<div data-role="content">
    <ul data-role="listview" data-theme="c">
        <li><a href="#first">First element</a>
            <a href="#setasdone"></a></li>
      <li><a href="#second">Second element</a>
            <a href="#setasdone"></a></li>
      <li><a href="#third">Third element</a>
            <a href="#setasdone"></a></li>
    </ul>
</div>

Figure 3-5 shows how our customized list looks so far.

Figure 3-5. Our task list is ready

Buttons
We need now a means to create a new task on our application. For that, we are going
to add a button on the user interface. When the user clicks the button, a new instance
of a task will be created, and shown on the task form.

54 | Chapter 3: jQuery Mobile



Creating buttons on jQuery Mobile is very easy: just use an <a> element with a data-
role="button" in it, and you are done:

<div data-role="header" data-position="fixed" data-theme="b">
    <h1>Header</h1>
    <a href="#formPage" data-role="button">New</a>
</div>

If you run the preceding code, you will see the button appear on the left side of the
screen. Should you want it on the right side, you should add class="ui-btn-right" to
the item.

Finally, if you would like an icon on your button, you could add the data-
icon="plus" attribute, and your button would appear as shown in Figure 3-6.

Figure 3-6. A jQuery Mobile button

Customizing the Look and Feel
We have seen so far quite a few ways to change the look and feel of our application:

• You can use the data-theme attribute; this has the effect of applying a default style,
provided by jQuery Mobile, or one that you have defined on your own. We are
going to see at the end of this chapter how to define our own style to the application
we are building.

• You can also add specific class attributes to your UI elements; given that jQuery
Mobile applications are defined using standard HTML and CSS, you can use all
the usual arsenal to provide a beautiful style to your application.

To Do List Application | 55



Navigation
As described in our feature list above, our To Do List application has two screens; the
first is the list of the to-do items, and the second is the form used to create and update
items.

To navigate from one screen to another, the answer is just to use pure HTML! As you
can see in the snippet above, the New button in the toolbar is just an <a> tag with an
href="#formPage" tag, styled using special data-icon and class tags, which provide the
look and feel that we want for our application.

Page Lifecycle
So far the only thing we have done is write HTML code. Where is the JavaScript? Well,
as Maximiliano Firtman would say, jQuery Mobile is not a JavaScript coder paradise;
a priori you can describe the look and feel and most of the navigation behaviour just
by writing HTML pages and linking them. We are, however, going to see how to script
jQuery Mobile applications.

And the first thing that we are going to do, is to hook ourselves to some events.

In a similar fashion to Sencha Touch (and many other mobile UI toolkits such as iOS
and Android), jQuery Mobile pages also have lifecycle events:

• pageinit: called before the page is shown for the first time

• pagebeforeshow: called before the page is actually shown

• pageshow: called after the page is shown

• pagehide: called after the page is hidden from view

These events will be familiar to iOS and Android developers, as they closely reassemble
those of the UIViewController and Activity classes in iOS and Android, respectively.

As you can imagine, you can attach functions to these events, and they will be executed
when the time comes. Let’s take a look at how we use these events in our application:

$("#formPage").live("pagebeforeshow", function(event) {
    if (ToDoList.currentTask === null) {
        $("#formPageTitle").text("New Task");
        $("#taskName").val("");
        $("#deleteButton").hide();
    }
    else {
        ToDoList.taskManager.getTaskById(ToDoList.currentTask, function(task) {
            ToDoList.currentTask = task;
            $("#formPageTitle").text("Update Task");
            $("#taskName").val(ToDoList.currentTask.name());
            $("#deleteButton").show();
        });
    }
});

56 | Chapter 3: jQuery Mobile



In the preceding code, we check whether we are showing a new task, or one that exists
in the local storage already. We set the user interface properly before showing the page,
so that the user will be presented with a usable form later.

Forms
jQuery Mobile uses the most simple HTML when dealing with forms. Instead of cre-
ating the widgets with JavaScript code, a simple <form> will be used:

<form action="" method="post" id="form">
    <ul data-role="listview" id="taskDetailsFields">
        <li data-role="list-divider">Task details:</li>
        <li data-role="fieldcontain">
            <label for="taskName">Name:</label>
            <input type="text" name="taskName" id="taskName" value="" />
        </li>

        <li data-role="fieldcontain">
            <label for="taskDescription">Description:</label>
            <textarea cols="40" rows="8" name="taskDescription"
                id="taskDescription"></textarea>
        </li>

        <li data-role="fieldcontain">
            <label for="taskCompleted">Completed:</label>
            <select name="taskCompleted" id="taskCompleted" data-role="slider">
                <option value="no">No</option>
                <option value="yes">Yes</option>
            </select>
        </li>

<!-- ...snip... -->

As you can see, these are exactly the same controls that would be used in a standard
web form; jQuery Mobile will adapt these visual elements to the screen of the current
device.

The principle of graceful degradation applies here; older devices will
display a fully working form, without any special styles, and the func-
tionality of the application will (should, at least) remain the same.

When touching the “Save” button, the form fields are read using standard jQuery no-
tation:

var task = {
    name: $("#taskName").val(),
    description: $("#taskDescription").val(),
    completed: ($("#taskCompleted").val() === "yes"),
    duedate: $("#taskDuedate").data("datebox").theDate
};

To Do List Application | 57



Plug-ins
jQuery Mobile has an open architecture, allowing developers to extend and provide
new functionality to the framework as required, all while keeping a lean and under-
standable core system. We are going to use a particular plug-in to provide users with
a useful user interface widget, not included natively with jQuery Mobile: a date picker.

The To Do List application allows individual tasks to have a target date defined; how-
ever, jQuery Mobile, unlike Sencha Touch, does not provide a native control to select
dates in a visual manner. To solve this problem, we are going to use an extension to
jQuery Mobile: the jQuery Mobile Datebox, A multi-mode date and time picker for
jQueryMobile.

This is how you define an input field with the data-role="datebox" tag, so that the date
picker can provide a proper UI to the user:

<li data-role="fieldcontain">
    <label for="taskDuedate">Due Date:</label>
    <input name="taskDuedate" id="taskDuedate" type="date" data-role="datebox"
    data-options='{"mode": "calbox", "disableManualInput": true}'>
</li>

Figure 3-7. Task Editor of the jQuery Mobile App

58 | Chapter 3: jQuery Mobile

https://github.com/jtsage/jquery-mobile-datebox


Figure 3-8. jQuery Mobile Datebox

There is a long list of available plug-ins in the jQuery Mobile resources page.

Storage
Well! After all the HTML we have written, we would think that the application is ready;
however, if you refresh your browser, you are going to see that all the tasks that you
have defined are not persisted, and you have to enter them again. Not at all the desired
behavior. However, given that jQuery Mobile does not provide a standard way to save
information in a local HTML5 database, we are using the standard HTML5 local stor-
age instead.

First, we are going to encapsulate the storage logic in a MyTaskListApp object, which
will be used throughout the application. This object will be a singleton object, built
using the Singleton paradigm described previously, which employs an anonymous
function, called only once during the life of the application:

var MyTaskListApp = function () {}();

This function will return what I call a public interface, which is basically a literal object
bundled with functions. These functions will reference internal, private variables,
which will hold the internal state of the application, isolated from the rest of the system:

var MyTaskListApp = function () {
    return {};
}();

Pay attention to the way this code is written; to avoid mayhem in the sequence of
brackets (round, curly, and square), it is recommended to always write them in order,
opening and closing them at the same time. This simple technique helps developers to
avoid mistakes and to advance faster in their programming tasks.

To Do List Application | 59

http://jquerymobile.com/resources/#Plugins


This singleton object will provide several methods that will allow us to manipulate the
state of our application; let us just stub them at the moment, and we will deal with the
internals later:

var MyTaskListApp = function () {
    return {
        init: function () {},
        displayCurrentTask: function() {},
        saveCurrentTask: function() {},
        refreshTasks: function() {},
        addTask: function () {},
        removeCurrentTask: function() {},
        setCurrentTask: function() {}
    };
}();

Of course, we are going to define a Task model class, that we are going to expose to the
rest of the application; for this, we are going to use a very simple, rather classic Java-
Script function that can be used with the new operator, as usual:

MyTaskListApp.Task = function () {
    this.done = false;
    this.title = "New Task";
    this.description = "Empty task";
    this.dueDate = new Date();
};

Our controller object will hold an array of instances of this Task class. Let’s begin by
implementing the addTask function:

var MyTaskListApp = function () {

    var tasks = [];

    return {
        // ...

        addTask: function (task) {
            tasks.push(task);
        },

        // ...
    };
}();

As can be seen, the implementation is as simple as it gets; however, if we want to use
the HTML5 local storage we need to somehow synchronize the in-memory storage
provided by the tasks array, and the browser’s own localStorage. Let’s do that now:

var MyTaskListApp = function () {

    var tasks = [];
    var TASKS_KEY = 'jQueryTasks';

    var loadTasks = function () {

60 | Chapter 3: jQuery Mobile



        if (localStorage) {
            var storedTasks = localStorage[TASKS_KEY];
            if (!storedTasks) {
                // This could mean that the application is running for the first
                // time, or that the developer has deleted the object from the
                // local storage
                saveTasks();
            }
            else {
                tasks = JSON.parse(storedTasks);
            }
        }
    };

    var saveTasks = function () {
        if (localStorage) {
            localStorage[TASKS_KEY] = JSON.stringify(tasks);
        }
    };

    return {
        init: function () {
            loadTasks();
        },
        // ...

        addTask: function (task) {
            tasks.push(task);
            saveTasks();
        },

        // ...
    };
}();

In the preceding code we have introduced two private functions in our controller; they
are used to wrap the access to the localStorage from the rest of the application, which
might help us in the future should we choose to change the storage strategy later. The
methods in the public interface of the controller will use this methods repeatedly, to
guarantee the synchronization between the array and the localStorage.

Codiqa
One of the most imaginative uses of jQuery Mobile is without any doubt Codiqa (see
Figure 3-9), a browser-based UI prototyping application that can be used to create
mockups of mobile applications. It is entirely based on jQuery Mobile, and even the
main site of jQuery Mobile features Codiqa.

Codiqa | 61

http://codiqa.com/
http://jquerymobile.com/


ThemeRoller
The ThemeRoller for jQuery Mobile is a web application created by the jQuery Mobile
team, that allows developers to create the stylesheet for their applications with a very
convenient visual interface.

Figure 3-10 shows the interface of the ThemeRoller for jQuery Mobile, which provides
a download link for the resulting CSS file, in both minified and non-minified formats,
including all the sprite images used by the stylesheets.

The snippet below shows a fragment of the non-minified CSS generated by the The-
meRoller, which includes all kinds of comments to guide developers into customizing
the final style:

/*
 * jQuery Mobile Framework 1.0.1
 * http://jquerymobile.com
 *
 * Copyright 2011-2012 (c) jQuery Project
 * Dual licensed under the MIT or GPL Version 2 licenses.
 * http://jquery.org/license

Figure 3-9. Codiqa

62 | Chapter 3: jQuery Mobile

http://jquerymobile.com/themeroller/index.php


 *
 */
/* Swatches */

/* A
----------------------------------------------*/

.ui-bar-a .ui-link-inherit {
    color: #ffffff /*{a-bar-color}*/;
}
.ui-bar-a .ui-link {
    color:  #7cc4e7  /*{a-bar-link-color}*/;
    font-weight: bold;
}

.ui-bar-a .ui-link:hover {
    color:  #2489CE  /*{a-bar-link-hover}*/;
}

Figure 3-10. ThemeRoller for jQuery Mobile

Conclusion
jQuery Mobile provides a simpler way to build mobile apps, with broader browser
support than Sencha Touch, but with a smaller set of prebuilt functionalities and widg-

Conclusion | 63



ets. It requires only a simple toolset, with lots of simplicity, and the learning curve is
as easy as it could be.

In my personal experience, jQuery Mobile is perfect for the following scenarios:

Strong cross-browser application framework
In this area, jQuery Mobile is simple unbeatable and offers incredible flexibility in
a very large range of mobile platforms.

Quick prototyping tool for mobile applications
Designers can quickly test ideas with their customers, modeling interactions, and
navigations without any code at all just by using HTML standards. The product
of the design process can even be reused by developers for the creation of the final
version of the application.

64 | Chapter 3: jQuery Mobile



CHAPTER 4

Sencha Touch

Of all the frameworks presented in this book, Sencha Touch is probably the most com-
plex and daunting of all. It is an amazing piece of JavaScript code, providing application
developers with a fertile playground ready to be explored.

This chapter will provide an introduction to Sencha Touch, and will later explore its
characteristics by creating three small applications from scratch.

At the time of this writing, the current stable version of Sencha Touch
is version 2.0.1.

Introduction and History
Sencha Touch is a fully fledged UI framework, in the same tradition as Cocoa Touch,
Swing, or .NET. It is completely written in JavaScript, and it is a direct spin-off of the
famous Ext.js framework, initially created in 2006 by Jack Slocum as an extension
(hence the name) of the YUI framework from Yahoo!.

Sencha Touch provides a set of very complex widgets, reacting to the most complex
gestures, geared towards the creation of extremely complex web applications. In this
sense, Sencha Touch (and Ext.js) can be compared to Cappuccino, SproutCore, or
other large-scale, enterprise-y frameworks.

Characteristics
And enterprise-y it is. Or at least that is how Sencha (the company behind Sencha
Touch) is aggressively marketing it. Frameworks falling into this category usually have
the following characteristics:

• (Relatively) Large code footprint

65

http://cappuccino.org/
http://sproutcore.com/


• Complex object hierarchy

• Long list of widgets, with complex customizations, ready to be used out-of-the-box

• Opinionated approaches to common tasks

• Cross-browser support

• Detailed documentation and a fanatical user base

• Commercial support

Sencha Touch largely fills all of the requirements above, including the availability of
an advanced designer tool: the Sencha Architect 2. This tool can be used to visually
design user interfaces, using a tool similar to Interface Builder or Visual Studio, allowing
developers to quickly create prototypes or complex user interfaces without having to
write a single line of code. We are going to learn abut Sencha Architect at the end of
this chapter.

Supported Platforms
Sencha Touch is a product of Sencha, which was formed after popular JavaScript library
projects Ext.JS, jQTouch and Raphaël were combined. The first release of Sencha
Touch was version 0.90 beta on July 17, 2010. This beta release supported iOS devices
like iPhone, iPod touch, the iPad, and Android devices.

Subsequently, the first stable version 1.0 was released in November 2010. The latest
stable version 2.0.1 adds support to BlackBerry devices running OS version 6. Version
2.0 has been released as Beta during SenchaCon 2011, held in Austin, Texas in October
2011, and in final version during the writing of this book, in March 2012.

Webkit Only!

It is very important to note that Sencha Touch is primarily based on
Webkit, so it can support only webkit-based browsers like Chrome and
Safari. This fact has a direct implication in the development process,
because it means that you cannot use Firefox or Firebug to debug the
application, and instead you have to use the equivalent tools provided
by Safari or Chrome.

Key Features
Sencha Touch has several features that set it apart from other similar frameworks; in
this section we are going to see some of them in detail.

GUI Controls
Sencha Touch includes a set of GUI-based controls or components for use within mo-
bile web applications. These components are highly optimized for touch input.

66 | Chapter 4: Sencha Touch



Some GUI components available in the library:

• Buttons with device specific themes and effects

• Form elements like text fields (for email, date picker, address, etc.), sliders, selec-
tors, and comboboxes

• List component, which has momentum scrolling along with index

• Minimalistic icon set

• Toolbars/Menus

• Movable tabs

• Bottom toolbars

• Map component with support to multi-touch input like pinch and zoom

• All the components can be themed according to the target device (this is done using
SASS, a stylesheet language built over CSS)

To demonstrate the large choice of GUI components available in Sencha Touch, the
development team has built the Kitchen Sink, a rather extensive demo showcasing
almost every possible control available in the library; you can take a look at the Fig-
ure 4-1.

Figure 4-1. Kitchen sink

Key Features | 67

http://dev.sencha.com/deploy/touch/examples/kitchensink/


CSS Transitions and Animations
Sencha Touch has certain built-in transition effects, based on the powerful CSS3 sup-
port that newer Webkit browsers have:

• Slide over or under current element

• Pop

• Flips

• Cube

Touch Event Management
Sencha Touch supports common touch gestures basically built from Touch events that
are web standard but are supported only by iOS, Android OS, and some touch-enabled
devices:

• Tap

• Double Tap

• Swipe

• Scroll

• Pinch

However, care must be taken when handling many events in the same panel; for ex-
ample, when handling single and double taps, the single tap event should trigger the
creation of a delayed task, that should be removed if the user taps twice. It is somewhat
unfortunate that the framework does not handle this situation by itself.

Application Data Support
Sencha Touch consists of both UI libraries and also data libraries. With the use of data
libraries the mobile web application can get data from any remote server. Sencha Touch
has a data package to support web standards for data interchange with server like AJAX
and JSONP. It also supports YQL. Using these technologies, data can be bound to
visual components like lists to reflect data from server.

One of the most interesting aspects of Sencha Touch regarding data management is the
fact that lists (and other DataView panels) can be bound to data stores in such a way
that they will be notified automatically of any change in the data store. Developers do
not have to manually reload the list to reflect the changes in the data!

JavaScript Idioms
Sencha Touch has inherited from Ext.js a standardized (and opinionated) way of writ-
ing JavaScript; this has the advantage of simplifying the reading of code using these

68 | Chapter 4: Sencha Touch



frameworks, but it also sometimes represents a slightly steep curve for developers new
to the platform.

We are then going to spend a bit of time learning the classic Ext.js JavaScript idiom,
which will make things easier to understand later on. Developers who have prior ex-
perience with Ext.js can jump or skim this section altogether, and start writing their
first Sencha Touch application right away.

The idioms used by Sencha Touch are two:

• Dictionaries for widgets

• Method-based definition of classes and creation of instances

This section will describe these two patterns in detail.

Descriptive Dictionary Pattern
The first, most common idiom used by Sencha Touch is what I call the Descriptive
Dictionary Pattern. Whenever you create a new instance of any Sencha Touch class,
you are going to pass a dictionary of options to the function. For example, when you
create your application, you write code like the following:

Ext.application({});

The Ext.application function takes a single parameter, a dictionary with options that
are used to modify the behavior and look and feel of the application. Among those
parameters, there are two very important ones that we are going to add:

name

A simple string without spaces used to generate a master namespace where all the
objects of our application will be stored. This is similar to creating a global appli
cation JavaScript object, but instead Sencha Touch takes care of its creation au-
tomatically for us.

launch

This parameter takes a function and for all practical purposes, it is the entry point
of the execution of our application.

Having said that, let me introduce to you a reasonable “Hello world” application in
Sencha Touch 2:

Ext.application({
    name: 'SampleApp',
    launch: function() {
        Ext.Msg.alert('Hello, World!');
    }
});

Our objective is of course to create complex user interfaces; for that, we are going to
use the singleton Ext.Viewport object, which serves a similar purpose as the default

JavaScript Idioms | 69



UIWindow instance used in iOS applications. The basic canvas where any other widgets
can be drawn.

Just call the add() function of the singleton Ext.Viewport object to add any required
subviews:

Ext.application({
    name: 'SampleApp',
    launch: function() {
        Ext.Viewport.add({});
    }
});

Just like when calling the Ext.application() method, the Ext.Viewport.add() function
also takes a literal object as parameter; you just specify a dictionary with the proper
types, and let Sencha Touch do the rest:

Ext.application({
    name: 'SampleApp',
    launch: function() {
        Ext.Viewport.add({    
            xtype: 'tabpanel'
        });
    }
});

The object defined in this dictionary has the xtype property, which is very common
in Sencha Touch.

We are going to learn more about the xtype property later in this chapter; for the mo-
ment, suffice to say that this parameter is used to determine the class of the object that
will be created by Sencha Touch inside our Viewport object.

Object Orientation in Sencha Touch
Sencha Touch provides an abstraction around JavaScript’s own object orientation sys-
tem, allowing developers to manage, in a small set of functions, the definition of classes
and the creation of instances from those classes. In short, you use the Ext.define()
function to… well, define a new class, and you use the Ext.create() function to create
a new instance from any class.

For example, let’s see how to define a new Sencha Touch class:

Ext.define('ToDoListApp.model.Task', {
    extend: 'Ext.data.Model',

    config: {
        fields: [{
            name: 'id',
            type: 'int'
        },

        {

70 | Chapter 4: Sencha Touch



            name: 'completed',
            type: 'boolean'
        },

        {
            name: 'dueDate',
            type: 'date'
        },

        {
            name: 'title',
            type: 'string'
        },

        {
            name: 'description',
            type: 'string'
        }
        ],
        idProperty: 'id'
    }

    constructor: function(title) {
        if (title) {
            this.title = title;
        }

        return this;
    },

    markAsCompleted: function() {
        console.log(this.title + " is done!");
        this.completed = true;
    }
});

Now let’s see how we create a new instance from the class we have previously defined:

var task = Ext.create('ToDoListApp.model.Task', { title: 'Buy milk' });
task.markAsCompleted(); // logs "Buy milk: is done!" in the console

In the preceding code, we are not using the new keyword provided by JavaScript: new
ToDoListApp.model.Task(). Instead, it is recommended to use Ext.create, since it al-
lows you to take advantage of dynamic loading, which is a core feature of Sencha Touch.

Learn About the Sencha Touch Class System

It is strongly recommended to read the Class System Guide to learn more
about the idioms used by Ext.js and Sencha Touch for defining and using
classes.

JavaScript Idioms | 71

http://docs.sencha.com/ext-js/4-0/#!/guide/class_system


Creating a To Do List App
The first application we are going to create with Sencha Touch is a very simple To Do
List that allows users to:

• Browse a list of tasks

• Mark a task as completed (or not) by double tapping the task

• Tasks are grouped by due date, so that it is easier to see what has to be done in
each day

• Add, edit, and remove tasks from the list

Finally, we are going to build this application as a single JavaScript file to begin with.
We are going to break it into a proper MVC application after we have a working app.
(See Figure 4-2.)

Figure 4-2. Sencha Touch To Do List

Create the HTML
The first thing to do is to create the HTML file that will hold the different pieces of the
application. In our case, it will look like this:

<!DOCTYPE html>
<html>
  <head>

72 | Chapter 4: Sencha Touch



    <meta charset="utf-8" />
    <title>Hello World</title>

    <script src="sencha/sencha-touch.js"></script>
    <link href="sencha/resources/css/sencha-touch.css" rel="stylesheet" />

    <script src="app.js"></script>
  </head>
  <body></body>
</html>

At this point you might ask yourself, but wasn’t Sencha supposed to be a JavaScript-
only framework? Well, yes, but we need at least one HTML file for the browser to load
all the different pieces of our application.

The HTML code itself is extremely simple; it just loads the two main files of the Sencha
Touch framework: the JavaScript and the CSS stylesheet. The <body> tag, in particular,
is completely empty, as Sencha Touch takes care of the complete initialization of any
application built with it.

The biggest downside of Sencha Touch can be easily seen right now: the huge size of
the library means that, in slow hardware, loading a Sencha Touch application can take
up to a couple of seconds, which might or might not be acceptable for your users. Of
course, as per Moore’s law, as mobile devices grow more powerful, this is becoming
less and less of a problem (however, as this happens, these libraries keep growing, so
it is a continuous fight between ease of development and performance, as a matter of
fact).

Starting the Application Code
The code of the application is located in the app.js file. Remember that Sencha Touch
is a pure JavaScript framework, and as such you create, manipulate, and destroy HTML
elements through JavaScript, without ever writing a single line of HTML.

The first thing we are going to do is to create the basic skeleton of our application. This
skeleton is constituted by the following elements:

• An instance of Ext.Application, which is the base class for Sencha Touch applica-
tions. When a Sencha Touch application starts, the entry point is always the
launch() method of this instance.

• A master viewport panel, created by the application instance, which plays the same
role as the UIWindow in an iPhone app, or the default activity in an Android
application.

• Inside the viewport, we are going to embed all the other screens, each stored in a
separate variable (later, we will see how to embed these elements in separate files
to create a more manageable application structure).

Let’s see the code that represents what we have just described:

Creating a To Do List App | 73



Ext.Loader.setConfig({
    enabled: true
});

Ext.application({
    models: [
        'Task'
    ],

    controllers: [
        'TaskController'
    ],

    stores: [
        'TaskStore'
    ],

    views: [
        'TaskList',
        'TaskForm'
    ],

    name: 'ToDoListApp',

    launch: function() {
        Ext.Viewport.add([
                         Ext.create('ToDoListApp.view.TaskList'),
                         Ext.create('ToDoListApp.view.TaskForm')
        ]);
    }
});

If you remember our discussion about JavaScript at the beginning of this book, you
will remember that it is important to scope the variables of a JavaScript application, so
that the global namespace is not cluttered. This is what we are doing here: the ToDo-
ListApp name is automatically converted by Sencha Touch in a variable, which works
both as a pointer to the application instance and as a namespace in itself, where all the
different widgets of the application will reside.

We can also see that the launch() method calls the Ext.Viewport.add() method of the
Viewport singleton, which holds two instances of custom panels. You can think of a
Container as an UIView in iOS or a View in Android; Containers are the basic building
visual block of Sencha Touch applications.

And, similarly to other UI frameworks, you can embed Containers into Containers; the
particularity in Sencha Touch is the use of the items property, which takes an array of
Containers. This property simply adds the containers as children of the current one,
and if you pass more than one container, the first is shown while the others are hidden.

Another important element of the definition above is the fact that Sencha Touch View-
ports automatically use the layout: "card" instruction. This tells the container to use
an instance of Ext.layout.CardLayout to display its children items, and it makes the

74 | Chapter 4: Sencha Touch



parent only display a child container at a time. The CardLayout class also provides a
setActiveItem() method that we are going to use in this application, in order to jump
from container to container, using animations.

Transitions
One interesting property of the items property is that you can add several children
panels to a parent panel, and then you can navigate from screen to screen, using similar
animations as if you were using an UINavigationController in iOS. However, there is
a greater flexibility to specify the types of animations, all powered using WebKit’s own
CSS animations.

Creating Instances
Sencha Touch elements can be created both by using the Ext.create function, which
requires the class name of the object, or by using dictionaries with the xtype keyword,
which takes a special code as a parameter. When reading this parameter, Sencha Touch
will automatically create the object of the corresponding class.

The following table shows the correspondence of the different classes available in Sen-
cha Touch.

Table 4-1. Equivalence between instance creation syntaxes

Category xtype Class

Basic button Ext.Button

component Ext.Component

container Ext.Container

dataview Ext.DataView

panel Ext.Panel

toolbar Ext.Toolbar

spacer Ext.Spacer

tabpanel Ext.TabPanel

Form form Ext.form.FormPanel

checkbox Ext.form.Checkbox

select Ext.form.Select

field Ext.form.Field

fieldset Ext.form.FieldSet

hidden Ext.form.Hidden

numberfield Ext.form.NumberField

radio Ext.form.Radio

Creating a To Do List App | 75



Category xtype Class

slider Ext.form.Slider

textarea Ext.form.TextArea

textfield Ext.form.TextField

Data store Ext.data.Store

arraystore Ext.data.ArrayStore

jsonstore Ext.data.JsonStore

xmlstore Ext.data.XmlStore

To use the xtype syntax, just create a standard JavaScript dictionary and use it in the
items or dockeditems property of your panel, just as if you would use any other instance:

Ext.define('ToDoListApp.view.TaskList', {
    extend: 'Ext.dataview.List',

    config: {

        items: [{
            xtype: 'toolbar',
            title: 'To Do List',
            items: [{
                xtype: 'spacer'
            },
            {
                xtype: 'button',
                iconCls: 'add',
                ui: 'plain'
            }]
        }]
    }
});

Stores, Proxies, Writers, and Readers
The diagram in Figure 4-3 shows the typical organization of a Sencha Touch 2 appli-
cation. In this organization, the MVC standard is complemented by a series of supple-
mentary objects, which serve as an abstraction layer for the underlying storage and
communication mechanisms used by the application.

The first element in this mechanism is the Store. A Store represents an abstraction
around data.

Views use stores directly (hence the direct connection between views and stores in
Figure 4-3). One of the coolest features of this direct relationship is that views are 100%
aware and dependent on the state of a store; this means that if you want to update a
UI element attached to a store, you just update the store data, and the UI element will

76 | Chapter 4: Sencha Touch



be updated automatically. This is a common mechanism in ASP.NET, for example,
where it is known as data binding.

There are several different kinds of stores available:

• Ext.data.Store is the base class used to represent stores; usually applications just
create a raw instance of this class and use it as a store.

• Ext.data.TreeStore is used to represent hierarchical data, and it is used with com-
ponents such as the Ext.dataview.NestedList, used in the framework to represent
nested sets of information.

Stores depend, in turn, of Proxies. These are instances of the Ext.data.proxy.Proxy class
(or its subclasses), and they encapsulate the logic required for a particular storage tech-
nology. For example, there are proxies for the following types of storage:

Ext.data.proxy.Ajax

Allows the application to talk to a backend server, using the common CRUD
methods. This is one of the most important proxies available; developers can cus-
tomize them in many ways, like specifying the URLs for each of the API operations,
and to pass parameters for each of those operations. A subclass of this proxy,
Ext.data.proxy.Rest is specifically tailored for connecting to REST services.

Ext.data.proxy.JsonP

Another type of server-bound proxy, like the Ext.data.proxy.Ajax class; in this
case, this proxy is able to read data from domains other than that of the original
web application.

Ext.data.proxy.Memory

Stores data in an in-memory array, lost when the page is refreshed or when the user
navigates away from the page.

Figure 4-3. Sencha Touch 2 application architecture

Creating a To Do List App | 77



Ext.data.proxy.LocalStorage and Ext.data.proxy.SessionStorage
Allow developers to store data in, you guessed it, the new HTML5 standard storage
mechanisms.

Finally, server-bound proxies depend in turn on writers and readers. These classes,
respectively located in the Ext.data.writer and Ext.data.reader namespaces, provide
serialization and deserialization mechanisms for creating and reading XML, JSON
payloads. Readers and writers are usually tied to server-bound proxies.

In our sample application, we are going to use a simple local storage proxy, which does
not require a reader or a writer.

The Data Model
Sencha Touch uses the MVC architecture throughout its system. It allows developers
to separate clearly the model classes from the view logic. It also allows developers to
create adhoc stores, local or remote, to read and write those model instances.

In this sample, we are first going to write the application all in the same JavaScript file,
and then we are going to separate the different elements in different files.

The first thing we are going to do in our app is to describe the model and the store
where the model instances will be stored. This is the definition of a model class:

Ext.define('ToDoListApp.model.Task', {
    extend: 'Ext.data.Model',
    config: {
        fields: [
            {
            name: 'id',
            type: 'int'
        }, {
            name: 'completed',
            type: 'boolean'
        }, {
            name: 'dueDate',
            type: 'date'
        }, {
            name: 'title',
            type: 'string'
        }, {
            name: 'description',
            type: 'string'
        }],
        idProperty: 'id'
    }
});

As you can see, you can define all the characteristics of a Task, including the type and
default values of each of its properties. In our case, a Task is defined by a numeric ID,
a name, a description (both textual), a boolean value (stating whether the task has been
done or not), and a due date.

78 | Chapter 4: Sencha Touch



Finally, we are specifying a proxy for our model, which provides the information of the
location of the data. In this case we will be using the localStorage proxy, which means
that the data will be stored as JSON objects in the HTML5 localStorage container of
the browser.

Then we will specify a store for the model. A Sencha Touch store creates an intermediate
object between your application controllers and the data they manage, allowing to
provide information used to display the data in a meaningful way, such as its order or
its grouping. In the case of our application, we are going to define the following Store:

Ext.define('ToDoListApp.store.TaskStore', {
    extend: 'Ext.data.Store',
    requires: [
        'ToDoListApp.model.Task'
    ],

    config: {
        model: 'ToDoListApp.model.Task',
        sorters: [{
            property: "dueDate",
            direction: "ASC"
        }],
        autoLoad: true,
        autoSync: true,
        singleton: true,
        storeId: 'TaskStore',
        proxy: {
            type: 'localstorage',
            id: "senchatasks"
        },
        grouper: function(record) {
            if (record && record.get("dueDate")) {
                return record.get("dueDate").toDateString();
            }
        }
    }
});

Creating the List
The first screen of our application is, of course, the list of tasks. In this screen we will
display all the current tasks available, and whenever the application launches, it will
synchronize the items available in the local database and display them:

Ext.define('ToDoListApp.view.TaskList', {
    extend: 'Ext.dataview.List',
    requires: [
        'ToDoListApp.store.TaskStore'
    ],

    config: {
        displayField: 'title',
        id: 'taskList',

Creating a To Do List App | 79



        store: Ext.create('ToDoListApp.store.TaskStore'),
        itemTpl: '<div class="task completed_{completed}">{title}</div>',
        onItemDisclosure: true,
        emptyText: '<p align="center" class="instructions">No tasks here yet.<br/>Tap 
the "+" button to create one.</p>',
        grouped: true,

        items: [{
            xtype: 'toolbar',
            title: 'To Do List',
            docked: 'top',
            ui: 'light',
            items: [{
                xtype: 'spacer'
            }, {
                xtype: 'button',
                ui: 'plain',
                iconCls: 'add',
                iconMask: true,
                text: '',
                action: 'createTask'
            }]
        }]
    }
});

This is a very simple Ext.dataview.List that we are defining here; it will use the data
store defined above as source of its data, and we are defining some useful properties,
such as the fact that it will be grouped, and that every item shown will use a template.

Item templates are a very useful feature of Sencha Touch lists; they allow us to define
the internal structure of each cell, and they are very similar to templates created using
the jQuery Template plug-in.

One of the most interesting parts of the cell template is the fact that we can specify the
data fields of each task, and how they are shown, just by encapsulating them between
curly brackets.

Creating a To Do Item Form
The list is the first screen of our application. We also want to be able to create, edit,
and delete To Do items, and for that we are going to create a form:

Ext.define('ToDoListApp.view.TaskForm', {
    extend: 'Ext.form.Panel',

    config: {
        id: 'taskForm',
        items: []
    }
});

80 | Chapter 4: Sencha Touch



The Ext.form.Panel class is there to help us. As usual, it takes a dictionary object with
configuration options, and in particular, it uses a titlebar and two fieldsets; each one
of these fieldsets will be rendered as its own group; the first fieldset contains all the
data fields required to define a To Do item (see Figure 4-4):

{
    xtype: 'fieldset',
    id: 'mainFieldSet',
    instructions: 'Enter the details of the task',
    title: 'Task Details',
    items: [{
        xtype: 'textfield',
        id: 'titleField',
        label: 'Title',
        name: 'title',
        autoCapitalize: true,
        placeHolder: 'Enter a title'
    }, {
        xtype: 'textareafield',
        id: 'descriptionField',
        label: 'Description',
        name: 'description',
        autoCapitalize: true,
        placeHolder: 'Enter a description'
    }, {
        xtype: 'datepickerfield',
        id: 'dateField',
        label: 'Due on',
        name: 'dueDate',
        placeHolder: 'dd/mm/yyyy',
        dateFormat: 'D d M Y',
        picker: {
            slotOrder: [
                'day',
                'month',
                'year'
            ],
            yearFrom: (new Date()).getFullYear(),
            yearTo: (new Date()).getFullYear() + 10
        }
    }, {
        xtype: 'togglefield',
        id: 'completedField',
        label: 'Done',
        name: 'completed'
    }]
}

Creating a To Do List App | 81



Figure 4-4. Form to create to do items

The second fieldset is shown only when the form is used to edit an item, and contains
a single Delete button (shown in Figure 4-5):

{
    xtype: 'fieldset',
    id: 'taskFormDeleteFieldset',
    instructions: 'This cannot be undone',
    title: 'Actions',
    items: [
        {
        xtype: 'button',
        height: 44,
        id: 'deleteButton',
        ui: 'decline',
        text: 'Delete this task',
        action: 'deleteTask'
    }

The confirmAndDelete method asks the user for a confirmation before deleting the file,
as shown in Figure 4-6.

A Controller to Rule Them All
The missing piece in our discussion of the MVC paradigm is, as you might have guessed,
the controller. In Sencha Touch, controllers are defined as subclasses of the Ext.app.Con
troller class. They serve as the glue that ties models, stores and views together, and

82 | Chapter 4: Sencha Touch



they provide a handy mechanism allowing developers to centralize all their application
logic in a single place.

This is a very basic definition of a controller:

Ext.define('ToDoListApp.controller.TaskController', {
    extend: 'Ext.app.Controller',

    config: {
        id: 'taskController',
        refs: {
            saveButton: 'button[action=saveTask]',
            taskForm: '#taskForm',
        },
        control: {
            saveButton: {
                tap: 'saveTask'
            }
        }
    },

    launch: function () {
        this.updateTaskCount();
    },

    saveTask: function (button, e, eOpts) {
        // ... the code to save a task ...
        var form = this.getTaskForm();
        // ...

Figure 4-5. Delete button

Creating a To Do List App | 83



    }
});

A typical Sencha Touch controller is composed of three main sections:

• A config object, itself containing two dictionaries:

refs

Contain references to individual UI widgets anywhere in the application

control

Defines, for each control, the event handlers that will be assigned.

• A launch function, which is called after the main application launch function, and
which serves as a good initialization point for the application

• One or more event handling functions

Figure 4-6. Confirmation shown before removing an item

Let’s analyze in detail how controllers work:

1. The refs collection mentions the existence of a button, whose action parameter is
the string saveTask. There is also a reference to the task edition form, whose ID is
taskForm. Sencha Touch controllers can reference widgets and controls using either
of these syntaxes, making it very easy for developers to pinpoint individual com-
ponents all over the application.

2. Later, in the control dictionary, we attach an event handler for the tap event on
the button specified by the saveButton entry; the value of this event handler is a

84 | Chapter 4: Sencha Touch



string, which is exactly the name of the method in the controller that will be fired
when the user touches the button.

3. Finally, the saveTask function contains the code that actually performs the reques-
ted action.

Another handy feature of the refs collection is that the controller will generate, auto-
matically, getter methods that can be used to access individual components. For ex-
ample, in the code above, the developer will be able to use the getTaskForm() method
at any moment to retrieve a reference to that particular component.

Although nothing prevents developers from adding the event handling code directly in
their views, controllers provide a handy and simple way to organize applications from
the very beginning, allowing them to grow bigger and more complex as time passes.

Reacting to Events
There are many different event listeners that we can attach ourselves to, and the Sencha
Touch documentation describes in great detail what is required for each one of them.

The most important listeners that you are going to use as a Sencha Touch developer are:

render

Called when the panel is drawn on screen for the first time. There are similar
beforerender and afterrender listeners that are useful for the developer.

activate

Executed whenever the panel is active through the setActiveItem method.

itemtap

Executed whenever an item in the list is tapped.

orientationchange

As the name implies, this callback is executed after the device changes its orienta-
tion.

Each event requires a function with a particular signature; the Sencha Touch docu-
mentation describes in detail their structures.

The saveTask event handler in our controller has exactly the same pa-
rameters specified in the Sencha Touch documentation; you can find all
of these parameters in their corresponding documentation, and it is
strongly suggested to specify them all, even if the dynamic nature of
JavaScript makes this an optional feature.

Navigation
How does the application navigate from one screen to the other? As you can see by
yourself, the application allows you to follow a navigation pattern very similar to that

Creating a To Do List App | 85



of the UINavigationController class in iOS, where one screen is pushed after the other,
and a Back button allows you to return to where you were.

However, in Sencha Touch there is no such thing as a navigation controller, and thus
you must handle the navigation manually. In the case of the To Do List application,
there are basically two transitions:

1. From the list to the form

2. Back from the form to the list

The first animation is triggered every time you touch the + button, or every time you
select an item in the list. In both cases, the magic is created by using the setActiveI
tem() method of the Panel class. This method accepts parameters that define the kind
and direction of the transition to be used.

This method is called in the Viewport instance, which has two items: the list and the
form. Our controller triggers the navigation, passing some parameters, as required by
the user:

showForm: function() {
    Ext.Viewport.getLayout().setAnimation({
        type: 'slide',
        direction: 'left'
    });
    Ext.Viewport.setActiveItem(this.getTaskForm());
},

showList: function() {
    Ext.Viewport.getLayout().setAnimation({
        type: 'slide',
        direction: 'right'
    });
    Ext.Viewport.setActiveItem(this.getTaskList());
},

The viewport is just a panel, containing the list of to do items and a toolbar, and the
second one is the task form. The setActiveItem() function is used to jump from panel
to panel, creating the illusion of a transition between both.

The concept of the viewport is central to Sencha Touch, and this singleton object is a
standard way to designate the root view that is visible at all times in the application.
iOS developers can think of the viewport as the UIWindow instance where all the
application is drawn and displayed.

Using Sencha Architect 2
As you have seen in this chapter, the creation of a Sencha Touch application uses a
fairly descriptive, JSON-like structure of code. Developers use this to literally describe
each and every detail of the user interface, and Sencha Touch allows them to organize
this code in separate files for convenience.

86 | Chapter 4: Sencha Touch



The fact that most of the UI of a Sencha Touch application can be described with literal
objects is one of the keys behind the success of the Sencha Architect 21, a commercial
tool provided by the creators of Sencha Touch. Sencha Architect is very similar in nature
to the visual builders found in products like Visual Basic or Xcode, allowing developers
to create user interfaces with a mouse.

Sencha Architect 2 provides developers and designers for a common tool, integrated
with a code generator, that can be used to create fully fledged applications in a very
short amount of time. It uses the common canvas UI paradigm, with a widget palette
on the left pane, a central editor canvas, and a project browser plus a properties pane
on the left. The properties pane displays all the editable properties of the currently
selected object on the canvas or on the project browser.

Figure 4-7 shows the tool running on OS X.

1. Previously known as Sencha Designer.

Using Sencha Architect 2 | 87



Figure 4-7. Sencha Architect 2

Sencha Architect 2 is a commercial application.

Sencha Architect 22 is available for Mac, Windows and Linux, with a
commercial license; a preview version, valid for 90 days, can be down-
loaded for free. It can be used not only to create and edit Sencha Touch
applications, but also Ext.js ones.

Conclusion
Sencha Touch is a very complex framework, and of course this chapter scratches only
the surface of what can be done with it. Currently it is available in version 2.0, bringing

2. Sencha Architect 2 was in beta at the time of this writing.

88 | Chapter 4: Sencha Touch



several new features over 1.0, like a brazenly fast rendering engine (based in CSS, and
thus, hardware-accelerated in iOS devices), and a new class system, which is 100%
similar to the one available in ExtJS 4, much faster and easier to use.

However, Sencha Touch has the major drawback of not being available for non WebKit-
based mobile browsers, which dramatically limits its cross-platform support. It com-
pensates this fact by a tremendously polished UI, one that truly sets it apart from other
mobile frameworks, and by a solid architecture, which makes it a serious alternative
for enterprise software users.

Conclusion | 89





CHAPTER 5

PhoneGap

The last framework we are going to see in this book is PhoneGap, an innovative system
that allows developers to package web applications as native mobile apps.

PhoneGap was created by a company called Nitobi, which was acquired by Adobe.
Furthermore, PhoneGap has become an official project of the Apache Foundation and
it is called now Apache Cordova1. Technically speaking, it can be said that PhoneGap
is a distribution of Apache Cordova.

At the time of this writing, the current stable version of PhoneGap is
version 1.7.0.

Introduction
PhoneGap wraps applications created using HTML, CSS, and JavaScript into native
applications, using the native web browser component provided by most native smart-
phone development toolkits.

As Adobe promotes it, PhoneGap is actually two things:

Wrapper
PhoneGap takes your HTML, CSS, and JavaScript files and packages them in such
a way that can be deployed to an online store.

Bridge
PhoneGap also provides mechanisms to augment HTML5 web applications, al-
lowing them to access and consume information and services otherwise available
only to native applications, such as the local address book, the notification system,
sounds, and other utilities.

1. You might also hear about PhoneGap being called “Apache Callback,” and even the URLs at the Apache
Foundation website say so; but Cordova is the official name to use from now on.

91

http://phonegap.com/
http://nitobi.com/
http://incubator.apache.org/projects/callback.html


Supported Platforms
At the time of this writing, PhoneGap currently supports the following mobile plat-
forms:

• Apple iOS

• Android

• BlackBerry (since version 4.6, including the PlayBook)

• HP webOS

• Microsoft Windows Phone 7

• Symbian

• Bada

Supported Features
As a bridge, PhoneGap allows developers to access the following features:

• Accelerometer

• Address Book

• Camera

• Compass

• File system

• Geolocation

• Media

• Network

• Notifications

• Storage

Unfortunately, so far not all features are supported in all the mobile platforms in which
PhoneGap runs; there is a chart available at the PhoneGap site, reproduced in Fig-
ure 5-1, which shows the features available for each platform. However, as a rule of
thumb, you can remember that only iOS, Android, and Windows Phone 7 have full
support for all of PhoneGap.

92 | Chapter 5: PhoneGap

http://phonegap.com/about/features


Figure 5-1. Supported PhoneGap features

Basic Usage
To create a native application using PhoneGap usually involves the following steps:

1. Create the web application you are going to package.

2. Install the PhoneGap framework in your development machine.

3. Create a PhoneGap application in your IDE.

4. Add the required HTML, CSS, and JavaScript files.

5. Build your application as you normally would, test, and deploy!

The following sections will show how to perform these steps to create iPhone and
Android applications.

Introduction | 93



PhoneGap Build

Another interesting option is to use the PhoneGap Build service, which
makes developers’ lives easier by just providing an upload and down-
load model. This way, developers just upload their source code, and
they can download binaries for various mobile platforms, ready to be
signed, executed, and deployed.

Installing PhoneGap
The first step is to download the PhoneGap distribution, available from the Phone-
Gap home page, and to unzip its contents. Figure 5-2 shows the contents of the package,
with subfolders for each supported mobile platform.

Figure 5-2. PhoneGap folder

In this chapter, we are going to see how to create packaged versions of the Sencha Touch
and jQuery Mobile applications we created in the previous steps.

Creating an iOS Application
The iOS folder of the PhoneGap installation package contains the PhoneGap-
X.X.X.dmg file. Opening that file will create a virtual disk on your desktop, and inside
of it you will find the typical Mac OS X installer, as shown in Figure 5-3. Double-clicking
that icon opens a wizard that helps you install PhoneGap on your Mac.

94 | Chapter 5: PhoneGap

https://build.phonegap.com/
http://phonegap.com/
http://phonegap.com/


The PhoneGap for iOS installer requires the free iOS developer tools
from Apple to be installed on your machine, so make sure you have
them!

After you have executed the installer, Xcode will include a new Figure 5-4 called “Pho-
neGap-based Application.” Create a new project of that kind, and save it on your desk-
top.

Now you need to add the required HTML files for your application, and the next step
is probably the most tricky part of using PhoneGap, and a source of confusion for many
new users of this tool:

1. Run the application, just like that. Empty. You will have a new www folder in your
project folder after that.

2. First you have to add your HTML, CSS, and JavaScript files to the www folder created
for you in the project folder (you can see that in Finder).

3. Then you have to add your www folder to your Xcode project as shown in Figure 5-5.

You might need to edit your HTML so that the proper libraries are referenced correctly.
In our case, something like this will be enough:

<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8" />
        <meta name="apple-mobile-web-app-capable" content="yes" />

Figure 5-3. PhoneGap iOS installer

Creating an iOS Application | 95



        <title>To Do List</title>

        <script src="sencha-touch.js"></script>
        <link href="sencha-touch.css" rel="stylesheet">

        <link rel="stylesheet" href="style.css">
        <script src="app.js"></script>

        <link rel="apple-touch-icon" href="icon.png"/>
        <link rel="apple-touch-startup-image" href="res/img/Default.png" />

    </head>
    <body></body>
</html>

Figure 5-4. PhoneGap project template

The only thing that remains to be done is to select the “Product/Run” menu (or to hit
the Command-R shortcut) and the web application will run inside of the iOS simulator,
as a native application! From this point on, you can submit it to the App Store as any
other application.

96 | Chapter 5: PhoneGap



About That Bouncing Behavior in iOS Applications

Many iOS applications built with PhoneGap show a weird bug, which
causes the whole application to bounce around as the user interacts with
it. This is not very nice, and can be solved very easily setting the UI-
WebViewBounce key to NO in the Cordova.plist file2.

Figure 5-5. Add the www folder to the Xcode project

2. See Greg’s Ramblings blog.

Creating an iOS Application | 97

http://gregsramblings.com/2012/05/14/phonegap-howto-prevent-bounce-uiwebviewbounce/


Creating an Android Application
We are going to see how to create a native Android application using PhoneGap, both
with Eclipse and with IntelliJ IDEA, which is a great alternative IDE to Eclipse.

In this section, we assume that you have installed the latest Android
toolkits in your development machine. Although the screenshots refer
specifically to Mac OS X, the same steps should work in all platforms
as well. The Android SDK can be downloaded freely from the official
Android developer site, while Eclipse can be downloaded also freely
from the Eclipse Foundation site3.

With Eclipse
1. Open Eclipse and create a new project of type Android application, using the latest

SDK and the default options.

2. Add two folders in Eclipse: libs and assets/www, by right-clicking and selecting
New→Folder.

3. Copy the phonegap-1.5.0.jar file from your PhoneGap download to libs.

4. Copy the xml folder from the PhoneGap download to res.

5. Copy the contents www folder used in the Xcode section into your Eclipse project,
under the assets/www folder.

6. Change the default activity of the project to the following:

package com.akosma.Savarasasa;

import android.os.Bundle;
import com.phonegap.*;

public class SavarasasaActivity extends DroidGap {
    /** Called when the activity is first created. */
    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        super.loadUrl("file:///android_asset/www/index.html");
    }
}

7. If after the previous step you still see errors, right-click on the libs folder and select
Build Paths…→Configure Build Paths. In the dialog box that appears, select the
Libraries tab and add the PhoneGap.jar file to the list.

8. Open the AndroidManifest.xml file and add the following under versionName:

3. At the time of this writing, the latest Android SDK is version 4 (SDK r15), and the latest
Eclipse version is Eclipse Indigo (3.7.1).

98 | Chapter 5: PhoneGap

http://developer.android.com/index.html
http://developer.android.com/index.html
http://www.eclipse.org/


<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:resizeable="true"
android:anyDensity="true"
/>
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission 
android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
<uses-permission android:name="android.permission.READ_CONTACTS" />
<uses-permission android:name="android.permission.WRITE_CONTACTS" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.GET_ACCOUNTS" />

9. Add android:configChanges="orientation|keyboardHidden" to the activity tag in
AndroidManifest.xml.

Figure 5-6. Configure Eclipse build paths

Creating an Android Application | 99



10. Add a second activity under the application tag in AndroidManifest.xml:

<activity android:name="com.phonegap.DroidGap"
          android:label="@string/app_name"
          android:configChanges="orientation|keyboardHidden">
  <intent-filter>
  </intent-filter>
</activity>

Now you should be able to run your project (right-click on the project and select Run
As→Android application). You should be prompted to use an Emulator or, if you plug-
ged your device in, you should see the application running by now.

Beware of assets with folder names starting with an underscore!

When adding your own web apps to your assets/www folder, pay at-
tention not to use leading underscores (_) in your folder names. There
is a bug open since 2009 that prevents assets to be packed during the
build process if the name begins with an underscore.

With IntelliJ IDEA
IntelliJ IDEA is a very interesting alternative to Eclipse when creating native Android
applications, as a widely recognized as very capable commercial tool. Although IntelliJ
IDEA is a commercial IDE, it is also available in a free community edition, suitable for

Figure 5-7. Final Eclipse project

100 | Chapter 5: PhoneGap

http://code.google.com/p/android/issues/detail?id=5343
http://www.jetbrains.com/idea/


learning and for the creation of open source software. We are going to use this version
in this section 4.

1. Open IntelliJ IDEA and select “Create New Project” from the welcome screen, or
select File→New Project… from the menu.

2. Select “Create new project from scratch.”

3. Select “Android Module” from the type selector at the bottom, and enter a name
and location for your project.

4. Create a source directory.

5. Select an Android SDK and create a default application structure.

6. Just like with Eclipse, add the PhoneGap jar file, XML files, and the web assets, in
the same locations within the project. Perform steps 3 through 10, including the
changes in all the source code files.

7. To configure the library dependency, right-click on the project and select “Open
Module Settings.” Select Modules, your application, and then click the “Depen-
dencies” tab. Select PhoneGap and close the dialog boxes.

8. Select Run and your application should start the emulator.

Figure 5-8. Library configuration panel in IntelliJ IDEA

4. At the time of this writing, the latest available IntelliJ IDEA version was 10.5.2.

Creating an Android Application | 101



Creating a Windows Phone Application
The final platform we are going to install our web application in will be Windows
Phone. Similarly to Xcode and iOS, the PhoneGap team has provided an excellent
integration with Visual Studio Express, the IDE provided by Microsoft for free to create
Windows Phone applications.

You can wrap your web application as a native Windows Phone application following
these simple steps, which work on Windows Vista or Windows 75 with the Windows
Phone SDK.

1. Copy the CordovaStarter.zip file included in the PhoneGap distribution into this
folder: C:\Users\[your username]\Documents\Visual Studio 2010\Templates\Proj
ectTemplates\Visual C# (or Visual Basic if you prefer to use this language).

2. Open Visual Studio and select File→New Project…

3. Select the “CordovaStarter” template.

Figure 5-9. The final IntelliJ IDEA project

5. Unfortunately, Visual Studio and the Windows Phone emulator do not work properly inside virtual
machines, which means that you require a separate partition in your hard drive with Windows installed
in it.

102 | Chapter 5: PhoneGap

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=27570
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=27570


4. Include all the files of your web application (HTML, CSS, JavaScript, images, etc.)
in the www folder of the Visual Studio project. These files have to be added as content.

5. Click on the famous green button that builds and runs applications in Visual Stu-
dio. Your application should be installed in the emulator automatically, and you
should be able to use it right away.

6. If you want to deploy and run on a device, plug the smartphone to your computer,
select “Windows Phone Device” in the drop-down menu next to the build and run
button, and launch the executable.

How to test on a device?

Similarly, as with iOS, Microsoft requires Windows Phone developers
to have an App Hub membership; at the time of this writing, such a
membership costs USD 99 per year, which allows developers to submit
up to 100 free applications, or an unlimited number of paying applica-
tions to the Windows Marketplace for Mobile.

Accessing Native Functionality
We have mentioned at the beginning of this chapter that PhoneGap is both a wrapper
and a bridge. So far we have learned how to wrap our applications, to create applications
for different mobile platforms; now we are going to learn how developers can leverage
the bridge, to access services provided for native applications.

Plug-ins
Another interesting characteristic of PhoneGap is that it has a plug-in architecture,
which allows developers to provide custom functionality to their applications, wrap-
ping accesses to native functionality that might not be available through PhoneGap.
This requires the creation of a native code component and a JavaScript file, that will
provide an extension of the bridge.

This architecture is pervasively used throughout PhoneGap, and the default distribu-
tion uses plug-ins thoroughly; for example, the Console plug-in, bundled with Phone-
Gap, routes console.log() calls to the native console of the environment being used to
run programs. This way, you can add logging calls in your web application and be able
to follow their output in your favorite IDE.

This book will not provide more information about plug-ins, but you can check the
standard PhoneGap documentation, which includes examples of how to create plug-
ins.

Plug-ins | 103

http://create.msdn.com/en-US/home/membership
http://www.windowsphone.com/en-US/marketplace


The JavaScript Bridge
The magic behind the PhoneGap bridge is contained in the cordova.js file, provided in
the PhoneGap distribution. The most important thing that you have to know about
the PhoneGap JavaScript bridge library is that it overloads the navigator object with
additional properties.

PhoneGap also provides a series of custom events, which we are going to see in the next
section. Of all the events provided by PhoneGap, only a few are actually available in
most platforms; in the section that follows we are only going to tackle those events that
are available in as many platforms as possible.

The cordova.js file is platform-dependent?

Many developers have been puzzled in the past to learn that the cor-
dova.js is different in every supported platform; some of them might
even think that this is cheating, and that this breaks the cross-platform
promise of PhoneGap. This is absolutely not true, because what actually
matters is that each JavaScript file offers the same interface to your code!
This means that you only have to write your application once, and
thanks to PhoneGap, you can have it running in as many platforms as
possible. Sounds cool, huh6?

So, remember: each smartphone platform supported by PhoneGap has a
different cordova.js file!. This means that you cannot use the cor-
dova.js file for Android in an iOS application, and so on.

In the latest version of PhoneGap (at the time of this writing, version
1.7), the Cordova team has included a unified version of the JavaScript
bridge; from now on, the different files will slowly migrate to be one and
the same. Check out this blog post introducing Cordova-JS, the new
technology that sets the roadmap for PhoneGap 2.0.

PhoneGap Kitchen Sink
To demonstrate the capabilities exposed by the PhoneGap bridge we are going to use
an open source application created by Jens-Christian Fischer called the PhoneGap
Kitchen Sink. This application is available on Github, and can be freely downloaded,
used, and remixed as required. The code examples in the sections below will show
fragments of this application.

The deviceready Event
PhoneGap provides an event that is fired when your web application is fully loaded
inside the wrapper environment. This event is usually fired after the individual events

6. “Write once, run anywhere”; sounds familiar?

104 | Chapter 5: PhoneGap

http://phonegap.com/2012/03/21/introducing-cordova-js/
https://github.com/jcfischer/pgkitchensink


of other frameworks, like Sencha Touch or jQuery Mobile, so special care must be taken
to ensure that these events are handled in the correct order.

Why is that? Because PhoneGap is not only a bridge, but also a wrapper; that means
that the mobile web code could be ready to execute before the wrapper code is loaded,
initialized, and ready to be used. This means that the JavaScript code could potentially
call a service or function not yet ready in the native wrapper, and this could have very
negative consequences. To remedy this, the PhoneGap wrapper infrastructure sends a
deviceready event to the mobile application through the bridge; and this is how both
the bridge and the wrapper are ready to work together.

The most basic use of the deviceready event is shown below. Just add an event listener
to the current document, and you are done:

document.addEventListener("deviceready", initialize, false);

function initialize() {
    // Do something when the application is loaded in the device
}

You must always wait until the deviceready event is fired before wiring up other Pho-
neGap events. In the following sections, we are going to set up other event handlers
inside of the initialize function, so that we are sure that everything is setup correctly.

However, if you are using frameworks such as jQuery Mobile, the respective startup
functions might load in different order. In that case, you need to listen to both the
load event, and then to the deviceready event:

window.addEventListener('load', function () {
    document.addEventListener('deviceready', function () {
        console.log("PhoneGap is now loaded!");
    }, false);
}, false);

When using version 2 of Sencha Touch, you do not need to worry about the device
ready event. Sencha Touch 2 is aware of PhoneGap, and will wait until this event is
fired to execute its own launch() function:

Ext.application({
    name: 'PhoneGapTest',
    launch: function() {
        // ... just as a normal Sencha Touch app, PhoneGap or not!
    }
});

The JavaScript Bridge | 105



Sencha Touch 1 and deviceready

Please pay attention to the fact that, while Sencha Touch 2 is aware of
PhoneGap and will listen to the deviceready event, version 1 is not; and
as such, you have to manually listen to both the launch and the device
ready events, and manage the initialization of your application man-
ually. Thankfully, this is no longer required since version 2 is available.
If you need to use Sencha Touch version 1 with PhoneGap, please refer
to the Sencha Touch tutorials site where the required steps are explained
in detail.

Multitasking Events
Most smartphone platforms allow for multitasking these days; in those cases, whenever
an application is opened while another is running, or when the user presses the Home
button on their iOS devices, the application is usually put in an hibernating state, where
the execution is stopped and where no touch events are sent.

PhoneGap provides two useful events for these situations: the function associated to
the pause event is executed when the application is sent to the background, while the
resume event is executed in exactly the opposite situation and when the application is
brought again to the foreground.

The use of these events, as always, is as simple as it could be:

document.addEventListener("deviceready", initialize, false);

function initialize() {
    document.addEventListener("pause", sendToBackground, false);
    document.addEventListener("resume", bringToForeground, false);
}

function sendToBackground() {
    // Do something when the application is sent to the background
}

function bringToForeground() {
    // Do whatever is required when the application is brought to the
    // foreground
}

These events are very useful in the case of games. For example, whenever the pause
event is triggered, games should stop and save the current state of the game, which
should be restored when the resume event is fired.

Network Connectivity Events
I travel a lot by train. In Switzerland, the rail network is really good and you can go
pretty much anywhere without the need to use a car. But, given that this is a country
in the mountains, there are tunnels everywhere; and, as good as the Swiss mobile net-

106 | Chapter 5: PhoneGap

http://www.sencha.com/learn/legacy/Tutorial:A_Sencha_Touch_MVC_application_with_PhoneGap:


works are, it can be tricky to keep a phone communication on the train, as it goes from
tunnel to tunnel, let alone keeping a live 3G connection.

It is, then, fundamental to be aware of the fact that mobile networks can come and go
really easily. Many applications require a continuous connection, and for those situa-
tions, the online and offline events come in handy. They allow the developer to attach
functions that, as usual, will be executed when the phone goes, you guessed it, online
or offline:

document.addEventListener("deviceready", initialize, false);

function initialize() {
    document.addEventListener("online", setOnline, false);
    document.addEventListener("offline", setOffline, false);
}

function setOnline() {
    // Do something when the device has a network connection to the internet
}

function setOffline() {
    // Disable any automatic data reload mechanisms and rely on offline data
    // stores, like the localStorage; because now you are offline!
}

Pay attention to the fact that the online and offline events rely on rather unreliable
mechanisms to detect the current network status of the current device; as a matter of
fact, a device can be online (which usually means, having an assigned IP address and a
routing connection) without a real connection to the Internet (which actually depends
on many other factors, usually out of reach from the user).

So, whenever your device goes online, remember to add the proper fallback code, in
case your network requests are dropped or fail to return the required information.

Battery Events
Beyond networking considerations, battery life is a major factor to consider in mobile
applications. Having applications that are able to react positively to negative battery
conditions is a strong selling point! To help us with that, PhoneGap exposes the bat
terystatus, batterylow, and batterycritical events.

The first event, batterystatus is fired when the level of charge of the battery changes.
The second event, batterylow is fired when the level of the battery is below some
threshold; this threshold is defined by the host operating system. Finally, batterycrit
ical is fired later, when you really, really, really, should plug your device in as soon as
possible.

The callback function assigned to the three events is given an object as parameter, and
this object contains two properties:

The JavaScript Bridge | 107



• level is a number between 0 and 100, returning the percentage of charge of the
battery

• isPlugged is a boolean, stating whether the current device is plugged to the mains
socket or not

Let’s see a bit of source code using these events:

document.addEventListener("deviceready", initialize, false);

function initialize() {
    window.addEventListener("batterystatus", onBatteryStatus, false);
    window.addEventListener("batterylow", onBatteryLow, false);
    window.addEventListener("batterycritical", onBatteryCritical, false);
}

function onBatteryStatus(info) {
    console.log("Level: " + info.level + " isPlugged: " + info.isPlugged);
}

function onBatteryLow(info) {
    alert("Battery Level Low " + info.level + "%");
}

function onBatteryCritical(info) {
    alert("Battery Level Critical " + info.level + "%\nRecharge Soon!");
}

Accelerometer
Most modern smartphones these days include an accelerometer; these sensors provide
information about the current position of the device regarding the center of Earth, and
its current inertial acceleration while in motion.

PhoneGap provides a unified API to accessing this information from your web appli-
cation, something that can be done in HTML5 already (check Chapter 1 for more
information).

The following code snippet shows how to access accelerometer information using the
PhoneGap bridge:

function accelerated(acceleration) {     
    console.log("acceleration: (" + acceleration.x + ", "
    + acceleration.y + ", "
    + acceleration.z + ")"
    + ") obtained at " + acceleration.timestamp);
}

function error() {
    console.log('accelerometer error');
}

document.addEventListener("deviceready", function() {

108 | Chapter 5: PhoneGap



    navigator.accelerometer.getCurrentAcceleration(accelerated, error); 
}, false);

The accelerometer callback function receives an object as parameter, containing
three values, x, y, and z, with the composing parameters of the acceleration vector.
It also contains a timestamp object, with the Unix timestamp in which the measure
was obtained (this information can be useful for testing and logging).

This call will trigger the execution of the accelerated function every time a new
measure of acceleration is available. This, of course, can cause a bit of a penalty hit;
so you might want to use watchAcceleration instead, which provides control on the
timing of the accelerometer callback and can reduce a bit the CPU consumption of
the device, as shown in the following example:

var options = { frequency: 2000 }; 

var watcher = navigator.accelerometer.watchAcceleration(accelerated, error, options); 

// some time later...

navigator.accelerometer.clearWatch(watcher); 

This is measured in milliseconds. In this case, we will be watching the acceleration
every two seconds.

This method takes the same parameters as the getCurrentAcceleration method
shown in the previous example. It also takes an options object with a frequency
parameter, specifying the time distance between measures.

The clearWatch function blocks PhoneGap from executing the accelerometer call-
back functions.

As you can see, PhoneGap uses very similar, asynchronous patterns to access informa-
tion from the host device.

Address Book
The address book is a central piece for every smartphone platform, and one that raises
numerous eyebrows from the point of view of privacy. Developers are able to interact
with the contacts stored in the device, search for them, list them, and request the details
of any of them.

PhoneGap provides an extensive API, composed of a rather simple set of methods and
a quite complex object model, required to access contacts from your application. You
can basically do two things:

• Search for contacts using the find method

• Create new contacts, thanks to the create method

The complexity of this API lies in the number of objects that are involved in the API:

The JavaScript Bridge | 109



• Contact

• ContactName

• ContactField

• ContactAddress

• ContactOrganization

• ContactFindOptions

• ContactError

The interaction of all these objects make the contacts API one that is not immediately
obvious to use. The code below, taken from the PhoneGap Kitchen Sink application,
shows how to request the list of contacts stored in the application, how to populate a
list with them, and then how to request individually each contact, as the user touches
individual items in the list:

var options = new ContactFindOptions();
options.multiple = true; 
options.filter = ""; 
var fields = ["id", "displayName", "name"]; 
navigator.contacts.find(fields, function(contacts) { 

    var index = 0;
    var len = 0;
    var list = $('#contactslist'); 
    list.empty();
    for (index = 0, len = contacts.length; index < len; ++index) {
        var contact = contacts[index];
        var newLi = $('<li>');
        var newA = $('<a>');
        newA.append(contact.name.formatted);
        newLi.append(newA);
        newLi.on('tap', createTapHandler(contact)); 
        list.append(newLi);
    }
    list.listview('refresh');

}, null, options);

The first thing you want to do in this example is to get the full list of contacts stored
in the current device. For that, create an instance of ContactFindOptions, and set the
multiple property to true. This is very important, as the default value of this property
is false!

Setting the filter parameter to an empty string makes sure that the whole list of
contacts will be returned, without any filtering.

Then, specify the fields that you want to return from the contacts database. As you
can imagine, the fewer fields you request, the less memory your application will
consume. You should specify here only the fields that you are actually going to need
at a particular point in time.

110 | Chapter 5: PhoneGap



This callback function is executed when the contact database returns results to the
application; it takes a contacts array, containing all the instances that have been
found in the database.

Finally, we take the <ul> list in the HTML file and we will populate it with <li>
elements, each showing the name of a contact.

We are going to see the definition of this method later on. Suffice to say that it returns
a function that is executed when the user taps on a particular item on the list.

One of the first observations when using the find() method is that the results are not
ordered in any particular way; this means that we have to order them, manually, in
memory. This, of course, can be a quite time-consuming operation in JavaScript:

contacts.sort(function (a, b) {
var an = a.name.formatted;
    var bn = b.name.formatted;
    return an == bn ? 0 : (an > bn ? 1 : -1);
});

The final operation is to provide a tap handler to every <li> in the list. This means that
we are going to implement the createTapHandler shown in the previous example. This
function returns a function, acting as a closure, keeping the value passed as parameter
inside of the loop:

var createTapHandler = function(contact) {
    return function () {
        var opts = new ContactFindOptions();
        opts.multiple = false; 
        opts.filter = contact.id.toString(); 
        var fields = ["id", "displayName", "name", "emails", "phoneNumbers"]; 
        navigator.contacts.find(fields, function(contacts) {
            var person = contacts[0];
            $.mobile.changePage('#contactdetail');

            var data = [];
            data.push(person.name.formatted);
            // ...

This time, we want only one instance returned from the contacts database.

We pass as a filter the id parameter of the contact passed as parameter; pay attention
to the fact that this parameter must be a string, or you could have crash in your code
later on!

We also specify more fields, as we want to display more information about the se-
lected contact.

As you can see, the interaction among the different elements is a little bit more complex
than in other PhoneGap APIs, but the end result is quite impressive. We are able to get
information from the local contacts database, and interact with it and inspect it. Of
course, this raises numerous red flags in terms of privacy and security, but used wisely,
it is without a doubt a powerful feature to count on.

The JavaScript Bridge | 111



Many differences among platforms

The PhoneGap Contacts API depends on the underlying data model of
contacts, as implemented by every platform. This has the consequence
of a greater number of differences and incompatibilities among plat-
forms, compared to other simpler APIs. Pay attention to all the different
quirks documented in the official Contacts API documentation page.

Audio Recording and Playback
Modern smartphones are incredible machines, including microphones and speakers
accessible to developers, to include useful recording and playback capabilities to their
applications. Thankfully, PhoneGap includes APIs that allow us to access this hardware
components, regardless of the underlying platform.

To record sound, and then to play it back immediately after the recording, we are going
to need a very simple user interface, consisting of three buttons: one for starting the
recording, one for starting the playback, and one to stop any operation in process. Let’s
define the code that will interact using those buttons:

var soundFile = null;
var recording = false;
function failure(error) {
    console.log('error: ' + error.code + ', message: ' + error.message);
}

function success() {
    console.log('media ready - success');
    $('#recordButton').show();
    $('#stopButton').hide();
    $('#playButton').show();
}

$('#recordButton').hide();
$('#stopButton').hide();
$('#playButton').hide(); 

var path = 'recording.wav';
window.requestFileSystem(LocalFileSystem.PERSISTENT, 0, function (fileSystem) { 
    fileSystem.root.getFile(path, {create: true}, function (fileEntry) { 
        soundFile = new Media(fileEntry.fullPath, success, failure); 
        $('#recordButton').show();
    }, failure);
}, failure);

Set up the user interface properly upon initialization.

iOS requires the file to exist before starting a new recording; so here you request the
local filesystem, in order to…

…create a file. When that file is ready to be used…

…You create a Media object, with the requested path.

112 | Chapter 5: PhoneGap

http://docs.phonegap.com/en/1.5.0/phonegap_contacts_contacts.md.html#Contacts


Let’s add now some quite straighforward code to our buttons. First, the record button:

$("#recordButton").on('click', function (event) {
    if (soundFile) {
        $('#recordButton').hide();
        $('#stopButton').show();
        $('#playButton').hide();
        recording = true;
        soundFile.startRecord();
    }
});

Then, the play button:

$('#playButton').on('click', function (event) {
    if (soundFile) {
        $('#recordButton').hide();
        $('#stopButton').show();
        $('#playButton').hide();
        recording = false;
        soundFile.play();
    }
});

And finally, the code of the stop button. Just check the value of the recording flag to
be sure what to stop!

$('#stopButton').on('click', function (event) {
    if (soundFile) {
        $('#recordButton').show();
        $('#stopButton').hide();
        $('#playButton').show();
        if (recording) {
            soundFile.stopRecord();
            recording = false;
        }
        else {
            soundFile.stop();
        }
    }
});

The PhoneGap audio API not only provides the functions shown above, but it also
allows applications to know the current position of a Media object, thanks to the get
CurrentPosition() method. Finally, the getDuration() method returns the length in
seconds of the current instance.

A very important thing to keep in mind when working in Android: remember to call
release on the Media file. This is actually required for Android, to release all in-memory
handles to the Media file.

The JavaScript Bridge | 113



Camera
I remember back in 2002 when I bought my first cellphone with a camera; it was an
Ericsson device, and frankly the camera was not as good as I expected it to be. Even
worse, connecting to the device to get the images in my computer, or even trying to
send them via email was an impossible task. Needless to say, I never actually used the
camera in that device for anything useful. In 2005, I got a Motorola phone, and things
were not any better.

It all changed with my first iPhone in 2008. I finally had a decent camera in my favorite
smartphone, and not only that, loading those shots to my computer was as easy as
plugging in the USB cable and launching iPhoto. Even better, a set of APIs allowed
applications to consume images taken by the camera, which spawned a new hobby
called “iPhoneography”.

Things had finally changed.

PhoneGap offers a quite extensive, yet extremely minimalist interface for accessing the
camera and the local photo library of the current user from any web application:

var options = {  
    quality: 50,  
    destinationType: Camera.DestinationType.DATA_URL,  
    sourceType: Camera.PictureSourceType.CAMERA,  
    allowEdit: false,  
    encodingType: Camera.EncodingType.JPEG,  
    targetWidth: 100,
    targetHeight: 100,
    mediaType: Camera.MediaType.PICTURE  
};

function imageReady(imageData) {  
    var img = document.getElementById('imgObject');
    var mimeType = 'image/jpeg';
    if (options.destinationType === Camera.DestinationType.DATA_URL) {
        if (options.encodingType === Camera.EncodingType.PNG) {
            mimeType = 'image/png';
        }
        img.src = 'data:' + mimeType + ';base64,' + imageData;
    }
    else if (options.destinationType === Camera.DestinationType.FILE_URI) {
        img.src = imageData;
    }
}

function imageError(message) {
    console.log(message);
}

document.addEventListener("deviceready", function() {
    navigator.camera.getPicture(imageReady, imageError, options);
}, false);

114 | Chapter 5: PhoneGap

http://www.iphoneography.com/


This object actually wraps all the complexity of the camera manipulation.

The quality parameter determines the final crispness of the resulting image. In the
case of the iPhone, to avoid memory warnings, it is recommended to set this value
at around 50.

The possible values are DATA_URL and FILE_URI. The former provides the actual binary
data from the image to the callback, in Base64 format; the latter only provides the
path to the file in the local filesystem. When used in the iPhone, the FILE_URI option
returns a path to the temporary directory of the current app, as the image is copied
to that folder after the selection process. This folder is cleared when the application
exits!

The possible values are CAMERA, PHOTOLIBRARY, and SAVEDPHOTOALBUM. In the case of
Android, both PHOTOLIBRARY and SAVEDPHOTOALBUM show the same photo album.

Setting this to true displays an edition screen, allowing the user to crop, resize, and
modify the image before it is sent to the application. This parameter works only on
the iPhone, actually; all other platforms ignore it.

Valid values are JPEG and PNG. Pay attention to set the correct MIME type of the
image when using the DATA_URL destination type!

The allowed parameters are CAMERA, VIDEO, and ALLMEDIA. The values speak for them-
selves. Of course, if you select the VIDEO option, given the potential size of the re-
sulting object, the destinationType will be set automatically to FILE_URI.

This callback receives a parameter whose nature depends on the options passed to
the getPicture function.

Differences among platforms

Pay attention to the fact that the behavior of the getPicture() function
change a lot from one platform to the other. You should always check
the Quirks section at the end of the corresponding PhoneGap docu-
mentation page before attempting any integration in your own code, as
every single smartphone platform reacts differently to this command.

Connection Status
Mobile networks are, by definition, unreliable; one second you are online, and the next,
you are offline. Hence, mobile applications have to be able to detect, at any given time,
the current status of the network connection, and be able to adapt their behavior ac-
cordingly. It is not the same to download a file through a WiFi or a GPRS connection,
not at all.

We have seen previously how PhoneGap allows your application to know whether you
are online or not; we have also seen how HTML5 allows any web application to know,
at any given time, whether the device is connected or not7. PhoneGap also provides a

The JavaScript Bridge | 115

http://docs.phonegap.com/en/1.5.0/phonegap_camera_camera.md.html#Camera
http://docs.phonegap.com/en/1.5.0/phonegap_camera_camera.md.html#Camera


very simple API that allows applications to know the quality of the current network
connection of the device:

document.addEventListener('deviceready', function () {
    var networkState = navigator.network.connection.type;

    var states = {
        Connection.UNKNOWN: 'Impossible to know',
        Connection.ETHERNET: 'Ethernet',
        Connection.WIFI: 'Wifi',
        Connection.CELL_2G: 'Cellular 2G',
        Connection.CELL_3G: 'Cellular 3G',
        Connection.CELL_4G: 'Cellular 4G',
        Connection.NONE: 'No connection at all'
    };
    console.log('Current connection: ' + states[networkState]);
}, false);

Filesystem
We have briefly seen an example of use of the filesystem capabilities of PhoneGap in
“Audio Recording and Playback” on page 112. The Filesystem API, similarly to the
Address Book API, is rather complex and contains a large number of objects interacting
with each other. Working with it is easy once you understand some core concepts.

To begin with, it is very important to remember that accessing the filesystem can be a
very slow operation, particularly given the layers of abstraction between the operating
system and the application, itself written in JavaScript and running in an embedded
browser. To overcome this situation, and to make sure that the application stays re-
sponsive, PhoneGap uses an asynchronous approach for any functionality exposed by
this API.

Let’s start by writing some text into a new file.

The first thing we are going to do is to request an instance of the FileSystem class,
through the requestFileSystem() function:

var fileSystem = null;

window.requestFileSystem(LocalFileSystem.PERSISTENT, 0, function (fs) { 
    fileSystem = fs;
    $('#createFileButton').show();
}, failure);

The LocalFileSystem enumeration has two values: PERSISTENT is a reference to the
area reserved for user files, that can be removed only if the user gives her consent;
and TEMPORARY, which refers to the location where temporary files are stored. In this
case, we want to create a permanent file.

7. Albeit, with some limitations, due particularly to the fact that network connectivity detection heuristics
are inherently unreliable.

116 | Chapter 5: PhoneGap



The next thing to do is to call the getFile() function on the fileSystem object passed
to the previous callback:

fileSystem.root.getFile(path, {create: true}, function (fileEntry) {  
    console.log('file got');
    fileEntry.createWriter(function (writer) {
        // ... get some text to write here...   

        writer.onwriteend = function (evt) { 
            console.log('file written!');
        };
        writer.write(selectedText); 

    }, failure);
}, failure);

We call the getFile() function on the root of the fileEntry object we got in the
previous code.

We request a new FileWriter object, calling the createWriter() function of the
fileEntry object, and when we get it, this callback is executed.

We set up a function that will be called as soon as the contents of the file have been
written, in the onwriteend event.

And then we trigger the write() function, passing as parameter whichever text we
want to write.

Now, let’s read a file.

The operation required to read a file back in memory is very similar (and equally con-
voluted). We are going to create a FileReader object and we are going to wait for the
text to be loaded, asynchronously, in the context of our application:

fileSystem.root.getFile(path, {create: true}, function (fileEntry) {
    fileEntry.file(function (file) { 
        var reader = new FileReader(); 
        reader.onloadend = function(evt) {
            var text = reader.result; 
        };
        reader.readAsText(file); 
    }, failure);
}, failure);

We have to call the file() function on the fileEntry object to get a reference to the
underlying File object. Yes, there is a FileEntry class and a File class, and the former
contains an instance of the latter. Not very obvious at first glance.

We create a new FileReader instance here…

… which will return the contents of the text…

… after we trigger the execution of the readAsText() method.

The JavaScript Bridge | 117



For binary files, there is a similar readAsDataURL() function, which returns the contents
of the file as a Base64-encoded string.

Now let’s see some file information.

To request metadata from the file, we can use the same File object we requested in our
last example:

fileSystem.root.getFile(path, {create: true}, function (fileEntry) {
    fileEntry.file(function (file) {
        var data = [
            'Full path: ' + file.fullPath,
            'MIME type: ' + file.type,
            'Modified on: ' + file.lastModifiedDate,
            'Size: ' + file.size
        ];
        var info = data.join('<br>');
        // show this data to the user somehow!
    }, failure);
}, failure);

And finally, a similar operation will allow us to remove the file from disk:

fileSystem.root.getFile(path, { create: true }, function (fileEntry) {
    console.log('file got, ready to be removed');
    fileEntry.remove(function() {
        console.log('file removed!');
    }, failure);
}, failure);

All file operations are asynchronous!

As you have seen in the preceding examples, all file operations are asyn-
chronous. Remember to always pass your success and failure callback
functions, to be notified of any situation. If you do not have a failure
callback, your code will fail silently without providing any information
to you, and this will most likely bring you some new white hair. And
you do not want that!

Location and Compass
Arguably one of the most popular features of modern smartphones is undoubtedly the
integration of a GPS chip. This single innovation has opened the door to countless
innovations, from applications that allow users to share their current position with their
friends, to others that allow them to track their daily jogging exercises.

Accessing the location information from a PhoneGap application is very simple, and is
supported in nearly all platforms these days. As usual, the process involved is asyn-
chronous, which means that your application will set a handler callback that will be
executed as soon as the location information is returned from the device.

118 | Chapter 5: PhoneGap



Emulating the HTML5 APIs

Readers familiar with the standard HTML5 APIs defined with the W3C
have surely seen that their PhoneGap counterparts are very similar; this
is not a secret, as the team behind PhoneGap has strived to keep a max-
imum level of compatibility with the HTML5 standard. The idea behind
this is that, when browsers will implement these native APIs (Files, Me-
dia, Contacts, etc.) then their code will still work. In a certain sense,
betting in PhoneGap is betting in the future.

var watchID = null; 

function startWatch() {
    var options = { maximumAge:3000, timeout:5000, enableHighAccuracy:true }; 
    watchID = navigator.geolocation.watchPosition(positionChanged, positionError, 
options);
}

function stopWatch() {
    if (watchID) {
        navigator.geolocation.clearWatch(watchID);
        watchID = null;
    }
}

function positionChanged(position) { 
    lat = position.coords.latitude;
    lon = position.coords.longitude;
    alt = position.coords.altitude;
    accuracy = position.coords.accuracy;
    alt_accuracy = position.coords.altitudeAccuracy;
    heading = position.coords.heading;
    speed = position.coords.speed;
    timestamp = position.timestamp;
    // ...

This variable will be used to store the result of the watchPosition() function, which
will be used to call the clearWatch() function later.

This object provides parameters for the watchPosition() function.

Finally, the position parameter passed to the success callback contains all the in-
formation requested to the localization subsystem; you can use them in your appli-
cation now.

Accessing the information provided by the compass is also very straightforward, re-
quiring just a couple of lines of code:

var watchID = null; 

function startWatch() {
    var options = { frequency:200 }; 
    watchID = navigator.compass.watchHeading(headingChanged, headingError, options);
}

The JavaScript Bridge | 119



function stopWatch() {
    if (watchID) {
        navigator.compass.clearWatch(watchID); 
        watchID = null;
    }
}

function headingChanged(heading) {
    $('#compass #heading').html(Math.floor(heading.magneticHeading));
    var rotation = "rotate(" + (360 - heading.magneticHeading) + "deg)"; 
    $('#compass #compass_img').css('-webkit-transform', rotation);
}

We are going to use this variable to store a handle to the object returned by the
watchHeading() function.

Here we set some parameters for the watchHeading() function.

The watchID object can be used to stop the updating operation; once the watch is
cleared, the callback functions are not called anymore.

The trick here consists in creating a WebKit rotation transformation, and to do this
live as the device is moving around.

Notifications
PhoneGap provides a very simple API to create and display dialog boxes, to provide
sound and vibration feedback to the user, to signal unusual situations, and to get the
attention of the user when required.

If you want to show a native alert dialog box, you can use the code below. You can
even provide a callback function that will be executed after the dialog box is closed:

document.addEventListener('deviceready', function () {
    var message = "This is a message for the user";
    var title = "This is the title of the dialog box";
    var button = "Close"; 
    navigator.notification.alert(message, callback, title, button);
}, false);

function callback() {
    console.log('The dialog box has been dismissed');
}

The value by default is “OK”; this argument is ignored by Windows Phone 7.

If you want to ask a question to the user, you can use the following code:

document.addEventListener('deviceready', function () {
    var message = "This is a message for the user";
    var title = "This is the title of the dialog box";
    var buttons = "Yes, No"; 
    navigator.notification.confirm(message, callback, title, buttons);
}, false);

120 | Chapter 5: PhoneGap



function callback() {
    console.log('The dialog box has been dismissed');
}

The value by default is “OK, Cancel”; this argument is ignored by Windows Phone
7.

Finally, if you need to play a sound or to trigger a vibration in the device, you can use
the following code:

document.addEventListener('deviceready', function () {
    navigator.notification.beep(4); 
    navigator.notification.vibrate(3000); 
}, false);

The argument of the beep function is ignored by iOS. The sound that is played de-
pends on the mobile platform where the application is running. In Android the
sound is predefined in the settings. In iOS, there is no default sound, and the appli-
cation should provide a file named beep.wav, whose playback time is no longer than
30 seconds. PhoneGap includes a standard beep sound for Windows Phone 7.

The argument of the vibrate function is ignored by iOS.

Storage
PhoneGap provides a wrapper API that mimics the standard HTML5 storage APIs:

• localStorage

• sessionStorage

• SQLite databases

In those platforms where these APIs are not provided, PhoneGap provides an imple-
mentation that provides the same interface and implementation as specified by the
W3C. We are not going to spend much time in these, since the Chapter 1 provides an
extensive discussion about localStorage and sessionStorage.

The code below shows how to store values with each of these technologies; with the
localStorage and the sessionStorage this is quite trivial:

window.localStorage['someString'] = selectedText;
window.sessionStorage['someString'] = selectedText;

With SQLite databases, the API is slightly more complex:

function populate(tx) {
    tx.executeSql('DROP TABLE IF EXISTS RANDOMTEXT');
    tx.executeSql('CREATE TABLE IF NOT EXISTS RANDOMTEXT (id unique, data)');
    tx.executeSql('INSERT INTO RANDOMTEXT (id, data) VALUES (1, \"' + selectedText + 
'\")');
}

function error(err) {

The JavaScript Bridge | 121



    console.log('error: ' + err.code + ', message: ' + err.message);
}

function success() {
    console.log('database OK');

    // ... and here you should update your UI
}

// Now store the same data in a SQL database
var db = window.openDatabase('database', '1.0', 'PGKitchenSink', 200000);
db.transaction(populate, error, success);

To read data back from the localStorage and the sessionStorage is trivial, as usual:

window.localStorage['someString'] = selectedText;
window.sessionStorage['someString'] = selectedText;

To read data back from the SQLite database is slightly longer, but not very complex
once you have understood how to work with databases:

function query(tx) {
    tx.executeSql('SELECT * FROM RANDOMTEXT', [], success, error);
}

function success(tx, results) {
    var length = results.rows.length;
    if (length > 0) {
        dbText = results.rows.item(0).data;
        console.log('text: ' + dbText);

        // ... and here you should update your UI
    }
}

var db = window.openDatabase('database', '1.0', 'PGKitchenSink', 200000);
db.transaction(query, error);

The success() callback function is called as soon as the transaction is finished, which
can potentially take a long time (in CPU terms, that is). The second parameter of this
function, results, contains all the rows returned by the database that correspond to
the criteria of the query.

Conclusion
The most important thing to remember about PhoneGap is that it is both a wrapper
and a bridge. Most applications are going to use PhoneGap as only a wrapper, since the
bridge JavaScript files are optional. However, if you are going to use the JavaScript
bridge, remember to use the one that corresponds to the platform you are targeting!

PhoneGap is an exciting technology, open source (it is licensed under the Apache Li-
cense) and now has the backing of an industry leader like Adobe. It has become a de

122 | Chapter 5: PhoneGap

http://phonegap.com/about/license/
http://phonegap.com/about/license/


facto standard, and it allows developers to reuse code across different mobile platforms,
truly realizing the power of cross-platform development for mobile devices.

Conclusion | 123





CHAPTER 6

Debugging and Testing

More than with any other programming language, the dynamic nature of JavaScript
makes it fundamental to have the proper tools, in order to increase the quality of our
applications. This chapter will provide an introduction to three very important tools
used for debugging of mobile JavaScript applications: the WebKit Web Inspector,
iWebInspector, and Adobe Shadow.

We are also going to see different techniques for testing your mobile applications. Of
course, “testing” is a rather large concept, and it would be foolish to pretend that this
short guide will give you a complete panorama of testing mobile web apps, but that is
why this chapter is not called “Quality Assurance.” However, simple testing techniques
will allow you and your team to increase your productivity, providing working code in
time and schedule.

Your Browser Web Inspector
The first tool that will be used to debug mobile web applications is the Web Inspector
that ships natively with most modern browsers these days. It is a very powerful tool,
originally inspired by the famous Firebug plug-in for Firefox by Joe Hewitt. These days,
the WebKit Web Inspector, Opera DragonFly, or the Internet Explorer Developer Tools
all allow you to perform the following functions:

• Inspect the HTML structure of the current web page, including all elements that
are generated dynamically (this is specially handy in the case of Sencha Touch,
which generates HTML elements on the fly).

• Set breakpoints in your JavaScript code, to debug your code and to verify that
everything works as expected.

• Explore the different HTML5 storage options of your browser, including databa-
ses, cookies, or the localStorage.

• Modify the CSS of your page dynamically, changing properties and seeing them
“live” on your page, which is a huge help for designers and developers alike.

125



Let’s now explore some of these characteristics in detail.

Inspect the HTML of your app
Using the web inspector, you can see the complete structure of your page, including
all the nested elements, and including those that are created during runtime. This is
particularly useful when debugging the HTML code created by frameworks like Sencha
Touch.

Figure 6-1. Inspecting the HTML of a mobile app

126 | Chapter 6: Debugging and Testing



Log Messages in the Console
Using the console you can inspect the internal state of your application, without having
to use the old alert() way of doing things. There are two different instructions that
you can use to output text to the console:

console.log(message)

When message is a string, this will output that text to the console. If the object is
not a string, then the result of the toString() method will be called.

console.dir(object)

Displays the complete structure of an object in the console, allowing you to see its
internal tree structure.

Some inspectors perform the same task when invoking console.log()
and console.dir(); as always, there might be differences across brows-
ers, however both methods are supported these days.

Set Breakpoints in Your JavaScript Code
Finally, the web inspector allows you to set breakpoints in your JavaScript code, which
helps developers to execute their programs instruction by instruction, to see the values
of the variables in the current stack frames, and to step in and out from functions,
lambdas, and methods.

iWebInspector
The second tool we are going to talk about is iWebInspector, a tool for OS X that allows
to inspect web applications running on the iOS Simulator (bundled with the free Xcode
tools) as either fullscreen web apps, or in a PhoneGap container. This tool has been
created by Maximiliano Firtman, well known in the mobile web development com-
munity as the author of several interesting books and very useful websites such as
Mobile HTML5.

iWebInspector allows developers to use all the features of the WebKit web inspector
from the simulator, thanks to a discovery made by Nathan de Vries. You can load the
inspector for any page running on Safari, any full screen web app saved on the home
screen, or any PhoneGap application, and inspect all the internal state, just like with a
normal browser.

iWebInspector | 127

http://www.iwebinspector.com/
http://mobilehtml5.org/
http://atnan.com/blog/2011/11/17/enabling-remote-debugging-via-private-apis-in-mobile-safari/


Adobe Shadow
As useful as the web inspector is, there are times when you would like to inspect the
state of your application as it runs in a device or in the simulator; to help you with that,
the Adobe Shadow tool is there.

Figure 6-2. Logging messages in the console

128 | Chapter 6: Debugging and Testing

http://labs.adobe.com/technologies/shadow/


Adobe Shadow uses a project created originally by the PhoneGap team, called weinre
(this name stands for Web Inspector Remote). Adobe has taken weinre and has pack-
aged it in a way that makes it very easy to use.

Figure 6-3. Setting breakpoints in JavaScript code

Adobe Shadow | 129

http://phonegap.github.com/weinre/


Adobe Shadow consists of the following elements:

• Desktop applications for Mac and Windows

• A Google Chrome plug-in

• Mobile applications for Android and iOS

To use Adobe Shadow, follow these steps:

1. Install the desktop application on the system of your choice.

2. Install the Google Chrome plug-in.

3. Install the mobile application in your device.

4. Launch the applications in both your computer and your smartphone or iPad.

5. Open a Google Chrome window, and navigate to the URL of your web application.
Your mobile device should follow the navigation automatically, displaying (even-
tually) the mobile version, or at least the same page.

6. Launch your web application as you normally would, and use Adobe Shadow to
inspect its internal state!

Figure 6-4. weinre session, including live DOM manipulation

Impressive, huh? This works on real devices over the network. At the moment of this
writing, Adobe Shadow still does not allow for setting breakpoints and for executing
JavaScript code step by step, but hopefully this functionality will be included soon.

130 | Chapter 6: Debugging and Testing



Testing
This section will introduce one open source and one commercial testing frameworks
that you can use to test your JavaScript applications:

• Jasmine

• Siesta

Jasmine
Test Driven Development (TDD) has probably been one of the major breakthroughs
of the past 15 years. Nearly every programming language has at least one unit testing
library, but lately the fashion has gone to the new field of Behavior Driven Development
(BDD), in which the suite of tests will “describe” the actions taken by the piece of
software being considered, evaluating the output against some predetermined values.

The idea behind BDD is not only to test the possible outcomes of a piece of software,
but also to provide a living documentation that can be used by other developers or even
by customers, to verify the correct mechanisms of their software.

Jasmine is a JavaScript BDD library that has two special characteristics to it. First, it
does not require the DOM to work, which means that it is implemented using core
JavaScript objects and APIs, and that Jasmine tests can run outside of the browser. The
second interesting fact is that Jasmine does not depend on other libraries, which means
that it’s extremely simple to install and use. A suite of tests written with a BDD library
is usually called a spec.

The latest available version of Jasmine at the time of this writing is 1.2.0,
with version 2.0 still in Release Candidate.

As a very simple example, let’s use Jasmine to test a slightly modified version of the
Task class used in the jQuery Mobile application described in Chapter 3. We are going
to test the following class:

var Task = function () {
    var completed = false;
    var date = new Date();
    var name = "";
    var description = null;

    return {
        markAsDone: function() {
            completed = true;
        },

        resetDoneStatus: function () {

Testing | 131

https://github.com/pivotal/jasmine
http://www.bryntum.com/products/siesta/


            completed = false;
        },

        isCompleted: function () {
            return completed;
        },

        setDate: function(newDate) {
            date = newDate;
        },

        getDate: function () {
            return date;
        },

        setName: function (newName) {
            name = newName;
        },

        getName: function () {
            return name;
        },

        setDescription: function (newDescription) {
            description = newDescription;
        },

        getDescription: function () {
            return description;
        }
    };
};

To do that, we have first to download the latest Jasmine library from Github. Inside
the Jasmine distribution there is a lib/jasmine-core/example folder, containing a file
named SpecRunner.html. We are going to modify that file and include our own classes:

<!DOCTYPE html>
<html>
<head>
<title>Jasmine Spec Runner</title>

<link rel="stylesheet" href="../jasmine.css">
<script src="Task.js"></script> 
<script src="TaskSpec.js"></script> 

<script>
(function() {
 var jasmineEnv = jasmine.getEnv();
 jasmineEnv.updateInterval = 1000;

 var trivialReporter = new jasmine.TrivialReporter();

 jasmineEnv.addReporter(trivialReporter);

132 | Chapter 6: Debugging and Testing

https://github.com/pivotal/jasmine/tags


 jasmineEnv.specFilter = function(spec) {
     return trivialReporter.specFilter(spec);
 };

 var currentWindowOnload = window.onload;

 window.onload = function() {
     if (currentWindowOnload) {
         currentWindowOnload();
     }
     execJasmine();
 };

 function execJasmine() {
     jasmineEnv.execute();
 }

})();
</script>
</head>

<body>
</body>
</html>

This file contains the definition of the class that we want to test.

This file contains the spec files that describe the tests.

The spec file looks like a complete description of the behavior and structure of the class
being tested. Jasmine provides functions named describe, inside containing several
calls to a function called it:

describe ("Task", function() {
    var task = null;

    beforeEach (function() {
        task = new Task();
    });

    describe ("when a new one is created", function () {
        it ("should have an empty description", function () {
            expect(task.getDescription()).toBeNull();
        });

        it ("should have an empty name", function () {
            expect(task.getName()).toEqual("");
        });

        it ("should not be completed", function () {
            expect(task.isCompleted()).toBeFalsy();
        });
    });

    describe ("when one is modified", function () {
        it ("should have the specified completed status", function () {

Testing | 133



            task.markAsDone();
            expect(task.isCompleted()).toBeTruthy();
        });
    });

    describe ("when one is reset", function () {
        it ("should not be marked as done", function () {
            task.resetDoneStatus();
            expect(task.isCompleted()).toBeFalsy();
        });
    });
});

Reloading the SpecRunner.html file on the browser provides the following output,
showing that all the tests have passed, and outputting the texts passed as parameters
of the describe and it functions. The result looks like shown in Figure 6-5.

Figure 6-5. Jasmine output

You can try Jasmine without installing it in your machine just by brows-
ing to the Try Jasmine site, created by the developers of Jasmine.

Siesta
The final tool that we are going to introduce in this chapter is Siesta, a commercial
testing framework that targets Ext.js and very recently also Sencha Touch applications.

134 | Chapter 6: Debugging and Testing

http://tryjasmine.com/
http://bryntum.com/products/siesta/


Using Siesta, developers can automate integration testing tasks on their applications,
simulating touches and navigation throughout their Sencha Touch app. They can be
used to test not only individual components, but also whole applications, including
the interaction between screens and the navigation.

Siesta is a product of Bryntum, a company in Helsingborg, Sweden started by Mats
Bryntse. Siesta is available in two versions: Lite, which is provided free of charge, and
Standard, providing enterprise features like premium support, cross page testing, and
Selenium integration.

Siesta Standard unit test suites can also be executed on the command line, using Phan-
tomJS or Node.js. This simplifies the integration of tests in larger, continuous integra-
tion chains.

We are going to show how to create a simple testing suite for our To Do List application,
built with Sencha Touch 2 in Chapter 4.

The first thing we need to do is to create a bootstrap HTML and JavaScript file, that
will be used to display the tests as they are executed:

<!DOCTYPE html>
<html>
    <head>
        <!-- Sencha Touch library CSS-->
        <link rel="stylesheet" href="../../_libs/sencha/resources/css/sencha-
touch.css">
        <title>Testing with Siesta</title>

        <!-- Siesta CSS -->
        <link rel="stylesheet" href="siesta-1.1.0-preview/resources/css/siesta-touch-
all.css">
    </head>
    <body>
        <div id="splashLoader">
            <div id="loading">
                <span class="loadTxt">Loading...</span>
                <div class="x-loading-spinner"><span class="x-loading-top"></span><span 
class="x-loading-right"></span><span class="x-loading-bottom"></span><span class="x-
loading-left"></span></div>
            </div>
        </div>

        <!-- Sencha Touch library -->
        <script src="../../_libs/sencha/sencha-touch-all-debug.js"></script>

        <!-- Siesta application -->
        <script src="siesta-1.1.0-preview/siesta-touch-all.js"></script>

        <!-- The test harness -->
        <script src="index.js"></script>
    </body>
</html>

Testing | 135

http://bryntum.com/
https://twitter.com/bryntum
https://twitter.com/bryntum
http://seleniumhq.org/
http://phantomjs.org/
http://phantomjs.org/
http://nodejs.org/


This HTML file references the Sencha Touch 2 and the Siesta libraries, each composed
of a JavaScript and a CSS file.

The next step is to create a JavaScript file that will be used to describe the suite of tests
to be executed:

var Harness = Siesta.Harness.Browser.SenchaTouch;

Harness.configure({
    title         : 'Testing the To Do List Application',
    transparentEx : false,
    loaderPath    : { 'ToDoListApp' : '/Sencha%20Touch/todoapp/app' }
});

Harness.start(
    {
        group : 'To Do List',

        // Load these files for each ST 2.0 test
        preload : [
            "/_libs/sencha/sencha-touch-all-debug.js",
            "/_libs/sencha/resources/css/sencha-touch.css"
        ],
        items : [
            'tests/sanity.js',
            'tests/model.js',
            'tests/createTask.js'
        ]
    }
);

Siesta requires various pieces of JavaScript code to define tests:

1. A “test harness,” which will reference individual tests

2. One or more individual test files, each testing an individual section of the appli-
cation

The configuration of the harness in the script above uses the loaderPath key, which is
required by Siesta when dealing with MVC applications that use the Sencha Loader
mechanism. We are providing, as a parameter, the location of the Sencha Application
being tested.

Figure 6-6 shows the screen that is shown when the user navigates to the testing harness
from within the Mobile Safari browser in an iOS device.

136 | Chapter 6: Debugging and Testing



Figure 6-6. Siesta before executing the tests

Each individual testing file targets a particular aspect of the application being tested;
for example, tests/model.js tests the ToDoListApp.model.Task class:

StartTest(function(t) {
    t.diag("Testing Task model");

    t.requireOk('ToDoListApp.model.Task', function() {
        var task = Ext.create('ToDoListApp.model.Task', {
            title: 'Buy milk',
            description: 'This is a test task',
            completed: true,
            dueDate: new Date()
        });

        t.is(task.get('title'), 'Buy milk', 'title works ok');
        t.is(task.get('description'), 'This is a test task', 'Could read description');
        t.ok(task.get('completed'), 'The task is completed');
        t.isNot(task.get('dueDate'), null, 'The task date must not be null');
    });
});

Siesta includes a number of useful assertions that can be used to test the state of different
parts of the code:

t.is()

Takes three parameters and verifies the identity or equality of the first two
operands. As you might image, t.isNot() performs the inverse operation.

Testing | 137



t.ok()

Verifies that a particular statement is true. Of course, t.notOk() does exactly the
opposite.

Many other functions are provided by Siesta to allow developers to script the expected
actions of their applications:

t.requireOk()

Used to load asynchronously required classes, and to perform a function once the
code is loaded.

t.chain()

Used to execute a sequence of asynchronous operations, having Siesta waiting for
the end of the current operation before starting a new one.

t.waitForCQ()

Expects a particular element to be rendered and available in the DOM before ex-
ecuting a callback function.

To see these functions in play, check the source code repository for this book. In the
“Testing and Debugging” folder you’ll find examples that cover these methods.

Figure 6-7 shows the iOS browser after all the tests have been executed. This screen
details the number of tests that have been executed, including the number of failed and
passed tests.

Figure 6-7. Siesta output after the execution of the tests

138 | Chapter 6: Debugging and Testing



Developers can inspect the individual status of each test, as shown in Figure 6-8.

Figure 6-8. Result of an individual Siesta test

Conclusion
In this chapter, we saw how to use several different technologies to test our code before
shipping it; some of them deal with the nitty-gritty details of your classes, testing their
integrity and interfaces; others provide more advanced services, allowing you to script
complex interactions and executing them in an automated fashion.

Both the Web Inspector and Adobe Shadow can be used to increase the quality of your
applications. The former provides a solid debugging environment in which to execute
code step by step, watching variables and setting breakpoints. On the other hand,
Adobe Shadow provides an incredible new paradigm, allowing developers to inspect
the internal state of their applications when running in their smartphone. This is in-
valuable when deploying web apps as native ones.

For Sencha Touch developers, Siesta brings an enterprise-level testing framework,
which can be used to verify and certify the quality of any application.

Whatever the method that you use, do not forget that you should always have testers
playing with your application, providing your team with feedback, and signalling
potential problems to the developers. No matter how advanced your testing suite, you
should always have human testers.

Conclusion | 139





CHAPTER 7

Conclusion

Phew, what a ride! I hope that this book served as a good introduction to the world of
modern mobile web app development.

Sencha Touch and jQuery Mobile are, at the time of this writing, the most serious
options available. They both complement each other, providing software developers
with serious options and an effective trade off:

Table 7-1. Comparison between Sencha Touch and jQuery Mobile

Library Pros Cons

Sencha Touch Professional widgets Webkit-only

Complete toolkit Heavyweight

Enterprise-level support Learning curve

MVC Architecture

jQuery Mobile Broad browser support Few widgets

Lightweight Younger code base

Progressive enhancement

Easier to learn

jQuery Mobile is dual licensed, with the MIT or GPL version 2; Sencha Touch is avail-
able under the GPL version 3 license for open source projects, and a paid commercial
license for companies not willing to be subject to the terms imposed by the GPL.

Finally, using PhoneGap (or “Apache Cordova” as it is known now), developers can
deploy their application not only through the web, but also in the corresponding mar-
ketplaces of several different mobile platforms.

All of these options turn mobile web apps in an extremely serious options, chosen by
more and more companies and individuals every day for offering value added services
and products. The tremendous evolution of the mobile web has made this a reality,
and there is a bright future forward.

141





Bibliography

Books
[flanagan] David Flanagan. JavaScript: The Definitive Guide, Sixth Edition. O’Reilly.

2011. ISBN 0-596-80552-7

[crockford] Douglas Crockford. JavaScript: The Good Parts. O’Reilly. 2008. ISBN
0-596-51774-2.

[stefanov] Stoyan Stefanov. JavaScript Patterns. O’Reilly. 2010. ISBN 0-596-80675-2.

[firtman1] Maximiliano Firtman. Programming the Mobile Web. O’Reilly. 2010. ISBN
0-596-80778-3.

[firtman2] Maximiliano Firtman. jQuery Mobile: Up and Running. O’Reilly. 2012. ISBN
1-4493-9765-4.

[stark] Jonathan Stark. Building iPhone Apps with HTML, CSS, and JavaScript. O’Reilly.
2010. ISBN 0-596-80578-0.

[keith] Jeremy Keith. HTML5 for Web Designers. A Book Apart. 2010. ISBN
978-0-9844425-0-8.

[cederholm] Dan Cederholm CSS3 for Web Designers. A Book Apart. 2011. ISBN
978-0-9844425-2-2.

Generic References about Mobile Web Technologies
Mobile HTML5

Mobile Web Best Practices

2011 in review: 20 HTML5 sites that changed the game

The Web Platform - Browser Technologies

When can I use… Support tables for HTML5, CSS3, etc

Magic Quadrant for Mobile Application Development Platforms by Gartner (April
26th, 2012)

143

http://oreilly.com/catalog/9780596805531
http://oreilly.com/catalog/9780596517748
http://shop.oreilly.com/product/9780596806767.do
http://oreilly.com/catalog/9780596807795
http://shop.oreilly.com/product/0636920014607.do
http://oreilly.com/catalog/9780596805784
http://www.abookapart.com/products/html5-for-web-designers
http://www.abookapart.com/products/css3-for-web-designers
http://mobilehtml5.org/
http://mobilewebbestpractices.com/
http://www.netmagazine.com/features/2011-review-20-html5-sites-changed-game
http://platform.html5.org/
http://caniuse.com/
http://www.gartner.com/technology/reprints.do?id=1-1AAE10P&ct=120427&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1AAE10P&ct=120427&st=sb


Websites about HTML5
HTML5 Mobile Pro Download Edition

HTML5 Rocks

HTML5 Safari Technology Overview by Apple

Periodic Table of HTML5 Elements

HTML5 Demos and Examples

HTML5 Tracker

HTML5 Visual Cheat Sheet

SwitchToHTML5 - The HTML5 Framework Generator

Creating Cross Browser HTML5 Forms Now, Using modernizr, webforms2 and
html5Widgets

HTML5 Test

HTML5 Canvas Cheat Sheet

Interactive Experiments focused on HTML5

HTML5 Please - Use the new and shiny responsibly

Websites about CSS3
CSS3 Please! Cross-Browser CSS3 Rule Generator

LESS << The Dynamic Stylesheet Language

Sass - Syntactically Awesome Stylesheets

ZUSS (ZK User-interface Style Sheet)

XCSS - OO CSS Framework

Websites about JavaScript
JavaScript only three “bad” parts

Web Inspector: Understanding Stack Traces

Understanding JavaScript OOP

Understanding JavaScript’s this Keyword

Other Frameworks
Cappuccino

144 | Bibliography

http://html5mobilepro.com/
http://www.html5rocks.com/
http://developer.apple.com/technologies/safari/html5.html
http://joshduck.com/periodic-table.html
http://html5demos.com/
http://html5.org/tools/web-apps-tracker
http://woork.blogspot.com/2009/09/html-5-visual-cheat-sheet-by-woork.html
http://switchtohtml5.com/
http://www.useragentman.com/blog/2010/07/27/cross-browser-html5-forms-using-modernizr-webforms2-and-html5widgets/
http://www.useragentman.com/blog/2010/07/27/cross-browser-html5-forms-using-modernizr-webforms2-and-html5widgets/
http://html5test.com/
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html
http://hakim.se/experiments
http://html5please.com/
http://css3please.com/
http://lesscss.org/
http://sass-lang.com/
https://github.com/tomyeh/ZUSS
http://xcss.antpaw.org/
http://johnkpaul.tumblr.com/post/20720951024/javascript-only-three-bad-parts
http://www.webkit.org/blog/1544/web-inspector-understanding-stack-traces/
http://killdream.github.com/blog/2011/10/understanding-javascript-oop/
http://javascriptweblog.wordpress.com/2010/08/30/understanding-javascripts-this/
http://cappuccino.org/


SproutCore

jQTouch

zepto.js

iUI

Initializr

HTML5 Reset

iWebKit

LimeJS

WebApp.net

Jo

Bibliography | 145

http://www.sproutcore.com/
http://jqtouch.com/
http://zeptojs.com/
http://code.google.com/p/iui/
http://www.initializr.com/
http://html5reset.org/
http://snippetspace.com/
http://www.limejs.com/
http://webapp-net.com/
http://joapp.com/




About the Author
Adrian Kosmaczewski has been working as an iOS developer since 2008. Before that,
he was a web developer working with classic ASP since 1996, ASP.NET, PHP, Ruby
on Rails, Django, and more. He runs a consulting and training business in Oron-la-
Ville, Switzerland. He has a degree of Master of Science in Information Technology
from the University of Liverpool.




	Table of Contents
	Preface
	Introduction
	Fragmentation
	Growth of the Mobile Web
	New Paradigms
	Who Should Read This Book
	Book Structure
	What You Need
	Code of the Book
	Acknowledgements
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. HTML5 for Mobile Applications
	A Bit of History
	Declarations and Meta Tags
	A Minimal HTML5 Document
	Doctype
	Charset
	JavaScript and Stylesheets
	New and Obsolete Elements

	HTML5 Applications
	Add Web Apps to Home Screen in iOS
	Add Web Apps to Home Screen in Android
	Metadata for HTML5 Applications

	HTML5 Application Cache
	Manifest Files in Apache
	Manifest Files with PHP
	Manifest Files in IIS
	Manifest Files in .NET
	Debugging Manifest Files

	Testing for HTML5 Features
	Geolocation
	Device Orientation
	Device Motion
	Network Connectivity
	Canvas
	CSS3 Animations and Transitions
	Transitions
	Animations
	Final Considerations

	Client-Side Storage
	SQL Storage

	Rich Media Tags
	Conclusion

	Chapter 2. JavaScript Productivity Tips
	About JavaScript
	Some Coding Tips

	Object Literals
	Single or Double Quotes?
	JavaScript Base Types
	Dynamic Overloading of Base Types
	Functions
	How to Organize Code in namespaces
	Create Objects and Arrays the Easy Way
	Create a Singleton Object
	Scheduling Function Execution
	Concatenating Strings
	Iterating Over Arrays
	Using toString() for Reflection
	Easy Code Injection
	Object-Oriented Programming in JavaScript
	The self Trick
	More Ways to Do the Same Thing
	Another Common Way to Create Custom Types
	Passing Options

	Conclusion

	Chapter 3. jQuery Mobile
	Supported Platforms
	Compatibility
	Compatibility with Older Mobile Platforms

	Key Features
	At a Glance
	To Do List Application
	The HTML File
	Pages
	Lists
	Buttons
	Customizing the Look and Feel
	Navigation
	Page Lifecycle
	Forms
	Plug-ins
	Storage

	Codiqa
	ThemeRoller
	Conclusion

	Chapter 4. Sencha Touch
	Introduction and History
	Characteristics
	Supported Platforms
	Key Features
	GUI Controls
	CSS Transitions and Animations
	Touch Event Management
	Application Data Support

	JavaScript Idioms
	Descriptive Dictionary Pattern
	Object Orientation in Sencha Touch

	Creating a To Do List App
	Create the HTML
	Starting the Application Code
	Transitions
	Creating Instances
	Stores, Proxies, Writers, and Readers
	The Data Model
	Creating the List
	Creating a To Do Item Form
	A Controller to Rule Them All
	Reacting to Events
	Navigation

	Using Sencha Architect 2
	Conclusion

	Chapter 5. PhoneGap
	Introduction
	Supported Platforms
	Supported Features
	Basic Usage

	Installing PhoneGap
	Creating an iOS Application
	Creating an Android Application
	With Eclipse
	With IntelliJ IDEA

	Creating a Windows Phone Application
	Accessing Native Functionality
	Plug-ins
	The JavaScript Bridge
	PhoneGap Kitchen Sink
	The deviceready Event
	Multitasking Events
	Network Connectivity Events
	Battery Events
	Accelerometer
	Address Book
	Audio Recording and Playback
	Camera
	Connection Status
	Filesystem
	Location and Compass
	Notifications
	Storage

	Conclusion

	Chapter 6. Debugging and Testing
	Your Browser Web Inspector
	Inspect the HTML of your app
	Log Messages in the Console
	Set Breakpoints in Your JavaScript Code

	iWebInspector
	Adobe Shadow
	Testing
	Jasmine
	Siesta

	Conclusion

	Chapter 7. Conclusion
	Bibliography
	Books
	Generic References about Mobile Web Technologies
	Websites about HTML5
	Websites about CSS3
	Websites about JavaScript
	Other Frameworks


