
Python®
Create-Modify-Reuse

Jim Knowlton

Wiley Publishing, Inc.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

 Python®

Create-Modify-Reuse

Introduction .. xix

Chapter 1: A Python Primer.. 1

Part I: The Projects ... 17

Chapter 2: Directory/File Snapshot Program .. 19

Chapter 3: DVD Inventory System .. 43

Chapter 4: Web Performance Tester ... 81

Chapter 5: Customer Follow-Up System .. 103

Chapter 6: Test Management/Reporting System .. 125

Chapter 7: Version Management System .. 157

Chapter 8: Content Management System ... 177

Part II: Advanced Topics .. 197

Chapter 9: Interacting with the Operating System 199

Chapter 10: Debugging and Testing .. 221

Appendix A: Where to Go From Here — Resources That Can Help 239

Appendix B: Installing Supplemental Programs ... 241

Index .. 253

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Python®
Create-Modify-Reuse

Jim Knowlton

Wiley Publishing, Inc.

www.allitebooks.com

http://www.allitebooks.org

Python®: Create-Modify-Reuse
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-25932-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Knowlton, Jim.
 Python : create-modify-reuse / Jim Knowlton.
 p. cm.
 Includes index.
 ISBN 978-0-470-25932-0 (paper/website)
 1. Python (Computer program language) I. Title.
 QA76.73.P98K56 2008
 005.13'3—dc22
 2008021374

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Python is a registered
trademark of Python Software Foundation. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.allitebooks.com

www.wiley.com
http://www.allitebooks.org

 To Karin, the love of my life. Words simply can ’ t express all that I ’ m grateful for. I know that sometimes I live in
another world — but always know that it would be a cold world without you.

 To my children, Karren, Shannon, Kasey, Brian, Courtney, Jaren, Carlen, Kristin, Logan, and Ben — and to little
Olivia yet to come (as I write this). For some of you I was there at your birth, some of you I have known

for only a few years, but know that each one of you is a treasure to me.

 To Mom and Dad, you are still with me every day. I live to make you proud.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

 About the Author
 Jim Knowlton is a software quality engineer with Automatic Data Processing (ADP), Inc., where he
leads quality assurance efforts on ADP ’ s computer telephony integration and network video projects.
He has been instrumental in introducing automated testing methodologies to their QA effort. He has
more than fifteen years of experience in the software industry, including clients such as Symantec,
Novell, Nike, and Zions Bank. He has extensive experience in open - source technologies, including
Python, Ruby, PHP, Apache, and MySQL, and has also worked extensively in the areas of systems
management and enterprise security. Jim holds a bachelor of arts degree in management and is currently
working on a master of software engineering degree at Portland State University.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Acquisitions Editor

Jenny Watson

Development Editor

Ed Connor

Technical Editor

Jesse Keating

Production Editor

Daniel Scribner

Copy Editor

Expat Editing

Editorial Manager

Mary Beth Wakefield

Credits
Production Manager

Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Joseph B. Wikert

Project Coordinator, Cover

Lynsey Stanford

Proofreader

Nancy Carrasco

Indexer

Robert Swanson

 Acknowledgments

 First, I ’ d like to acknowledge Guido Van Rossum for creating such a way cool language as Python.

 I ’ d like to thank my agent, Neil Salkind, for nursing my insecurities and answering my novice writer
questions.

 I ’ d like to thank Jenny Watson, my acquisitions editor at Wiley, for being willing to go to bat for an
unpublished writer ’ s crazy ideas. Thanks to Ed Connor, my development editor, for his gentle prodding,
high standards, and encouragement. Thanks also to Jesse Keating for his help with technical editing, and
to Brent Rufener for providing a cover photo.

 Finally, but most important, thanks to my family for putting up with my frequent unavailability during the
last few months — writing is a solitary art, and it will be nice to reacquaint myself with my loved ones.

Contents

Introduction xix

Chapter 1: A Python Primer 1

Getting Started 1

Obtaining Python and Installing It 1

The Python Interpreter 2

Your Editing /Execution Environment 2

Lexical Structure 3

Keywords 3

Lines and Indentation 4

Data Types and Identifiers 4

Operators 6

Expressions and Statements 7

Expressions 7

Statements 7

Iteration and Decision-Making 8

Iteration 9

Decision-Making 10

Functions 11

Modules 12

Importing Modules 12

How Python Finds Modules to Load 13

Classes 14

Summary 15

Part I: The Projects 17

Chapter 2: Directory/File Snapshot Program 19

Using the Program 20

Creating a Snapshot 20

Listing Snapshot Files 21

Comparing Snapshots 22

xiv

Contents

Viewing Help 23

Exiting the Program 23

Putting It All Together 24

Design 25

How It All Fits Together 25

Main Program 26

Modules 26

Code and Code Explanation 27

Snapshot.py 27

snapshothelper.py 34

Testing 42

Modifying the Program 42

Summary 42

Chapter 3: DVD Inventory System 43

Using the Program 44

Installing MySQL 44

Adding a DVD to the Database 44

Searching the DVD Inventory 46

Modifying a DVD Record 50

Deleting a DVD Record 53

Exporting the List of DVDs to a CSV File 54

Design 55

How It All Fits Together 56

Modules 56

Code and Code Explanation 58

dvd.py 59

add_dvd.py 61

lookup_dvds.py 63

modify_dvd.py 68

delete_dvd.py 74

csvreport_dvd.py 77

Testing 79

Modifying the Program 79

Summary 80

Chapter 4: Web Performance Tester 81

Using the Program 82

Running the Python Web Server 82

Running the Performance Profiler Client 83

xv

Contents

Design 88

How It All Fits Together 89

Modules 89

Code and Code Explanation 90

webserver.py 90

webperf.py 92

webclient.py 95

Testing 102

Modifying the Program 102

Summary 102

Chapter 5: Customer Follow-Up System 103

Using the Program 103

Preliminaries 104

Running the Program 112

Design 115

How It All Fits Together 115

Modules 116

Code and Code Explanation 117

form.html 117

form.py 118

Testing 123

Modifying the Program 123

Summary 124

Chapter 6: Test Management/Reporting System 125

Using the Program 126

Running Tests 126

Listing Test Runs 129

Showing Test Results 129

Generating an HTML Test Report 130

Examining the HTML File 131

Displaying Product Help 132

Design 133

Modules 133

Code and Code Explanation 135

test_manager.py 135

test_run.py 140

test_list.py 147

test_results.py 148

test_html.py 151

xvi

Contents

Testing 155

Modifying the Program 155

Summary 155

More About the Minidom Module 156

Chapter 7: Version Management System 157

Using the Program 158

Setting Up Remote Computers 158

Running the Program — Command-Line Syntax 158

Design 162

Modules 162

Code and Code Explanation 163

version_checker.py 164

check_versions.py 168

csv_report.py 173

Testing 174

Modifying the Program 175

Security Considerations 175

Summary 175

Chapter 8: Content Management System 177

Plone Overview 177

What Is Plone? 177

Installing and Configuring Plone 178

Downloading Plone 179

Extracting the Plone Install 180

Running the Plone Install 181

Starting Plone 182

Discovering the Admin User Password 182

Logging In as the Admin User 182

Setting Up the E-mail Server 184

Setting Up a User 185

Logging In as the Set-Up User 186

Design 187

Navigation 189

Content Management 189

Creating a Page 189

Creating a Collection 191

User Permissions 195

Summary 196

xvii

Contents

Part II: Advanced Topics 197

Chapter 9: Interacting with the Operating System 199

Generic Operating System Services 200

The os Module — Generic OS Services 200

The time Module — Format and Manipulate System Time 201

The optparse Module — Parse Command-Line Options 203

The platform Module — Get Platform Information 204

The getpass Module — Generate and Check Passwords 204

Some Other Things You Can Do 205

Accessing Windows Services 205

The winreg Module — Manipulate the Windows Registry 205

The winsound Module 206

The win32serviceutil Module — Manage Windows Services 207

The win32net Module — Access Windows Networking Features 209

Some Other Things You Can Do 211

Accessing Unix/Linux Services 212

The termios Module — Access Unix-Style TTY Interface 212

The resource Module — Manage Unix System Resources 212

The syslog Module — Access the Unix syslog 215

The commands Module — Run Commands and Get Output 217

Some Other Things You Can Do 219

Summary 219

Chapter 10: Debugging and Testing 221

The Python Debugger 221

Running the Debugger 222

Python Test Frameworks 226

Why We Test 226

Unit Testing 227

Summary 237

Final Remarks 237

Appendix A: Where to Go From Here — Resources That Can Help 239

Appendix B: Installing Supplemental Programs 241

Index 253

www.allitebooks.com

http://www.allitebooks.org

 Introduction

 Python: Create - Modify - Reuse is designed for all levels of Python developers interested in a practical,

hands - on way of learning Python development. This book is designed to show you how to use Python

(in combination with the raw processing power of your computer) to accomplish real - world tasks in a

more efficient way. Don ’ t look for an exhaustive description of the Python language — you won ’ t find it.

The book ’ s main purpose is not to thoroughly cover the Python language, but rather to show how you

can use Python to create robust, real - world applications.

 In this respect, the goal is similar to foreign - language books that identify themselves as “ conversational, ”

focusing on the vocabulary and concepts that people will need the most. Likewise, I focus specifically on

the Python knowledge needed to accomplish practical, specific tasks. Along the way, you will learn to

create useful, efficient scripts that are easy to maintain and enhance.

 The applications, along with source code, are available for download at www.wrox.com .

 Who This Book Is For
 This book is for developers with some experience with Python who want to explore how to develop

full - blown applications. It is also for developers with experience in other languages who want to learn

Python by building robust applications. It is well - suited for developers who like to “ learn by doing, ”

rather than exploring a language feature by feature. To get the most out of the book, you should

understand basic programming principles.

 Because this book is project - based, you can approach it in numerous ways. You can, of course, read it from

cover to cover. Chapters 2 through 8 each cover a different project, so the chapters are independent of

each other. However, because each chapter project is covered individually, there may be some overlap

of information. I also sometimes refer to explanations of particular topics covered in previous chapters.

This will help to reinforce important concepts.

 The end of the book contains two appendixes. The first one is a listing of Python resources you can check

out for more information. The second one will help you with installing additional components used in

some of the examples.

Introduction

xx

 What This Book Covers
 I ’ ve always liked the Saturday morning fix - it shows that demonstrate how to build something, such as a

cabinet or a deck. The experts on these shows take seemingly large, complex tasks that appear to be

beyond the skill level of the average do - it - yourselfer and break them down into smaller, simple tasks,

teaching you valuable skills along the way. That ’ s basically the intention and approach taken in this

book, applied to the construction of software instead of home improvements.

 This book starts with a basic overview of the Python language, designed for those familiar with other

languages but new to Python. It is followed by several chapters, each of which describes a complete

project that can be used as - is or modified and extended to suit your particular purposes. You ’ ll find

applications that access databases, take advantage of web technologies, and facilitate network

communications, to name a few. In addition, and more important than the technologies you will be

introduced to, you will learn how to use Python to solve real challenges. Following these chapters are

two chapters that cover accessing operating system resources and debugging and testing, respectively.

 Each project chapter contains complete instructions describing how to install and use the application, so

you can actually see the program run as you learn how to construct and use it, including how the project

was designed and prototyped. This book is intended to be both a reference guide and a learning aid,

teaching you how to build solutions with Python and providing reference information on a wide variety

of Python programming concepts.

 It is hoped that this book will help you have fun with Python and build useful applications, and — unlike

my experience with building a deck — without sore thumbs.

 How This Book Is Structured
 This book is framed around the code itself. This is because developers are typically looking for how to

do something; and, as with many activities, you learn how to do something by watching how others do

it and trying it yourself. If you want to know how a for loop works, you ’ ll find for loops in my code,

but that ’ s not the thrust of the book. Instead, this book shows you how to do things: how to build a

content management system, how to build a test management system, how to set up a system for

tracking customer follow - up, and so on. Along the way, you ’ ll learn how to communicate with a SQL

database, how to act as a web server or communicate with one, how to access operating system services,

and more.

 There are three basic components to the book:

 Chapter 1 is a brief overview of the Python language.

 Chapters 2 – 8 cover seven different programming projects, which illustrate various technologies

and techniques available to Python developers.

 Chapters 9 – 10 cover additional, advanced topics, which will help you as you build Python

projects.

❑

❑

❑

Introduction

xxi

 The project chapters have a consistent structure:

 Overview: What does the application do?

 Using the program

 Design

❑ How it all fits together

❑ Modules involved

 Code and code explanation

❑ Module/class 1 explanation

❑ Module/class 2 explanation

❑ Minor code file explanation

 Testing, including suggested tests

 Modifying the project, including some suggested adaptations

 Summary

 Each project is designed with classes that can be reused and accessed for multiple purposes. This is one

of the main benefits of object - oriented programming, so designing for reusability is a main focus of the

book. The book contains the following chapters:

 1. A Python Primer

 This chapter is a basic primer on the Python language, and it functions as either a quick tutorial

for experienced programmers new to Python or a refresher for programmers with Python

experience.

 Part I : The Projects

 2. Directory/File Snapshot Program

 This project demonstrates how to interact with files, create and manipulate data structures, and

provide user output. It also touches on code design issues to improve code maintainability.

Often when installing or uninstalling software, or verifying changes to a file system, it can be

valuable to take a “ snapshot ” of the files and directories, along with their size and last - modified

time. The script introduced in this chapter does just that. This chapter also explores how to

capture a directory listing into a Python list, and explains how to query this list for particular

values.

❑

❑

❑

❑

❑

❑

❑

Introduction

xxii

 3. DVD Inventory System

 This project takes advantage of Python ’ s capability to access and manipulate data in a SQL

database. The application enables multiple users to log in to a website that provides access to a

DVD inventory database. Permissions are set such that some users can add, modify, or delete

entries, whereas other users have read - only access to the data.

 4. Web Performance Tester

 This project shows how to communicate with a Python web server and retrieve information

regarding how long it takes to receive requested items from the web server. Although writing

Python programs to work on a single computer can be useful, the real power of Python can be

seen when it is used to script communication between computers on a network. Most networks

contain several web servers. A nice feature of Python is that it can act as a lightweight server for

various Internet protocols, such as HTTP (web) and ftp. This application enables you to monitor

performance of HTTP traffic on your network.

 5. Customer Follow - Up System

 This project shows how to present a web form to the user and retrieve data from it, how to

automatically format and send e - mail through an SMTP server, and how to generate an HTML -

 formatted report. The task for the second example is to automatically generate a customer

comments e - mail message based on information the customer enters in a form. It uses the

mod_python Apache module to take the information entered in the HTTP form and then utilizes

a Python script on the web server to send that information to an SMTP server for mail delivery.

 6. Test Management/Reporting System

 This project makes use of the unittest module to run tests against an existing application, and

creates a framework for reporting test results. Testing is a vital process for developing software.

This application enables users to run tests for a given piece of software, to list the previous test

runs by date, to show test run results for any previously run tests, and to output the results of

any test run as HTML for viewing in a web browser.

 7. Version Management System

 This project connects to a list of servers via telnet, checks the application version of a pre - set

application list, and displays its results both as output and to a log file. Often, a system

administrator needs to patch systems or ensure that systems have the latest application versions

installed. This script is an easy way to accomplish that task. It makes use of Python ’ s capability

to emulate a telnet client and log in to remote systems and perform functions on that remote

system.

 8. Content Management System

 This project explores Plone, a popular content management system based on Python and Zope

(a Python - based application server). Because Python is a very mature language, numerous

applications have been built on top of it. A great thing about working with Python - based

applications is that you get the benefit of a full - blown application, but you can still use Python

to configure and customize it.

Introduction

xxiii

 Part II : Advanced Topics

 9. Interacting with the Operating System

 When writing scripts “ in the real world, ” often it is critical to be able to access services available

through (and particular to) the operating system you happen to be on. For example, suppose

you wanted to read or modify the Window Registry? Or you wanted to get the Linux process ID

of a particular process that is running? Is such a thing even possible? Definitely — and this

chapter shows you how.

 10. Debugging and Testing

 Because I am a software tester myself, testing is a subject that is certainly close to my heart. In

this chapter, I discuss why testing is important, how to put the right amount of testing into your

code, and how writing automated tests can help you to actually write code more quickly. You ’ ll

look at PyUnit, the automated testing framework for Python, and learn how to use it to test the

riskiest parts of a script. You ’ ll also explore the Python debugger and some of the nifty features

it offers.

 Appendix A Where to Go from Here: Resources That Can Help

 This appendix provides an annotated list of books, websites, and blogs that can provide useful

information, insight, and inspiration for the budding Python script developer.

 Appendix B Installing Supplemental Programs

 This appendix provides detailed information on how to set up MySQL (used in the project in

Chapter 3) and PyWin32 (used in Chapter 10 and various other projects in the book).

 What You Need to Use This Book
 For this book, I used Python 2.51 (the “ CPython ” distribution), run on Windows, as my Python

distribution of choice. Most of the examples will work with the latest versions of Python for Windows,

Mac, or Unix/Linux, or IronPython. However, to successfully run everything in this book, you ’ ll want

the latest version of CPython on Windows, which is currently version 2.51.

 Other applications, such as Plone, are available free and can be downloaded as needed. When you get to

a chapter for which you need an additional component, I ’ ll indicate that to you, and you can look in

Appendix B for information on installing additional components.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually

or to use the source code files that accompany the book. All of the source code used in this book is

available for download at www.wrox.com . Once at the site, simply locate the book ’ s title (either by using

the Search box or by using one of the title lists) and click the Download Code link on the book ’ s detail

page to obtain all the source code for the book.

Introduction

xxiv

 Because many books have similar titles, you may find it easiest to search by ISBN;
this book ’ s ISBN is 978 - 0 - 470 - 25932 - 0.

 Once you download the code, just decompress it with your favorite compression tool. Alternately, you

can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to

see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is

perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or

faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save

another reader hours of frustration and at the same time you will be helping us provide even higher

quality information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or

one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view

all errata that has been submitted for this book and posted by Wrox editors. A complete book list

including links to each book ’ s errata is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport

.shtml and complete the form there to send us the error you have found. I ’ ll check the information and,

if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions of

the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based

system for you to post messages relating to Wrox books and related technologies and interact with other

readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of

your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,

and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as you

read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

Introduction

xxv

 3. Complete the required information to join, as well as any optional information you wish to

provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete

the joining process.

 You can read messages in the forums without joining P2P but in order to post your
own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read

messages at any time on the Web. If you would like to have new messages from a particular forum

e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works, as well as many common questions specific to P2P and

Wrox books. To read the FAQs, click the FAQ link on any P2P page.

 A Python Primer

 This chapter provides a quick overview of the Python language. The goal in this chapter is not to

teach you the Python language — excellent books have been written on that subject, such as

 Beginning Python (Wrox, 2005). This chapter describes Python ’ s lexical structure and programming

conventions, so if you are familiar with other scripting languages such as Perl or Ruby, or with

compiled programming languages such as Java or C#, you should easily be up to speed in no time.

 Getting Star ted
 Of course, the first thing you need to do is install Python, if you don ’ t already have it. Installers are

available for Windows, Macintosh, Linux, Unix, and everything from OpenVMS to the Playstation

(no, I ’ m not kidding).

 Obtaining Python and Installing It
 If you go to www.python.org/download you can find links to download the correct version of

Python for your operating system. Follow the install instructions for your particular Python

distribution — instructions can vary significantly depending on what operating system you ’ re

installing to.

 What Version Number to Install

 Although the examples in this book should work for any Python version above 2.0, it is
best to install the latest stable build for your operating system. For Windows (which is
the environment I primarily work in), the latest stable version is 2.51. There is an alpha
build of Python 3.0 available as of this writing, but other than just looking at it for fun,
I ’ d steer clear of it for the examples in this book — in some cases the syntax is very
 different, and the examples in this book won ’ t work with Python 3.0.

Chapter 1: A Python Primer

2

 The Python Interpreter
 One of the most useful tools for writing Python code is the Python interpreter, an interactive editing and

execution environment in which commands are run as soon as you enter them and press Enter. On Unix

and Macintosh machines, the Python interpreter can usually be found in the /usr/local/bin/python

directory, which can be accessed by simply typing the command python .

 On Windows machines, the Python interpreter is installed to the c:\python25 directory (for a Python

2.5x installation). To add this directory to your path, type the following at a Windows command prompt:

 set path=%path%;C:\python25.

 On a Windows system, such as with Unix/Linux, you simply type python to bring up the interpreter

(either from the c:\python25 directory or from any directory if the Python directory has been added to

the path).

 When you enter the interpreter, you ’ ll see a screen with information like the following:

Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit (Intel)] on win32

Type “help”, “copyright”, “credits” or “license” for more information.

 > > >

 Your Editing /Execution Environment
 Because the minimum requirements for writing and running Python programs are simply an editor that

can save text files and a command prompt where you can run the Python interpreter, you could simply

use Notepad on Windows, Vim on Linux/Unix, or TextEdit on Mac, and a command line for running

programs.

 One nice step up from that is IDLE, Python ’ s integrated development environment (IDE), which is

named after Monty Python ’ s Eric Idle and is included with Python. It includes the following useful

features:

 A full - featured text editor

 Syntax highlighting

 Code intelligence

 A class browser

 A Python path browser

 A debugger

 A Python interpreter environment

❑

❑

❑

❑

❑

❑

❑

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: A Python Primer

3

 In addition to IDLE, you do have other options. On Windows, there is a nice IDE called PythonWin,

developed by Mark Hammond. It can be installed as a full Python distribution from ActiveState ’ s

website (www.activestate.com), or you can simply install the win32all package to add PythonWin to a

standard Python for Windows install. PythonWin is a great product, very slick and with all the features

you ’ d expect from an IDE.

 Other options include an Eclipse distribution for Python called EasyEclipse for Python. For my money,

I ’ d start out with IDLE, and then as your experience with Python grows, explore other options.

 Lexical Structure
 Following is a simple Python program. It shows the basic structure of many Python scripts, which is as

follows:

 1. Initialize variables (lines 1 – 3).

 2. Do some processing (lines 4 – 5).

 3. Make decisions and perform actions based on those decisions (lines 6 – 10).

name = “Jim”

age = 42

highschoolGPA = 3.89

enteredName = raw_input(“Enter your name: “)

print “\n\n”

if name == “Jim”:

 print “Your age is “, age

 print “You had a”, highschoolGPA, “GPA in high school”

 if (highschoolGPA > 3):

 print “You had better than a 3.0 GPA...good job!”

 Keywords
 Keywords are words that are “ reserved ” — they cannot be used as variable names. In the preceding code,

the keyword if is used multiple times.

Chapter 1: A Python Primer

4

 The keywords are as follows:

 and del for is raise

 assert elif from lambda return

 break else global not try

 class except if or while

 continue exec import pass

 def finally in print yield

 Lines and Indentation
 In Python, unlike a compiled language such as C, line breaks are significant, and the end of a program

statement is defined by a hard return. Program blocks are defined by a combination of statements (each

on a separate line, but with no end - of - statement character visible) and program blocks, delimited

visually by the use of indentation.

 As shown in the code from the preceding section, lines are indented in Python. This is not simply a

stylistic choice — indentation is not just recommended in Python, but enforced by the interpreter. This is

probably the most controversial aspect of Python, and it has been the subject of many a flame war online.

 Basically, it means that the following code would generate an interpreter error, because the action

associated with an if statement must be indented:

if variable1 == “Jim”:

print “variable1 eqiuals Jim”

 You ’ ll learn more about the actual if statement itself later.

 Data Types and Identifiers
 Python provides a rich collection of data types to enable programmers to perform virtually any

programming task they desire in another language. One nice thing about Python is that it provides many

useful and unique data types (such as tuples and dictionaries), and stays away from data types such as

the pointers used in C, which have their use but can also make programming much more confusing and

difficult for the nonprofessional programmer.

Chapter 1: A Python Primer

5

 Data Types

 Python is known as a dynamically typed language, which means that you don ’ t have to explicitly identify

the data type when you initialize a variable. In the code example above, the variable name is assigned to

the string value “ Jim ” . However, you don ’ t specifically identify the variable as a string variable. Python

knows, based on the value it has been given, that it should allocate memory for a string. Likewise for the

 age integer variable and the highschoolGPA float variable.

 The following table shows the most commonly used available data types and their attributes:

 Data Type Attributes Example

 Numeric Types

 Float Implemented with C doubles. 5.43

 9483.123

 Integer Implemented with C longs. 1027

 211234

 Long Integer Size is limited only by system resources. 567893L

 Sequence Types

 String A list of characters. Is immutable (not changeable

in - place). Can be represented by single quotes or

double quotes. Can span multiple lines.

 “ This is a string ”

” ””

 This is an example

of a DocString

 ” ” ”

 List A mutable (changeable) sequence of data types.

List elements do not have to be “ like. ” In other

words, you could have a float element and an

integer element in a single list.

 [1, 2.3, “ Jim ”]

 [1, 2, 3]

 [1.5, 2.7, 3.0]

 [“ Jim ” , “ Joe ” , “ Bob ”]

 Tuple An immutable sequence of data types. Other

than the fact that it can ’ t be changed, it works

just like a list.

 (1, 2.3, “ Jim ”)

 (1, 2, 3)

 (1.5, 2.7, 3.0)

 “ Jim ” , “ Joe ” , “ Bob ”

 Dictionary A list of items indexed by keys . d = { “ first “ : ” Jim ” ,

 “ last “ : “ Knowlton “ }

 Identifiers

 An identifier is a unique name that enables you to identify something. Identifiers are used to label

variables, functions, classes, objects, and modules. They begin with either a letter or an underscore, and

they can contain letters, underscores, or digits. They cannot contain punctuation marks.

Chapter 1: A Python Primer

6

 Operators
 If you have programmed in other languages, the operators in Python will be familiar to you. The Python

operators are fundamentally similar to those used in other languages. In the code shown earlier, the

conditions evaluated in both if statements involve comparison operators. The following table describes

the operators most commonly used in Python, and the ones used in this book:

 Operator Symbol Example

 Numeric Operators

 Addition + x + y

 Subtraction − x – y

 Multiplication * x * y

 Division / x / y

 Exponent (Power) ** x ** y (x to the y power)

 Modulo % x % y (the remainder of x/y)

 Comparison Operators

 Greater than > x > y (x is greater than y)

 Less than < x < y (x is less than y)

 Equal to == x == y (x equals y)

 Greater than or equal to > = x > = y (x is greater than or equal to y)

 Less than or equal to < = x < = y (x is less than or equal to y)

 Not equal to != or < > x != y, x < > y (x does not equal y)

 Boolean Operators

 and and x and y (if both are true, then the expression is true)

 or or x or y (if either is true, then the expression is true)

 not not not x (if x is false, then the expression is true)

 Assignment Operator

 Assignment = X = 15

name = “ Jim ”

Chapter 1: A Python Primer

7

 Expressions and Statements
 Expressions and statements are the building blocks of Python programs. They are the equivalent of

phrases and sentences in English. To understand Python, it ’ s critical to understand how to put these

building blocks together.

 Expressions
 Expressions consist of combinations of values , which can be either constant values, such as a string

(“ Jim ”) or a number (12), and operators , which are symbols that act on the values in some way.

 The following examples are expressions:

 10 - 4

 11 * (4 + 5)

 x - 5

 a / b

 Operator Precedence in Expressions

 When you have a multiple expression like 5 + 4 * 7 , which operation is done first, the addition or the

multiplication? If it isn ’ t too painful to recall your high school algebra class, you might remember

learning the rules of operator precedence . These kinds of complex expressions require a set of rules

defining which expressions are executed first.

 The following list describes the basic rules of operator precedence in Python (don ’ t worry if you don ’ t

understand all the terms right now; they ’ ll be explained as you need them):

 Expressions are evaluated from left to right.

 Exponents, multiplication, and division are performed before addition and subtraction.

 Expressions in parentheses are performed first.

 Mathematical expressions are performed before Boolean expressions (AND , OR , NOT)

 Statements
 The statement is the basic unit of programming. In essence, it says “ do this to this. ” Statements in Python

are not delimited by a visible character, such as the semicolon in C or C#. Every time you press Enter and

start a new line, you are entering a new statement.

❑

❑

❑

❑

Chapter 1: A Python Primer

8

 For example, if you type :

Print 12 + 15

 into the Python interpreter, you ’ ll get the following output:

 > > > print 12 + 15

27

 > > >

 This is because you told the system to “ print the result of the expression 12 + 15, ” which is a complete

statement.

 However, if you type :

print 12 +

 you ’ ll get a syntax error, as shown here:

 > > > print 12 +

SyntaxError: invalid syntax

 > > >

 Clearly, the system cannot read this because it isn ’ t a complete statement, so it results in an error.

 Multi - line Statements

 It is possible to have a single statement span multiple lines. You could do this for aesthetic reasons or

simply because the line is too long to read on one screen. To do this, simply put a space and a backslash

at the end of the line. Here are a few examples:

name = “Jim \

 Knowlton”

sum = 12 + \

 13

 Iteration and Decision - Making
 There are two basic ways to control the flow of a program: through iteration (looping) and through

decision - making.

Chapter 1: A Python Primer

9

 Iteration
 Iteration in Python is handled through the “ usual suspects ” : the for loop and the while loop. However,

if you ’ ve programmed in other languages, these seemingly familiar friends are a little different.

 For Loops

 Unlike in Java, the for loop in Python is more than a simple construct based on a counter. Instead, it is a

sequence iterator that will step through the items of any sequenced object (such as a list of names, for

instance). Here ’ s a simple example of a for loop:

 > > > names = [“Jim”, “Joe”]

 > > > for x in names:

 print x

 Jim

 Joe

 > > >

 As you can see, the basic syntax is for < variable > in < object > : , followed by the code block to be

iterated.

 While Loops

 A while loop is similar to a for loop but it ’ s more flexible. It enables you to test for a particular

condition and then terminate the loop when the condition is true. This is great for situations when you

want to terminate a loop when the program is in a state that you can ’ t predict at runtime (such as when

you are processing a file, and you want the loop to be done when you reach the end of the file).

 Here ’ s an example of a while loop:

 > > > counter = 5

 > > > x = 0

 > > > while x < counter:

 print “x=”,x

 print “counter = “, counter

 x += 1

x = 0

counter = 5

x = 1

counter = 5

x = 2

counter = 5

x = 3

counter = 5

x = 4

counter = 5

 > > >

Chapter 1: A Python Primer

10

 Break and Continue

 As with C, in Python you can break out of the innermost for or while loop by using the

break statement. Also as with C, you can continue to the next iteration of a loop by using

the continue statement.

 What about switch or case?

 Many of you familiar with other programming languages are no doubt wondering
about a decision - tree structure similar to C ’ s switch statement or Pascal ’ s case.
 Unfortunately, you won ’ t find it in Python. However, the conditional if - elif - else
structure, along with other constructs you ’ ll learn about later, make their absence not
such a big deal.

 Decision - Making
 When writing a program, it is of course critical to be able to evaluate conditions and make decisions.

Having an if construct is critical for any language, and Python is no exception.

 The if Statement

 The if statement in Python, as in other languages, evaluates an expression. If the expression is true,

then the code block is executed. Conversely, if it isn ’ t true, then program execution jumps to the end.

Python also supports use of zero or more elif statements (short for “ else if ”), and an optional else

statement, which appears at the end if you also have elif statements, and would be the “ default ”

choice if none of the if statements were true.

 Here ’ s an example:

 > > > name = “Jim”

 > > > if name == “Jim”:

 print “your name is Jim”

elif name == “Joe”:

 print “your name is Joe”

else:

 print “I have no idea what your name is”

your name is Jim

 > > >

Chapter 1: A Python Primer

11

 Functions
 In many ways, the principle behind a function is analogous to turning on a TV. You don ’ t have to

understand all the electronics and communications technology behind getting the TV signal to your

receiver in order to operate the TV. You do have to know some simple behaviors, however, such as how

to turn it on, where the volume switch is, and so on. In a similar fashion, a function gives the program an

interface through which it can run program code without knowing the details about the code being run.

 Defining a Function

 You define a function in Python with the following simple syntax:

def functionName(paramenter1, parameter2=default_value):

 < code block >

 return value (optional)

 Note two elements in the preceding example:

 Parameters — As you can see, parameters can simply be a variable name (making them required

as part of the function call), or they can have a default value, in which case it is optional to pass

them in the function call.

 The return statement — This enables the function to return a value to the code that called it. The

nice thing about this is that you can run a function and assign its output to a variable.

 Here ’ s an example of a function definition:

 > > > def getname(name):

 return name + “ is very hungry”

 > > >

 Calling a Function

 To call a function, simply enter the function name with the function signature:

functionName(paramenter1, parameter2)

 If a parameter has a default value in its definition, then you can omit that parameter when you call the

function, and the parameter will contain its default value. Alternately, you can override the default value

by entering the value yourself when you call the function.

❑

❑

Chapter 1: A Python Primer

12

 For example, if a function were defined as follows:

def jimsFunc(age, name = “Jim”):

 Then you could call the function in any of the following three ways:

jimsFunc(23)

jimsFunc(42, “James”)

jimsFunc(42, firstName=”Joe”)

 In the first example, I simply took the default value for the first parameter; in the second, I replaced it

with “ James. ”

 Modules
 A module is the highest - level programming unit in Python. A module usually corresponds to a program

file in Python. Unlike in Ruby, modules are not declared — the name of the *.py file is the name of the

module. In other words, basically each file is a module, and modules import other modules to perform

various programming tasks.

 Importing Modules
 Importing modules is done with either the import or reload command.

 Import

 To use a module, you import it. Usually import statements occur at the beginning of the Python

module. Importing modules is a fairly simple operation, but it requires a little explanation. Consider the

following examples:

1. import os

2. import os, sys

3. from os import getcwd

4. import os as operatingSystem

 These examples highlight some variations in how you can import modules:

 1. This first example is the simplest and easiest to understand. It is merely the keyword import

followed by the module name (in this case, os).

 2. Multiple modules can be imported with the same import command, with the modules

separated by a comma.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: A Python Primer

13

 3. You can import specific names only within a module, without importing the whole module, by

using the from < module > import < name > statement. This can be useful for performance

reasons if you only need one function from a large module.

 4. If a module has a name that ’ s difficult to work with or remember, and you want to use a name
to represent it that is meaningful to you, simply use the as keyword and import < module > as
 < identifier > .

 Reload

 Reload is another very useful command, especially when entering code within the Python interactive

interpreter. It enables you to reload a particular module without reloading Python. For example, if you

wanted to reload the os module, you would simply enter reload os .

 If you ’ re wondering why you would ever want to do that, one scenario would be if you have a Python

script that runs all the time and it accesses a module on another machine. Assuming you always want to

ensure that you ’ re running the most current version of the remote module you ’ re accessing, you ’ d use

the reload command.

 How Python Finds Modules to Load
 When you use an import statement, you don ’ t tell Python where the module that needs to be loaded

is located. How, then, does it know where to find the file? The answer to that question is the module

search path .

 The Module Search Path

 Python has a predefined priority specifying where it should look for modules, known as the module

search path. When you enter an import command and the name of the module, Python checks the

following locations in the order shown here:

 1. The home directory — This is either the directory from which you launched the Python

interactive interpreter or the directory where the main Python program is located.

 2. PYTHONPATH — This is an environment variable set in the system. Its value is a list of

directories, which Python will search for modules.

 3. Standard library directories — The directory in which the standard libraries are located are
searched next.

Chapter 1: A Python Primer

14

 Exploring sys.path

 If you ever want to see your system ’ s Python search path, all you have to do is bring up the interactive

interpreter, import the sys module, and type sys.path . The full Python module search path will be

returned, as shown in the following example:

 > > > import sys

 > > > sys.path

[‘C:\\Python25’, ‘C:\\Python25\\Lib\\idlelib’, ‘C:\\Program Files\\PythonNet’,

‘c:\\scripts\\python’, ‘c:\\python25’, ‘C:\\Python25\\pyunit-1.4.1’,

‘c:\\python25\\pamie’, ‘C:\\WINDOWS\\system32\\python25.zip’, ‘C:\\Python25\\DLLs’,

‘C:\\Python25\\lib’, ‘C:\\Python25\\lib\\plat-win’, ‘C:\\Python25\\lib\\lib-tk’,

‘C:\\Python25\\lib\\site-packages’, ‘C:\\Python25\\lib\\site-packages\\win32’,

‘C:\\Python25\\lib\\site-packages\\win32\\lib’, ‘C:\\Python25\\lib\\site-

packages\\

Pythonwin’, ‘C:\\Python25\\lib\\site-packages\\wx-2.8-msw-ansi’]

 > > >

 Classes
 Python is a language that can support both procedural programming and object - oriented programming.

Here is an example of a Python class:

 > > > class name1():

 def setmyname(self, myname):

 self.name = myname

 > > > jimname = name1()

 > > > jimname.setmyname(“Jim”)

 > > > print jimname.name

Jim

 > > >

 Note some points about Python ’ s implementation of class programming as demonstrated in the

preceding example:

 If we were inheriting from other classes, those class names would have been inside the

parentheses of the class name1(): definition.

 In this case, there is one class method, setmyname . If we wanted to create a constructor for the

class, it would be named __init__ .

 To create an instance of a class, you simply assign a variable to the class definition, as in

 jimname = name1() .

 Attributes are accessed with familiar dot notation (instance variable.attribute) such as

jimname.name .

❑

❑

❑

❑

Chapter 1: A Python Primer

15

 Summary
 This chapter provided a brief tour of the Python language, including the following highlights:

 How to get up and running with Python

 Python ’ s lexical structure

 Operators, expressions, and statements

 Iteration and decision - making

 Functions and modules

 Classes and object - oriented programming

 Of course, there is much more to the Python language than what this short chapter has outlined.

Much of it you ’ ll discover as you work through the projects in this book.

 Let ’ s get started!

❑

❑

❑

❑

❑

❑

Part I

The Projects

 Directory/File
Snapshot Program

 Have you ever installed a program and wanted to know exactly what was installed? Programs

typically include numerous files and directories — in some cases hundreds. It can be difficult to

determine what was put on the system. This can especially be important if, for instance, you are

verifying an install to ensure that all the directories and files were placed on the system.

Conversely, with an uninstall, you want to verify just the opposite – – that everything that had been

put on the system is now gone.

 The File/DirectoryComparison program enables you to create a “ snapshot ” of your system based

on a directory “ base ” you provide. It will also perform a comparison of two snapshots to show you

the differences. This includes items missing from snapshot 1 but in snapshot 2, and items missing

in snapshot 2 but present in snapshot 1.

 Along the way, you ’ ll learn several valuable things about Python and its features:

 How to create and import modules

 How to create and call functions

 Getting user input and passing the value provided by the user to the program

 How to find information related to the Python Standard Library

❑

❑

❑

❑

Part I: The Projects

20

 Using the Program
 You can find the program located on the www.wrox.com page for this book. To run it, simply go to a

command prompt, and from the directory on your system where the Chapter 2 program files are located,

type the following: python snapshot.py .

 This will bring up a menu like the one shown here:

DIRECTORY/FILE COMPARISON TOOL

====================================

Please type a number and press enter:

1. Create a snapshot

2. List snapshot files

3. Compare snapshots

4. Help

5. Exit

 From here, you can create a snapshot, compare two snapshots, view some help text (always a good

idea!), or exit the program. The following sections describe each of the program features.

 Creating a Snapshot
 There are two scenarios for which you would create a snapshot:

 You haven ’ t created a snapshot yet and want to create one to have a “ base ” to compare against

later.

 You have created a snapshot and have run some process (such as an install or uninstall) and

want to compare it to the first snapshot you created.

 In both cases, the interface is the same. When you type 1 and press Enter to create a snapshot, you are

prompted for some information the program needs to create it. First, you ’ ll get the following prompt:

Enter the directory name to create a snapshot of:

 This prompt is asking you for the “ root ” on which to base your snapshot. For instance, if I were

installing a program into the normal Windows location (which is C:\Program Files), which creates a

directory called jimsprogram , for this prompt I would initially type C:\Program Files because I want

to know anything that was put into that directory. That way, when my program installs, I can see what

has been put into there.

❑

❑

Chapter 2: Directory/File Snapshot Program

21

 After I tell the directory to “ snap, ” I get the following prompt:

Enter the name of the snapshot file to create:

 In other words, it is creating a file on disk, with the snapshot. This is not a human - readable file (it ’ s a

 “ Pickle ” file — more on that later), but Python will be able to read it and use it to compare snapshots.

You can give it any valid filename for your system.

 Snapshot Filenames

 Because you can look up snapshot filenames by extension, it makes sense to use an
 extension you can remember, and to be consistent. I suggest naming your snapshots
with a .snp extension, as that isn ’ t used for any other type of common file.

 Your snapshot is now created. Pressing Enter will take you back to the menu.

 Listing Snapshot Files
 If you type 2 and press Enter, you ’ ll be presented with an option to list the snapshot files in your current

directory. Snapshot files can have any valid filename, so you ’ ll be prompted as follows in order for

Python to determine how to list the files:

LIST SNAPSHOT FILES

====================================

Enter the file extension for your snapshot files

 (for example, ’ snp ’ if your files end in ‘ .snp’):

 After you enter the common extension for your snapshot files, you ’ ll be presented with a list similar to

the following (except with your own files listed, of course):

 Snapshot list:

 ========================

 ci_directory.snp

 ci_directory2.snp

 doctemp1.snp

 doctemp2.snp

Press [Enter] to continue...

 As noted in the preceding sidebar, don ’ t forget to name all your snapshot files with a consistent

extension.

 Pressing Enter will take you back to the menu.

Part I: The Projects

22

 Comparing Snapshots
 The real purpose of the program is to compare two snapshots to determine what ’ s changed. You ’ ll do

this by typing 3 at the menu and pressing Enter. When you do so, you ’ ll get the following prompt:

Enter the filename of snapshot 1:

 Enter the name of the “ base ” snapshot file (the program looks in the current directory) and press Enter.

After you do that, you ’ ll get the following prompt:

Enter the filename of snapshot 2:

 Type the name of the second snapshot file and press Enter. You ’ ll then be presented with results similar

to the following:

Added Directories:

 new

Added Files:

 jimsworddoc.doc

Removed Directories:

 buildCert

Removed Files:

 !whatsnew.txt

 readme.html

 blueButton.gif

 framed.html

 index.html

 modalPopupTest.html

Press [Enter] to continue...

www.allitebooks.com

http://www.allitebooks.org

Chapter 2: Directory/File Snapshot Program

23

 A few notes about the output:

 There are four sections to the output:

❑ Added directories

❑ Added files

❑ Removed directories

❑ Removed files

 If any of the sections have more than 20 items, then the results are shown in tabular format, in

three columns.

 Pressing Enter will take you back to the menu.

 Viewing Help
 If you type 4 and press Enter, you ’ ll get the following help screen:

 DIRECTORY/FILE COMPARISON TOOL

 ====================================

 Welcome to the directory/file snapshot tool. This tool

 allows you to create snapshots of a directory/file tree,

 list the snapshots you have created in the current directory,

 and compare two snapshots, listing any directories and files

 added or deleted between the first snapshot and the second.

 To run the program follow the following procedure:

 1. Create a snapshot of a file system to monitor.

 2. Install (or uninstall) a program under test.

 3. Create another snapshot.

 4. Compare the snapshots and note the results.

 This screen provides a general overview of the program, along with instructions for how to use it.

Pressing Enter will take you back to the menu.

 Exiting the Program
 Well, this one is probably the simplest to understand. Typing 5 and pressing Enter will exit the program

and return you to a system prompt.

❑

❑

Part I: The Projects

24

 Putting It All Together
 So far, you ’ ve seen all the options, but how do you really use the program? It involves four basic steps:

 1. Create an initial snapshot.

 Let ’ s say you have a program called “ Jim ’ s Cool App ” (not the most inventive title, but it ’ s
6:00 A.M. after an all - nighter). Suppose also that the program creates a directory in
C:\Program Files called JimsCoolApp . The first thing you would do is create a snapshot
of C:\Program Files (this is before you install your program).

 Call the snapshot file something meaningful, and probably date it. This example uses
110607 - ProgFiles - Base.snp (the current date as I write this).

 2. Install your program.

 This one ’ s pretty self - explanatory. Make sure you install to the default location, in the most
standard way possible.

 3. Create a second snapshot.

 At this point you have created a “ base ” snapshot and installed your program. It ’ s time to create
a snapshot post - install. Run the program again, type 1 , and press Enter to create a snapshot,
again naming it something meaningful, in this case 110607 - ProgFiles - JCAInstalled.snp.

 At this point, if you want to make sure you named your snapshot files correctly, you can choose
option 2 from the menu and list snapshot files.

 4. Compare snapshots.

 Finally, you ’ re ready to compare snapshots. Type 3 and press Enter from the menu. First enter
the name of the initial snapshot file, 110607 - ProgFiles - Base.snp in this case. Then, enter the
name of the second snapshot file, which was 110607 - ProgFiles - JCAInstalled.snp in the
example above.

 You ’ ll now be presented with a list of all the files and directories added with “ Jim ’ s Cool App. ”

 Other Applications of the Program

 Two other possible uses for this program, other than documenting an install, are as follow:

 Document an uninstall. In this case, you would just use the “ installed ” snapshot as your base,

and then take another snapshot after uninstalling and compare them to see what was removed.

Typically, you would compare the “ before install ” snapshot to the “ after uninstall ” snapshot to

determine whether the uninstall neglected to delete program artifacts.

 If you have a “ standard configuration ” for a system, you could create a base snapshot with your

standard configuration and run the compare after building other systems, to ensure that the list

of files and directories is consistent.

❑

❑

Chapter 2: Directory/File Snapshot Program

25

 Design
 The design of the Directory/File Snapshot program is a simple one: It includes two modules, snapshot

and snapshothelper , and no classes. Snapshot is the main program, and snapshothelper contains

helper functions to perform various tasks, as shown in Figure 2 - 1 .

Snapshot

module

Snapshothelper

module

 Figure 2 - 1

 No Classes?

 This program could have been developed with classes, but recall that in this book I
want to show you how to create both procedural and object - oriented code. Therefore,
the classes come later.

 How It All Fits Together
 As mentioned earlier, the snapshot module is the main program, and the one that users will actually

run from the command line. It displays the menu, accepts input from the user based on the menu

options, and performs actions based on that selection. Generally, the main “ actions ” that happen as a

result of the user ’ s menu selection happen in the snapshothelper module.

 The first place that Python looks for a module when it is imported is in the same directory as the main

calling program. If a module has been created that is a “ helper ” module, then that ’ s the logical place to

put it. That ’ s why snapshot and snapshothelper are in the same directory.

 If a module is not specific to a particular program, but contains functions and classes
you would want to use in many different programs, the best place to put it would be
in your Python library directory.

 You ’ ll find that this design is quite common — a single “ main ” program supported by one (or several)

 “ helper ” programs that contain classes, functions, or data that provides some kind of service to the

calling program. The advantage of this is that it provides abstraction . In other words, you can simply call a

function from the main program and as long as it provides what you are asking for, it doesn ’ t matter how

it was accomplished. This makes modifying programs much easier. You ’ ll learn more about that later.

Part I: The Projects

26

 Main Program
 Although the main program for this application is in the snapshot module, which displays the menu,

accepts the user input, and then calls the appropriate function based on the choice the user made, the

functions to actually “ do stuff ” are not in the snapshot module, but rather in snapshothelper .

 Table 2 - 1

 Function Return Type Description

 menu() string Displays a menu and receives a user selection

through keyboard input; returns the selection to the

calling program

 Main Programs in Python

 Because Python is an interpreted language with procedural (read: Perl and C) ancestors,
the “ main ” part of a Python program is simply that part of the program you directory
run from the command line that is not tied to another structure (such as a class or a
function). In other words, if the first program line of your Python module says

 print “ this is the first line ”

 then that is the first line that would be executed, and is effectively the start of your
program.

 Modules
 For this application, there are two modules, the snapshot module (the main program) and the

 snapshothelper module.

 snapshot Module

 In addition to being the main program that users will run, the snapshot module also contains the code

for displaying the menu and responding to user selections. Table 2 - 1 shows the function used in the

snapshot module.

Chapter 2: Directory/File Snapshot Program

27

 snapshothelper Module

 The snapshothelper module contains the functions that do most of the “ heavy lifting ” for the

program. They essentially provide services, in the form of functions, to the main program when called

upon. Table 2 - 2 describes the functions in the snapshothelper module.

 Table 2 - 2

 Function Return Type Description

 createSnapshot() none Takes a directory path and chosen snapshot filename

and creates a snapshot of the indicated directory,

naming the file the chosen filename

 listSnapshots() none Takes a chosen snapshot file extension and displays to

the user a list of snapshot files in the current directory

 compareSnapshots() none Takes the names of two snapshot files and compares

them, outputting to the user a list of all added and

removed directories and files between the first

snapshot and the second

 showHelp() none Displays to the user a help screen that displays general

program information, as well as suggested steps for

using the program

 invalidChoice() n one Returns an error if the user enters an invalid choice

 printList() none This is a helper function that formats and prints a list of

items found. It is used by compareSnapshots() and

 listSnapshots() .

 Code and Code Explanation
 In this section, you ’ ll dive into the details of the code itself. First you ’ ll learn how the snapshot and

 snapshothelper modules work together, and some principles of design that will help you to architect

well - organized, maintainable Python solutions. You ’ ll also look at some specific functions from the

Python Standard Library that I ’ ve used in this program, and learn how you can use them in your own

applications.

 Snapshot.py
 The snapshot module, as the main program, is the one users will actually run from the command line.

As described previously, it contains the code to display the main menu and make decisions based on

which menu option the user chooses.

Part I: The Projects

28

 Here ’ s the code for the entire module. Take a general look at it, and then we ’ ll break down the code

section by section.

 The following code uses cls to clear the screen because this code was written for a
Windows system. If you are running on another operating system, you will need to
use whatever command is appropriate to clear the screen.

 #=======================================#

#SNAPSHOT.PY #

#DIRECTORY/FILE SYSTEM SNAPSHOT PROGRAM #

#BY JAMES O. KNOWLTON, COPYRIGHT 2007 #

#=======================================#

import sys, os, snapshothelper

#MENU

def menu():

 os.system(‘cls’)

 print ‘’’

 DIRECTORY/FILE COMPARISON TOOL

 ====================================

 Please type a number and press enter:

 1. Create a snapshot

 2. List snapshot files

 3. Compare snapshots

 4. Help

 5. Exit

 ‘’’

 choice = raw_input(“\t”)

 return choice

#MENU DECISION STRUCTURE

choice = “”

while choice != “5”:

 choice = menu()

 if choice == “1”:

 os.system(‘cls’)

 print ‘’’CREATE SNAPSHOT

 ====================================’’’

 directory = raw_input \

 (“Enter the directory name to create a snapshot of: “)

 filename = raw_input \

 (“Enter the name of the snapshot file to create: “)

 snapshothelper.createSnapshot(directory, filename)

 elif choice == “2”:

 os.system(‘cls’)

 print ‘’’

Chapter 2: Directory/File Snapshot Program

29

 LIST SNAPSHOT FILES

 ====================================

 Enter the file extension for your snapshot files

 (for example, ‘snp’ if your files end in ‘.snp’):

 ‘’’

 extension = raw_input(“\t\t”)

 snapshothelper.listSnapshots(extension)

 elif choice == “3”:

 os.system(‘cls’)

 print ‘’’

 COMPARE SNAPSHOTS

 ====================================

 ‘’’

 snap1 = raw_input(“Enter the filename of snapshot 1: “)

 snap2 = raw_input(“Enter the filename of snapshot 2: “)

 snapshothelper.compareSnapshots(snap1, snap2)

 elif choice == “4”:

 snapshothelper.showHelp()

 else:

 if choice != “5”:

 snapshothelper.invalidChoice()

 That ’ s the big picture. The following sections break this down section by section.

 Program Header

 This first part is quite simply a program header:

#=======================================#

#SNAPSHOT.PY #

#DIRECTORY/FILE SYSTEM SNAPSHOT PROGRAM #

#BY JAMES O. KNOWLTON, COPYRIGHT 2007 #

#=======================================#

 When writing any code, including Python, it ’ s always a good idea to create a header, which is just a

formatted comment at the top of the source code file, indicating who wrote it, and what it ’ s for. It ’ s likely

you are already familiar with this standard practice, but it is included here once to be thorough. From

now on, we ’ ll skip over the header in each source file.

 Import Statements

 In Python, quite often the first line of executable code you ’ ll see in a source file is an import statement:

import sys, os, snapshothelper

 In this case, you are importing three modules: the standard modules os and sys , and our helper module

 snapshothelper . Notice that the module we created is imported in the same way as the modules from

the Standard Library (those that are included with Python). In fact, if you navigate to the lib directory

Part I: The Projects

30

under your Python program, you ’ ll actually find os.py and sys.py , which are the python files

(modules) you ’ re importing. You can even open them in IDLE and look at them if you ’ re curious.

 Make sure that you don ’ t edit these files unless you know what you ’ re doing — otherwise, you could
mess something up and the module could become unusable.

 The Main Program

 We ’ re going to skip over the menu() function for now because it actually makes more sense to do so, to

follow the flow of the program.

 Why Functions Are at the Top
(and the Main Program Is at the Bottom)

 Python is an interpreted language. That means instead of “ compiling ” program files
into a single binary file (or a set of binary files), it interprets the source code line by line
and executes it (there ’ s actually more to it than that, but you ’ ll find out more about that
later). If the main program is at the top of a file and calls a function which is at the
 bottom, Python hasn ’ t read the function in yet, and therefore doesn ’ t know about it.
In order to be able to call a function, it has to be read by Python first.

 The first thing the main program does is create a string variable called choice and assign it to nothing:

choice = “”

 Although Python is a dynamically typed language (meaning it interprets the data types of members

based on their context), variables still have to be assigned some kind of value before they can be used.

That ’ s why you have this line — to create memory space for a string variable called choice . If for some

reason you want to initialize a variable but don ’ t want to give it an initial value, you can assign it to

 None , as in the following example:

X = None

 Next, you create a while loop that will form the bulk of your decision tree:

while choice != “5”:

 choice = menu()

 if choice == “1”:

 os.system(‘cls’)

 print ‘’’CREATE SNAPSHOT

 ====================================’’’

 directory = raw_input \

 (“Enter the directory name to create a snapshot of: “)

 filename = raw_input \

Chapter 2: Directory/File Snapshot Program

31

 (“Enter the name of the snapshot file to create: “)

 snapshothelper.createSnapshot(directory, filename)

 elif choice == “2”:

 os.system(‘cls’)

 print ‘’’

 LIST SNAPSHOT FILES

 ====================================

 Enter the file extension for your snapshot files

 (for example, ‘snp’ if your files end in ‘.snp’):

 ‘’’

 extension = raw_input(“\t\t”)

 snapshothelper.listSnapshots(extension)

 elif choice == “3”:

 os.system(‘cls’)

 print ‘’’

 COMPARE SNAPSHOTS

 ====================================

 ‘’’

 snap1 = raw_input(“Enter the filename of snapshot 1: “)

 snap2 = raw_input(“Enter the filename of snapshot 2: “)

 snapshothelper.compareSnapshots(snap1, snap2)

 elif choice == “4”:

 snapshothelper.showHelp()

 else:

 if choice != “5”:

 snapshothelper.invalidChoice()

 The while loop checks for the choice variable being assigned to the string “ 5 ” .

while choice != “5”:

 Because the first time through the choice variable is an empty string, the while loop will execute at

least once. The first thing it does is assign the variable choice to the return value of the function

 menu() :

choice = menu()

 For information on what the menu() function does and how it does it, see the section on the
 menu() function.

 Once the variable choice has been assigned a value (based on actions taken while the menu() function

was run), the program determines what to do based on the user ’ s menu selection. Because there is no

 case or switch statement in Python, the same functionality is developed through a series of if - elif

statements. At the end, there is an else statement, which is the “ fallback ” option.

Part I: The Projects

32

 If the user enters 1 , the program prompts the user to input a snapshot directory and filename for the

snapshot file, respectively, and then assigns those values to variables (through the raw_input()

 function). It then executes the createSnapshot function, which is in the snapshothelper module:

if choice == “1”:

 os.system(‘cls’)

 print ‘’’CREATE SNAPSHOT

 ====================================’’’

 directory = raw_input \

 (“Enter the directory name to create a snapshot of: “)

 filename = raw_input \

 (“Enter the name of the snapshot file to create: “)

 snapshothelper.createSnapshot(directory, filename)

 Notice that the module name has to be entered first, followed by the function name, in dot notation. If a

function resides in the same module where it is being called (such as the menu() function in this

module), then the module name is not required. The values of the two entered variables are passed to the

function as parameters.

 If the user enters 2 , the program prompts the user for the extension they have used for their snapshot

files. This response is assigned to a variable (again through the raw_input command) and the

 listSnapshots method in snapshothelper is called, passing the snapshot file extension to it:

elif choice == “2”:

 os.system(‘cls’)

 print ‘’’

 LIST SNAPSHOT FILES

 ====================================

 Enter the file extension for your snapshot files

 (for example, ‘snp’ if your files end in ‘.snp’):

 ‘’’

 extension = raw_input(“\t\t”)

 snapshothelper.listSnapshots(extension)

 If the user enters 3 , the user is prompted for the names of the two snapshot files to compare. Then the

 compareSnapshots function is called, passing the names of the snapshot files as parameters:

 elif choice == “3”:

 os.system(‘cls’)

 print ‘’’

 COMPARE SNAPSHOTS

 ====================================

 ‘’’

 snap1 = raw_input(“Enter the filename of snapshot 1: “)

 snap2 = raw_input(“Enter the filename of snapshot 2: “)

 snapshothelper.compareSnapshots(snap1, snap2)

www.allitebooks.com

http://www.allitebooks.org

Chapter 2: Directory/File Snapshot Program

33

 If the user enters 4 , the showHelp method in snapshothelper is called, which simply displays

the help text.

elif choice == “4”:

 snapshothelper.showHelp()

else:

 snapshothelper.invalidChoice()

 What if the user enters 5 ? Well, remember our while loop? It only executes while choice does not

equal 5 . If the user enters 5 , then it breaks out of the loop, and because there is no more code outside the

 while loop, the programs ends.

 The menu() Function

 Let ’ s now look at the menu() function, as control is passing to it at this point:

#MENU

def menu():

 os.system(‘cls’)

 print ‘’’

 DIRECTORY/FILE COMPARISON TOOL

 ====================================

 Please type a number and press enter:

 1. Create a snapshot

 2. List snapshot files

 3. Compare snapshots

 4. Help

 5. Exit

 ‘’’

 choice = raw_input(“\t”)

 return choice

 As you can see, the first thing the menu program does is clear the screen by accessing the os.system()

function. Remember when we imported the os module? This is why. Importing a module enables you to

use its resources. The os module is especially useful, as it gives you access to operating system resources.

For example, the os.system() function enables you to run any command you could run at a system

prompt (such as cls to clear the screen on a Windows command prompt).

 After clearing the screen, print a menu to it. Notice the three single - quote characters used in this print

statement (’ ’ ’). This convention enables you to create a multi - line message and have Python output it

exactly as you type it.

Part I: The Projects

34

 As you can see from the menu that ’ s displayed, the user is presented with five options:

 Create a snapshot file.

 List the snapshot files in the current directory.

 Compare snapshots.

 Display a help screen.

 Exit.

 Then the local variable choice is assigned to the output of the raw_input() function. The raw_input()

function is a built - in function that has tremendous value. It enables you to prompt the user and then

assign what they type (after they press Enter) to a variable. In this case, we ’ re already presenting the

menu, so we don ’ t want to put anything in the message of the raw_input() command, but we do want

to move the cursor over a bit, so we can insert an escape character for a tab (“ \t ”) in the parameter for

the prompt. This moves the cursor to where we want it.

 The final line of the menu() function returns a value to the code that called it — in this case, returning the

string representing the user ’ s selection.

return choice

 snapshothelper.py
 The snapshothelper module does not have directly executable code of its own — if you ran Python ’ s

 snapshothelper.py at the command prompt, nothing would happen. What it contains is the functions

that are used by the snapshot program to do its work.

 The module starts with an import statement to import all the modules it will be using, and then starts

into the functions. Let ’ s go through them one at a time.

 createSnapshot(directory, filename)

 The createSnapshot() function takes a directory (to create the snapshot for) and a filename (the name

of the snapshot file), and creates a snapshot file. Take a look at it in its entirety, and then we ’ ll go through

it piece by piece:

❑

❑

❑

❑

❑

Chapter 2: Directory/File Snapshot Program

35

def createSnapshot(directory, filename):

 cumulative_directories = []

 cumulative_files = []

 for root, dirs, files in os.walk(directory):

 cumulative_directories = cumulative_directories + dirs

 cumulative_files = cumulative_files + files

 try:

 output = open(filename, ‘wb’)

 pickle.dump(cumulative_directories, output, -1)

 pickle.dump(cumulative_files, output, -1)

 output.close()

 except:

 print “Problems encounted trying to save snapshot file!”

 raw_input(“Press [Enter] to continue...”)

 return

 The first thing it does is initialize two lists, one to hold a cumulative list of directories and another to

hold a cumulative list of files:

cumulative_directories = []

cumulative_files = []

 You then iterate through the chosen directory and build a list of all the directories and files found, using

the useful os.walk() function:

for root, dirs, files in os.walk(directory):

 cumulative_directories = cumulative_directories + dirs

 cumulative_files = cumulative_files + files

 At this point you have two lists — cumulative_directories[] has all the directories found, and

 cumulative_files[] has all the files found. However, you need some way to persistently store these

data structures, in order to be able to refer to them later. The pickle module is the perfect solution.

Consider pickles in a jar. They are stored and preserved for later access and use. The same applies here.

Because sometimes there are issues saving a file to disk, I decided to put the routine to pickle our lists

inside a try/except block, as shown here:

try:

 output = open(filename, ‘wb’)

 pickle.dump(cumulative_directories, output, -1)

 pickle.dump(cumulative_files, output, -1)

 output.close()

 except:

 print “Problems encounted trying to save snapshot file!”

Part I: The Projects

36

 This way, if there is a problem, the program won ’ t crash. Instead, you ’ ll get a nice error message. As you

can see, the pickle routine uses the filename that was entered in the main program in the snapshot

module to save the file.

 The last bit of code simply prompts the user to press Enter and then returns control to the main program:

raw_input(“Press [Enter] to continue...”)

return

 listSnapshot(extension)

 The listSnapshot() function lists all the snapshot files in the current directory. It takes in a file

extension as a parameter and performs its file search based on that. Here is the code:

def listSnapshots(extension):

 snaplist = []

 filelist = os.listdir(os.curdir)

 for item in filelist:

 if item.find(extension)!= -1:

 snaplist.append(item)

 print ‘’’

 Snapshot list:

 ========================

 ‘’’

 printlist(snaplist)

 raw_input(“Press [Enter] to continue...”)

 Where ’ s the Return Statement?

 You ’ ll notice with this function that there is no return statement. That ’ s because you
only use a return when you have some value to return to the code that called the
 function. Sometimes (as in this case) a function is asked to do something but isn ’ t asked
to return a value.

 The first thing it does is initialize a couple of values:

snaplist = []

filelist = os.listdir(os.curdir)

Chapter 2: Directory/File Snapshot Program

37

 snaplist is an (initially) empty list that will hold the list of snapshot files. In the second line of the

preceding code, you run the os.listdir to generate a list of files (based on the current directory, thanks

to the os.curdir member). You assign the output to a list with the identifier filelist .

 You then run a for loop that narrows down the list:

for item in filelist:

 if item.find(extension)!= -1:

 snaplist.append(item)

 This for loop iterates through each item in the filelist . It uses the find string method to determine

whether the snapshot extension is present. If it is, then the file is added to the list snaplist . After the

 for loop is done iterating, snaplist contains a list of all the snapshot files.

 The next piece of code prints out the snapshot list (for more information on the printList() function,

see the corresponding section below):

print ‘’’

Snapshot list:

========================

‘’’

printList(snaplist)

 Control now passes back to the main program.

 compareSnapshots(snapfile1, snapfile2)

 The compareSnapshots() method is the largest in the program, and probably the most important. It

takes the names of the snapshot files to compare from the main program as parameters, compares two

snapshots, and then displays the differences between the two:

def compareSnapshots(snapfile1, snapfile2):

 try:

 pkl_file = open(snapfile1, ‘rb’)

 dirs1 = pickle.load(pkl_file)

 files1 = pickle.load(pkl_file)

 pkl_file.close()

 pk2_file = open(snapfile2, ‘rb’)

 dirs2 = pickle.load(pk2_file)

 files2 = pickle.load(pk2_file)

 pk2_file.close()

(continued)

Part I: The Projects

38

 except:

 print “Problems encountered accessing snapshot files!”

 raw_input(“\n\nPress [Enter] to continue...”)

 return

 result_dirs = list(difflib.unified_diff(dirs1, dirs2))

 result_files = list(difflib.unified_diff(files1, files2))

 added_dirs = []

 removed_dirs = []

 added_files = []

 removed_files = []

 for result in result_files:

 if result.find(“\n”) == -1:

 if result.startswith(“+”):

 resultadd = result.strip(‘+’)

 added_files.append(resultadd)

 elif result.startswith(“-”):

 resultsubtract = result.strip(‘-’)

 removed_files.append(resultsubtract)

 for result in result_dirs:

 if result.find(“\n”) == -1:

 if result.startswith(“+”):

 resultadd = result.strip(‘+’)

 added_dirs.append(resultadd)

 elif result.startswith(“-”):

 resultsubtract = result.strip(‘-’)

 removed_dirs.append(resultsubtract)

 print “\n\nAdded Directories:\n”

 printList(added_dirs)

 print “\n\nAdded Files:\n”

 printList(added_files)

 print “\n\nRemoved Directories:\n”

 printList(removed_dirs)

 print “\n\nRemoved Files:\n”

 printList(removed_files)

 raw_input(“\n\nPress [Enter] to continue...”)

 Let ’ s look at this section by section. The first thing the snapshot does is open the two snapshot files:

 try:

 pkl_file = open(snapfile1, ‘rb’)

 dirs1 = pickle.load(pkl_file)

 files1 = pickle.load(pkl_file)

 pkl_file.close()

(continued)

Chapter 2: Directory/File Snapshot Program

39

 pk2_file = open(snapfile2, ‘rb’)

 dirs2 = pickle.load(pk2_file)

 files2 = pickle.load(pk2_file)

 pk2_file.close()

 except:

 print “Problems encountered accessing snapshot files!”

 raw_input(“\n\nPress [Enter] to continue...”)

 return

 Again, when dealing with files, it makes sense to encapsulate your code inside a try block. After

opening a pickled file, you assign variable names to the data elements stored in the file. That ’ s exactly

what we did here. You encapsulated the retrieval of both files inside a single try block for code

conciseness. You could have put each one in its own try block if you wanted to provide a more specific

error message.

 The next thing you do is the actual comparison. You have imported Python ’ s difflib module in order

to be able to compare two strings and show differences, so that ’ s what you implement in these next two

lines:

result_dirs = list(difflib.unified_diff(dirs1, dirs2))

result_files = list(difflib.unified_diff(files1, files2))

 As you can see, you diff the directories and files, respectively, and assign the differences to the lists:

 result_dirs and result_files .

 The next task is to separate the added files and directories from the removed files and directories. The

 unified_diff() method we accessed in the code appends a plus sign (+) to any files that have been

added, and a minus sign (�) to any files that are missing. Based on that flag, you can parse them out:

 for result in result_files:

 if result.find(“\n”) == -1:

 if result[0] == “+”:

 resultadd = result.strip(‘+’)

 added_files.append(resultadd)

 elif result[0] == “-”:

 resultsubtract = result.strip(‘-’)

 removed_files.append(resultsubtract)

 for result in result_dirs:

 if result.find(“\n”) == -1:

 if result[0] == “+”:

 resultadd = result.strip(‘+’)

 added_dirs.append(resultadd)

 elif result[0] == “-”:

 resultsubtract = result.strip(‘-’)

 removed_dirs.append(resultsubtract)

Part I: The Projects

40

 You basically built two lists based on whether the character found indicates the file (or directory) was

added or removed. All that remains is to output the results to the screen:

 print “\n\nAdded Directories:\n”

 printList(added_dirs)

 print “\n\nAdded Files:\n”

 printList(added_files)

 print “\n\nRemoved Directories:\n”

 printList(removed_dirs)

 print “\n\nRemoved Files:\n”

 printList(removed_files)

 Control then passes back to the main program.

 showHelp()

 showHelp() is a very simple function. It simply displays the help screen and returns control back to the

main program:

def showHelp():

 os.system(‘cls’)

 print ‘’’

 DIRECTORY/FILE SNAPSHOT TOOL

 ====================================

 Welcome to the directory/file snapshot tool. This tool

 allows you to create snapshots of a directory/file tree,

 list the snapshots you have created in the current directory,

 and compare two snapshots, listing any directories and files

 added or deleted between the first snapshot and the second.

 To run the program follow the following procedure:

 1. Create a snapshot

 2. List snapshot files

 3. Compare snapshots

 4. Help (this screen)

 5. Exit

 ‘’’

 As before, it uses the three single - quotes (’ ’ ’) to make it easy to format the display of large blocks

of text.

Chapter 2: Directory/File Snapshot Program

41

 invalidChoice()

 This is simply an error - response function that executes when a user has entered the wrong input at the

menu. Error - checking is critically important, so we implemented it here:

def invalidChoice():

 sys.stderr.write(“INVALID CHOICE, TRY AGAIN!”)

 raw_input(“\n\nPress [Enter] to continue...”)

 return

 The Return Statement

 If the return statement doesn ’ t actually return a value, then adding it is entirely
 voluntary — it doesn ’ t change execution. I just added it here to show that you can, if it
makes the code more readable for you.

 printList()

 The printList() method is just a helper method I created to print lists of items found. I created it

because in testing the application, I found that without it the file list was displayed in one column, which

is fine if you only have five files in the list, but not so fine if you have five hundred:

def printList(list):

 fulllist = “”

 indexnum = 1

 if len(list) > 20:

 for item in list:

 print “\t\t” + item,

 if (indexnum)%3 == 0:

 print “\n”

 indexnum = indexnum + 1

 else:

 for item in list:

 print “\t” + item

 It takes a list as a parameter. If the list contains more than 20 items, then the list is formatted in three

columns. If the list contains 20 items or fewer, then the items appear in a single column.

Part I: The Projects

42

 Testing
 This program contains three components that could cause potential problems. The following list

describes them, including some ideas for how to test them:

 The user interface — To test this, you could just go through all the menus, entering both valid

and invalid information. You could easily automate this process with PyUnit (covered later in

the book).

 File I/O — Save files with valid and invalid names, long filenames, and spaces in filenames.

Change file permissions on saved files and see what happens.

 The actual difference calculation — Use a variety of directories. Try a directory with a lot of

files, with long filenames, and so on.

 Modifying the Program
 There are several ways this project could be enhanced, including the following:

 The user interface, while functional, is somewhat crude. This project could even be created as a

GUI application (using Tkinter or another graphics toolkit).

 Instead of allowing the snapshot files to be created with any extension, you could enforce a

particular extension. That would simplify things (although it would make the program a little

less flexible).

 You could allow users to “ set ” a snapshot directory, enabling them to store their snapshot files

somewhere other than the location from which the program is run.

 You could store properties such as file size, last modified time, or other details in your snapshot

file, to make it even more precise.

 Summary
 In this chapter, you learned how to build a very useful tool for comparing two different versions of a

directory tree and displaying what has changed. This could be useful in many different contexts, such as

software testing and configuration management. You also learned some valuable Python skills:

 How to create and import modules

 How to create and access functions

 How to prompt for user input and make decisions in the program based on what the user

chooses

 What the Python Standard Library is, and how to get documentation on the modules contained

in it

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

www.allitebooks.com

http://www.allitebooks.org

 DVD Inventory System

 There is a well - known saying that there are two types of programs: those that are toys and those

that access databases. Well, the project in this chapter is not a toy, so that should narrow it down

for you. This project will enable you to manage your DVD inventory. It takes advantage of

MySQL, a powerful open - source relational database management system (RDMS). Along the way,

you ’ ll learn how to do the following:

 Work with a database

 Connect to a database

 Query the database

 Add records

 Modify records

 Delete records

 Output information in the database to a CSV file

❑

❑

❑

❑

❑

❑

❑

Why All This Is Important

Basically, when you get right down to it, all a computer does is organize and manipulate
chunks of data. Displaying a bitmap? Moving data around. Printing a spreadsheet?
Sending bits of data from one location to another. Computers are most meaningful when
they are able to sort and arrange that data in a way that aids the imperfect carbon-based
life forms who operate them — namely, you and me.

This is where database management systems come in. They take the sets of data that
you and I deal with all around us (sports statistics, medicine prescriptions, class rosters,
military formations, whatever) and they arrange it in a way that makes sense to us.

In other words, understanding how to use databases is one of the most fundamental
things you can learn as a developer.

Part I: The Projects

44

 Using the Program
 The program is available for download at www.wrox.com . To run it, simply go to a command prompt, and

from the directory on your system where the Chapter 2 program files are located, type python dvd.py .

 This will bring up a menu like the one shown here:

 ================================

 DVD DATABASE

 ================================

 1 - Add a DVD to the database

 2 - Search inventory

 3 - Modify DVD record

 4 - Delete DVD record

 5 - Export listing to CSV

 6 - Exit

 ================================

Enter a choice and press enter:

 From here, as you can see, you can add a DVD to the database, search the inventory for DVDs based on

search criteria, modify fields in a DVD record, delete a DVD record, export the list of DVDs to a CSV file,

or exit the program. The following sections walk through each of these program features.

 Installing MySQL
 To install and run the application in this chapter, you ’ ll need to install MySQL and the Python

MySQLdb package. You can find instructions for downloading and installing MySQL and MySQLdb in

Appendix B . After you do that, run the SQL script included in the program directory to create the table

needed for this example.

 Once it is installed, create a database and name it DVDCOLLECTION . Then run the following SQL

command to create the table we ’ ll use in this exercise:

CREATE TABLE ‘DVD’ (

 ‘DVD_TITLE’ varchar(50) default NULL,

 ‘DVD_STAR_NAME’ varchar(50) default NULL,

 ‘DVD_COSTAR_NAME’ varchar(50) default NULL,

 ‘DVD_YEAR’ varchar(50) default NULL

 ‘DVD_GENRE’ varchar(50) default NULL

);

 Adding a DVD to the Database
 If you choose 1 and press Enter to add a DVD to the database, you ’ ll be asked for the following

information:

Chapter 3: DVD Inventory System

45

 DVD title

 DVD star name

 DVD costar name

 DVD year released

 DVD genre (drama, horror, comedy, or romance)

 The screen will look like the following:

===============================

ADD A DVD TO THE DATABASE:

===============================

Enter the DVD title: American Gangster

Enter the name of the movie’s star: Denzel Washington

Enter the name of the movie’s costar: Russell Crowe

Enter the year the movie was released: 2007

Enter the genre:

 - 1 for Drama, 2 for horror, 3 for comedy, 4 for romance:

 In the preceding example, I entered DVD information for American Gangster (not on DVD yet, but I ’ m

building my Christmas list). After I type a number corresponding to the genre for the movie (in this case,

 1 for drama) and press Enter, I get the following prompt:

Record added - press enter to continue:

 After you press Enter you are returned to the main menu.

 When Problems Occur

 If you encounter a problem while adding the record (for instance, if you don ’ t provide all the

information), you ’ ll get an error message. For example, if you merely press Enter when prompted for the

genre, you ’ ll get the following message:

===============================

ADD A DVD TO THE DATABASE:

===============================

Enter the DVD title: Princess Bride

Enter the name of the movie’s star: Cary Elwes

Enter the name of the movie’s costar: Robin Wright

Enter the year the movie was released: 1987

Enter the genre:

 - 1 for Drama, 2 for horror, 3 for comedy, 4 for romance:

ERROR ADDING RECORD!

Press Enter to return to the menu:

❑

❑

❑

❑

❑

Part I: The Projects

46

 Searching the DVD Inventory
 If you type 2 and press Enter to search the DVD inventory, you ’ ll be presented with the following prompt:

 ===============================

 DVD LOOKUP:

 ===============================

 Enter the criteria to look up by:

 1 - Movie title

 2 - Star

 3 - Costar

 4 - Year released

 5 - Genre

Type a number and press enter:

 As you can see, you can look up records based on any of the fields that make up a record. Each lookup is

covered in the following sections.

 Lookup by Movie Title

 If you type 1 and press Enter to search by movie title, you ’ ll get the following prompt:

Enter the DVD title to search for:

 Type the name of the movie exactly as it appears in the database and press Enter. You ’ ll then get the

result set output to the screen:

===============================

DVD SEARCH RESULTS:

===============================

Title: American Gangster

Star: Denzel Washington

Costar: Russell Crowe

Year released: 1995

Genre: : Drama

===============================

Press enter to continue:

 Press Enter to be returned to the menu.

Chapter 3: DVD Inventory System

47

 Lookup by Star

 If you type 2 and press Enter to search by the star ’ s name, you ’ ll get the following prompt:

Enter the DVD star name to search for:

 Type the star ’ s name exactly as it appears in the database and press Enter. You ’ ll then get the result set

output to the screen (the following example output shows how it looks if multiple DVDs are returned as

a result of the search):

===============================

DVD SEARCH RESULTS:

===============================

Title: Tommy Boy

Star: Chris Farley

Costar: David Spade

Year: 1995

Genre: Comedy

===============================

Title: Black Sheep

Star: Chris Farley

Costar: David Spade

Year: 1996

Genre: Comedy

===============================

Press enter to continue:

 Press Enter to be returned to the menu.

 Lookup by Costar

 If you type 3 and press Enter to search by the costar ’ s name, you ’ ll get the following prompt:

Enter the DVD costar name to search for:

 Type the costar ’ s name exactly as it appears in the database and press Enter. You ’ ll then get the result set

output to the screen, as shown in the following example:

===============================

DVD SEARCH RESULTS:

===============================

Title: Runaway Bride

Star: Julia Roberts

Costar: Richard Gere

(continued)

Part I: The Projects

48

Year: 1999

Genre: Comedy

===============================

Title: Pretty Woman

Star: Julia Roberts

Costar: Richard Gere

Year: 1990

Genre: Comedy

===============================

Press enter to continue:

 Press Enter to be returned to the menu.

 Lookup by Year Released

 If you type 4 and press Enter to search by the year in which the movie was released, you ’ ll get the

following prompt:

Enter the DVD release year to search for:

 Type the appropriate year and press Enter. You ’ ll then get the result set output to the screen. In the

following example, note that both movies shown are released in 1990, the year I entered as search criteria:

===============================

DVD SEARCH RESULTS:

===============================

Title: Pretty Woman

Star: Julia Roberts

Costar: Richard Gere

Year: 1990

Genre: Comedy

===============================

Title: Ghost

Star: Patrick Swayze

Costar: Demi Moore

Year: 1990

Genre: Drama

===============================

Press enter to continue:

 Press Enter to be returned to the menu.

(continued)

Chapter 3: DVD Inventory System

49

 Lookup by genre

 If you type 4 and press Enter to search by genre, you ’ ll be presented with the following screen:

Enter the genre to search for:

1 - Drama

2 - Horror

3 - Comedy

4 - Romance

 When you type the number corresponding to the genre you want to search for, you ’ ll get a result set

consisting of all DVDs in the database associated with that genre:

===============================

DVD SEARCH RESULTS:

===============================

Title: American Gangster

Star: Denzel Washington

Costar: Russell Crowe

Year: 2007

Genre: Drama

===============================

Title: Ghost

Star: Patrick Swayze

Costar: Demi Moore

Year: 1990

Genre: Drama

===============================

Press enter to continue:

 Press Enter to be returned to the menu.

 When Problems Occur

 If no records are found, you ’ ll get a screen that indicates that fact:

===============================

DVD SEARCH RESULTS:

===============================

NO RECORDS FOUND

===============================

Press enter to continue:

Part I: The Projects

50

 If you enter something other than 1 – 5 when prompted for search criteria, you ’ ll get an appropriate error

message:

 ===============================

 DVD LOOKUP:

 ===============================

 Enter the criteria to look up by:

 1 - Movie title

 2 - Star

 3 - Costar

 4 - Year released

 5 - Genre

Type a number and press enter: 6

ERROR IN CHOICE!

Press Enter to return to the menu:

 In both error cases, pressing Enter takes you back to the main menu.

 Modifying a DVD Record
 If you type 3 and press Enter to modify a record, you ’ ll get the following initial prompt:

===============================

MODIFY A DVD RECORD:

===============================

Enter the title of the DVD to modify:

 Type the name of the movie exactly as it appears in the database. When you do, you ’ ll get the following

screen:

===============================

MODIFY A DVD RECORD:

===============================

Enter the title of the DVD to modify: American Gangster

===============================

DVD TO MODIFY:

===============================

1 - Title: American Gangster

2 - Star: Denzel Washington

3 - Costar: Russell Crowe

4 - Year: 2007

5 - Genre: Drama

===============================

Type the number for the field

you want to modify and press Enter:

Chapter 3: DVD Inventory System

51

 As you can see, the program displays the information relating to the movie, whose title you entered, and

asks you to indicate which field you ’ d like to modify. The following sections cover each field.

 Modify Title

 If you type 1 and press Enter to modify the DVD title, you ’ ll get the following prompt:

Enter the new DVD title name:

 Simply type in the new title that you ’ d like to use and press Enter. The program will then show you the

modified record. In the following example, I had initially misspelled my movie “ Amrician Gangster. ”

Therefore, I chose option 3 to modify the name, typed in the name of the movie as it currently appeared

in the database, and then changed the title text:

===============================

Enter the title of the DVD to modify: Amrician Gangster

===============================

DVD TO MODIFY:

===============================

1 - Title: Amrician Gangster

2 - Star: Denzel Washington

3 - Costar: Russell Crowe

4 - Year: 2007

5 - Genre: Drama

===============================

Type the number for the field

you want to modify and press Enter: 1

Enter the new DVD title name: American Gangster

===============================

MODIFIED RECORD:

===============================

1 - Title: American Gangster

2 - Star: Denzel Washington

3 - Costar: Russell Crowe

4 - Year: 2007

5 - Genre Drama

===============================

Press enter to continue:

 Press Enter to be returned to the menu.

 Modify Star

 If you type 2 from the main menu and press Enter to modify the name of the DVD ’ s star, you ’ ll get the

following prompt:

Enter the new DVD star name:

Part I: The Projects

52

 Simply type in what you ’ d like to modify the star ’ s name to, and then press Enter. The program will then

show you the modified record, as in the “ modify title ” example shown in the preceding section.

 Then press Enter and you will be returned to the menu.

 Modify Costar

 If you type 3 and press Enter to modify the DVD costar name, you ’ ll get the following prompt:

Enter the new DVD costar name:

 Simply type in what you ’ d like to modify the costar ’ s name to, and then press Enter. The program will

then show you the modified record.

 Press Enter to return to the menu.

 Modify Year

 If you type 4 and press Enter to modify the DVD release year, you ’ ll get the following prompt:

Enter the new DVD year of release:

 Simply type in what you ’ d like to modify the DVD release year to, and then press Enter. The program

will then show you the modified record.

 Press Enter to return to the menu.

 Modify Genre

 If you type 5 and press Enter to modify the DVD genre, you ’ ll get the following prompt:

Enter the genre to apply to this DVD:

1 - Drama

2 - Horror

3 - Comedy

4 - Romance

Type the number for the genre

you want to apply and press Enter:

 Type the number corresponding to the genre you ’ d like to apply to your DVD, and then press Enter. The

program will then show you the modified record, as shown in previous examples.

 Pressing Enter will return you to the menu.

Chapter 3: DVD Inventory System

53

 When Problems Occur

 If you enter search criteria that does not match a title in the database, then you ’ ll get an appropriate error:

===============================

MODIFY A DVD RECORD:

===============================

Enter the title of the DVD to modify: American

THERE WAS A PROBLEM ACCESSING THE RECORD IN THE DATABASE!

Press Enter to continue:

 Similarly, if you enter invalid data when modifying a record, you ’ ll get an error message, as shown in the

following example, where I pressed Enter without entering a value for the genre to apply to a record:

===============================

Enter the genre to apply to this DVD:

1 - Drama

2 - Horror

3 - Comedy

4 - Romance

Type the number for the genre

you want to apply and press Enter:

THERE WAS A PROBLEM MODIFYING THE RECORD

Press Enter to continue:

 In both error cases, pressing Enter takes you back to the main menu.

 Deleting a DVD Record
 If you type 4 and press Enter to delete a DVD record, you ’ ll be presented with the following prompt:

===============================

DELETE A DVD RECORD:

===============================

Enter the title of the DVD to delete:

 Simply enter the title of the DVD you want to delete, exactly as it appears in the database. When you do

so, you ’ ll get a screen like the following:

===============================

DVD TO DELETE:

===============================

Title: American Gangster

Star: Denzel Washington

(continued)

Part I: The Projects

54

Costar: Russell Crowe

Year released: 2007

Genre: : Romance

===============================

 Are you sure you want to delete? Enter a choice and press enter

 (Y/y = yes, Anything else = No)

 If you type Y or y and press Enter, the record will be deleted and you ’ ll get the following confirmation

prompt:

Item deleted, press enter to continue:

 If you type anything else and press Enter, then the record will not be deleted, and you ’ ll get the following

prompt:

Item NOT deleted, press enter to continue:

 In both cases, after you press Enter you ’ ll be returned to the main menu.

 When Problems Occur

 If the program is unable to find the record you want to delete, then you will get the following error:

THERE WAS A PROBLEM ACCESSING THE RECORD IN THE DATABASE!

Press Enter to continue:

 Pressing Enter will take you back to the menu.

 Exporting the List of DVD s to a CSV File
 Often, it can be useful to have a list of the items in your database in a comma - separated value (CSV) file.

If you type 5 and press Enter to do that, you ’ ll get the following prompt:

===============================

EXPORT DATABASE TO CSV:

===============================

Enter base filename (will be given a .csv extension):

 Type a base filename (the part before the extension) and press Enter. For example, if I decided to name

my csv file jimsdvds.csv , I would type jimsdvds and press Enter. I ’ d then get the following output:

(continued)

Chapter 3: DVD Inventory System

55

===============================

EXPORT DATABASE TO CSV:

===============================

Enter base filename (will be given a .csv extension): jimsdvds

jimsdvds.csv successfully written, press Enter to continue:

 At this point, if I go to the directory from which the program was executed, I will see a jimsdvds.csv

file. If I bring that file up in a spreadsheet that can read CSV files, I ’ ll see what ’ s shown in Figure 3 - 1 .

Figure 3-1

 Design
 Like the example in the previous chapter, the DVD Inventory program uses a text - based menu system

(although it is somewhat more complex). The main program is dvd.py , which displays the menu and

manages program flow. It calls several other modules:

 add_dvds — Adds DVDs to the database

 lookup_dvds — Looks up DVDs in the database based on search criteria

 modify_dvd — Modifies field information for a particular DVD record

 delete_dvd — Deletes DVD records

 csvreport_dvd — Generates a CSV file of all the items in the database

❑

❑

❑

❑

❑

The Database I Used

For this program, I implemented a MySQL database. However, the application could
easily be modified to support any other SQL-compliant database. Simply import the
appropriate module for your database and modify the database-connection code. The
SQL queries themselves are fairly generic and should work for most databases.

Part I: The Projects

56

 How It All Fits Together
 This program differs from the last chapter in one notable way: Instead of a large “ helper ” module

containing all the code branched from the main program, you have created a separate module for each

menu option.

 Modules
 This application has a main module, dvd.py , and multiple modules that are called from the main

module. The following sections walk through them one at a time.

 dvd.py

 In addition to being the main program that users will run, the dvd.py module also contains the code to

display the menu and respond to user selections. Table 3 - 1 shows the function of the dvd.py module.

One Large Module or Separate Modules?

Basically, this question is a matter of manageability. Because this program is more
 complex than the File/Directory Snapshot program, with more moving parts, it makes
more sense to have a separate module for each menu option. Could you put everything
in one module? Yes — and the program would still work. However, I think the current
approach makes the program easier to manage and work with.

The short answer? It depends.

Table 3-1

Function Return Type Description

Menu() string Displays a menu and receives a user’s selection through

keyboard input; returns the choice to the calling program

 add_dvd.py

 The add_dvd module adds a DVD record to the database. It takes user input for the DVD information

and then executes a SQL INSERT statement to insert the record in the database. Table 3 - 2 describes the

functions of the add_dvd module.

Chapter 3: DVD Inventory System

57

Table 3-2

Function Return Type Description

AddDVD() none Takes user input on title, star, costar, year, and genre and passes

that data to SQLAddDVD

SQLAddDVD() none Takes title, star, costar, year, and genre information from

AddDVD, connects to the database, and inserts the DVD record

 lookup_dvds.py

 The lookup_dvds module enables the user to look up DVDs in the database by title, star, costar, year, or

genre. It also enables finding multiple records if the search returns multiple “ hits. ” Table 3 - 3 describes

the functions of the lookup_dvds module.

Table 3-3

Function Return Type Description

LookupDVD() none Takes user input on title, star, costar, year, and genre and

passes that data to SQLLookupDVD

SQLLookupDVD() none Takes title, star, costar, year, and genre information from

LookupDVD, connects to the database, and selects the

DVD records, displaying them to the user

 modify_dvd.py

 The modify_dvd module enables the user to modify the fields in a DVD record. It contains just a single

function, although the function is quite large. Table 3 - 4 describes the function of the modify_dvd

module.

Table 3-4

Function Return Type Description

ModifyDVD() none 1. Accepts user input for the title of the DVD to modify

2. Presents the user with the DVD information and prompts

for the field to change

3. Prompts the user for the appropriate value for the selected

field

4. Performs the update against the database and shows the

user the updated record

Part I: The Projects

58

 delete_dvd.py

 The delete_dvd module enables the user to delete a DVD record from the database. Note that deletions

are permanent and cannot be undone. Table 3 - 5 shows the functions of the delete_dvd module.

Table 3-5

Function Return Type Description

DeleteDVD() none Takes user input for the DVD title to delete. Looks up and

displays the record. If the user confirms, it calls

SQLDeleteDVD(), which performs the deletion.

SQLDeleteDVD() none This function takes the title from DeleteDVD() and performs

a SQL DELETE on the database for the selected record.

 csvreport_dvd.py

 The csvreport_dvd module takes a filename as user input (the filename to give the report) and

writes the database data to a CSV file. Table 3 - 6 describes the function of the csvreport_dvd module.

Table 3-6

Function Return Type Description

WriteCSV() none Takes a proposed filename from the user and outputs a CSV file of

the database contents in the program directory

 Code and Code Explanation
 As you work through the following code, you ’ ll notice how some items are named similarly — this helps

to outline or lay out the structure and makes it easier for those who come after you to read your code.

Try to do this whenever you can. Of course, it ’ s not always possible (for example, modify_dvd.py has a

single function), so make sure you let common sense prevail. Let ’ s look at some code.

 In the interests of page space, I ’ ve omitted the code headers, but you should make sure that you use
them. Your coworkers will thank you.

Chapter 3: DVD Inventory System

59

 dvd.py
 Basically, the purpose of the main program is to present the user menu and provide branches to the other

modules when an item is chosen. The following code example presents the entire program. As you did in

the preceding chapter, look it over, and then we ’ ll break it down piece by piece:

import os

import add_dvd

import lookup_dvds

import modify_dvd

import delete_dvd

import csvreport_dvd

#MAIN MENU

def Menu():

 os.system(‘cls’)

 print “””

 ================================

 DVD DATABASE

 ================================

 1 - Add a DVD to the database

 2 - Search inventory

 3 - Modify DVD record

 4 - Delete DVD record

 5 - Export listing to CSV

 6 - Exit

 ================================

 “””

 choice = raw_input(“Enter a choice and press enter: “)

 return choice

#TAKE CHOICE AND LAUNCH MODULE

choice = “”

while choice != “6”:

 choice = Menu()

 if choice == “1”:

 os.system(‘cls’)

 add_dvd.AddDVD()

 elif choice == “2”:

 os.system(‘cls’)

 lookup_dvds.LookupDVD()

 elif choice == “3”:

 os.system(‘cls’)

 modify_dvd.ModifyDVD()

 elif choice == “4”:

 delete_dvd.DeleteDVD()

 elif choice == “5”:

 csvreport_dvd.WriteCSV()

Part I: The Projects

60

 The main() Function

 The main() function (again, main() is implied, even though it ’ s not listed in the program, and anything

not in a function or class is part of main() and automatically runs) operates very similarly to the File/

Directory Snapshot program: It initializes a choice variable and then uses a while menu, which calls

 Menu() and assigns the choice variable to menu() ’ s return value. It then presents the menu and

performs actions based on the user ’ s selection:

#TAKE CHOICE AND LAUNCH MODULE

choice = “”

while choice != “6”:

 choice = Menu()

 if choice == “1”:

 os.system(‘cls’)

 add_dvd.AddDVD()

 elif choice == “2”:

 os.system(‘cls’)

 lookup_dvds.LookupDVD()

 elif choice == “3”:

 os.system(‘cls’)

 modify_dvd.ModifyDVD()

 elif choice == “4”:

 delete_dvd.DeleteDVD()

 elif choice == “5”:

 csvreport_dvd.WriteCSV()

 However, note one difference in this case: The while structure has almost no actual code of its own — it

simply calls other functions. Here, it calls the functions contained in the other modules pertaining to the

menu selections of the user.

 Again, the while loop continues to call the menu() function until the user types 6 and presses Enter,

which breaks the loop; and because the while loop is the last code in the program, it will end the

program and return the user to a system prompt.

 Menu()

 The Menu() function displays the user menu and accepts the user ’ s input, assigning it to the variable choice :

#MAIN MENU

def Menu():

 os.system(‘cls’)

 print “””

 ================================

 DVD DATABASE

 ================================

 1 - Add a DVD to the database

 2 - Search inventory

 3 - Modify DVD record

Chapter 3: DVD Inventory System

61

 4 - Delete DVD record

 5 - Export listing to CSV

 6 - Exit

 ================================

 “””

 choice = raw_input(“Enter a choice and press enter: “)

 return choice

 The function then returns the value of choice to the command that called it.

 add_dvd.py
 The add_dvd module adds a DVD record to the database. It has two functions: AddDVD() , which

interacts with the user, and SQLAddDVD() , which interacts with the database. Here ’ s the entire module

for you to look at — a breakdown of each function immediately follows:

import MySQLdb, random, os

#RUN THE SQL STATEMENT TO INSERT RECORD INTO DATABASE

def SQLAddDVD(Title, Star, Costar, Year, Genre):

 SQL = ‘INSERT INTO DVD values (“%s”, “%s”, “%s”, “%s”, “%s”)’ % \

 (Title, Star, Costar, Year, Genre)

 try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL)

 db.commit()

 c.close()

 db.close()

 raw_input(“Record added - press enter to continue: “)

 except:

 print “THERE WAS A PROBLEM ADDING THE RECORD”

 raw_input(“Press Enter to continue: “)

#TAKE USER INPUT AND RUN FUNCTION TO INSERT INTO DATABASE

def AddDVD():

 print “===============================”

 print “ADD A DVD TO THE DATABASE:”

 print “===============================”

 Title = raw_input(“Enter the DVD title: “)

 Star = raw_input(“Enter the name of the movie’s star: “)

 Costar = raw_input(“Enter the name of the movie’s costar: “)

 Year = raw_input(“Enter the year the movie was released: “)

 Genre = raw_input(“Enter the genre:\n - 1 for Drama, 2 for horror, \

3 for comedy, 4 for romance: “)

 if Genre == “1”:

 Genre = “Drama”

 elif Genre == “2”:

 Genre = “Horror”

(continued)

Part I: The Projects

62

 elif Genre == “3”:

 Genre = “Comedy”

 elif Genre == “4”:

 Genre = “Romance”

 else:

 print “ERROR GETTING INFORMATION!”

 raw_input(“Press Enter to return to the menu: “)

 return

 SQLAddDVD(Title, Star, Costar, Year, Genre)

 AddDVD()

 The AddDVD() function uses a series of raw_input statements to get all the information needed to add a

DVD record to the database:

 Title = raw_input(“Enter the DVD title: “)

 Star = raw_input(“Enter the name of the movie’s star: “)

 Costar = raw_input(“Enter the name of the movie’s costar: “)

 Year = raw_input(“Enter the year the movie was released: “)

 For genre, because there is a discrete list of items to select from, the user is presented with a list of

options and prompted to type a number corresponding to the desired genre. An if construct then

converts the selected number to the appropriate string value:

Genre = raw_input(“Enter the genre:\n - 1 for Drama, 2 for horror, \

 3 for comedy, 4 for romance: “)

 if Genre == “1”:

 Genre = “Drama”

 elif Genre == “2”:

 Genre = “Horror”

 elif Genre == “3”:

 Genre = “Comedy”

 elif Genre == “4”:

 Genre = “Romance”

 else:

 print “ERROR GETTING INFORMATION!”

 raw_input(“Press Enter to return to the menu: “)

 return

 As you can see, if the user presses something other than 1 – 4, then he or she will get an error message.

 The last line of the function is simply a call to the SQLAddDVD() function, passing it all the values it needs

to add the record to the database (Title, Star, Costar, Year, and Genre):

 SQLAddDVD(Title, Star, Costar, Year, Genre)

(continued)

Chapter 3: DVD Inventory System

63

 SQLAddDVD(Title, Star, Costar, Year, Genre)

 As you can see from SQLAddDVD() ’ s parameter list, it takes the data from AddDVD() that the user typed

in. Then, the first thing it does is create a string variable to hold the SQL command that will be run to

insert the record in the database, using the values provided:

SQL = ‘INSERT INTO DVD values (“%s”, “%s”, “%s”, “%s”, “%s”)’ % \

 (Title, Star, Costar, Year, Genre)

 The rest of the function consists of a try / except block for inserting the record in the database:

try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL)

 db.commit()

 c.close()

 db.close()

 raw_input(“Record added - press enter to continue: “)

 except:

 print “THERE WAS A PROBLEM ADDING THE RECORD”

 raw_input(“Press Enter to continue: “)

 It uses the MySQLdb module ’ s connect() method to connect to the MySQL database. Then it assigns to

variable c the “ cursor ” (which is basically the reference point in the database). We then execute the SQL

command and commit the changes.

 Because connecting to a database and making changes always includes the potential for problems, this

code is encapsulated inside a try / except block. When problems occur, an appropriate error message is

generated. Pressing Enter will return the user to the main menu.

 lookup_dvds.py
 The lookup_dvds.py module enables users to query the database with a search pattern and view a list

of matching records. It allows searches to be executed based on title, star, costar, year of release, or genre.

It is comprised of a LookupDVD() function and a SQLLookupDVD() function. Here is the code:

import MySQLdb, os

#RUN THE SQL STATEMENT TO QUERY THE DATABASE

def SQLLookupDVD(searchby, searchtext):

 SQL = “SELECT * FROM DVD WHERE %s = %s” % (searchby, searchtext)

 try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

(continued)

Part I: The Projects

64

 c.execute(SQL)

 output = c.fetchall()

 c.close()

 db.close()

 except:

 print “THERE WAS A PROBLEM ACCESSING THE DATABASE”

 raw_input(“Press Enter to continue: “)

 return

 os.system(‘cls’)

 print “===============================”

 print “DVD SEARCH RESULTS:”

 print “===============================”

 if output == ():

 print “NO RECORDS FOUND”

 print “===============================”

 for entry in output:

 print “Title:\t”, entry[0]

 print “Star:\t”, entry[1]

 print “Costar:\t”, entry[2]

 print “Year:\t”, entry[3]

 print “Genre:\t”, entry[4]

 print “===============================”

 raw_input(“\n\nPress enter to continue: “)

#TAKE USER INPUT AND RUN FUNCTION TO QUERY THE DATABASE

def LookupDVD():

 print “””

 ===============================

 DVD LOOKUP:

 ===============================

 Enter the criteria to look up by:

 1 - Movie title

 2 - Star

 3 - Costar

 4 - Year released

 5 - Genre”””

 choice = raw_input(“\nType a number and press enter: “)

 searchby = “”

 searchtext = “”

if choice == “1”:

 searchby = “DVD_TITLE”

 searchtext = raw_input(“Enter the DVD title to search for: “)

 searchtext = “\”%s\”” % (searchtext)

(continued)

Chapter 3: DVD Inventory System

65

 elif choice == “2”:

 searchby = “DVD_STAR_NAME”

 searchtext = raw_input(“Enter the DVD star name to search for: “)

 searchtext = “\”%s\”” % (searchtext)

 elif choice == “3”:

 searchby = “DVD_COSTAR_NAME”

 searchtext = raw_input(“Enter the DVD costar name to search for: “)

 searchtext = “\”%s\”” % (searchtext)

 elif choice == “4”:

 searchby = “DVD_YEAR”

 searchtext = raw_input(“Enter the DVD release year to search for: “)

 searchtext = “\”%s\”” % (searchtext)

 elif choice == “5”:

 searchby = “DVD_GENRE”

 print “””

 Enter the genre to search for:

 1 - Drama

 2 - Horror

 3 - Comedy

 4 - Romance

 “””

 entrychoice = raw_input(“\t”)

 if entrychoice == “1”:

 searchtext = “\”Drama\””

 elif entrychoice == “2”:

 searchtext = “\”Horror\””

 elif entrychoice == “3”:

 searchtext = “\”Comedy\””

 elif entrychoice == “4”:

 searchtext = “\”Romance\””

 else:

 print “ERROR IN CHOICE!”

 raw_input(“Press Enter to return to the menu: “)

 return

 SQLLookupDVD(searchby, searchtext)

Part I: The Projects

66

 LookupDVD()

 The LookupDVD() function starts out by simply asking the user which field to search by and assigning it

to the variable choice :

print “””

 ===============================

 DVD LOOKUP:

 ===============================

 Enter the criteria to look up by:

 1 - Movie title

 2 - Star

 3 - Costar

 4 - Year released

 5 - Genre”””

 choice = raw_input(“\nType a number and press enter: “)

 Two variables are then initialized as empty strings:

searchby = “”

searchtext = “”

 The next section of the function is an if construct that, based on which field the user decided to search

on, does two things:

 1. It assigns the variable searchby to the field the user decided to search on.

 2. It prompts the user for the search text and assigns it to the variable searchtext :

if choice == “1”:

 searchby = “DVD_TITLE”

 searchtext = raw_input(“Enter the DVD title to search for: “)

 searchtext = “\”%s\”” % (searchtext)

 elif choice == “2”:

 searchby = “DVD_STAR_NAME”

 searchtext = raw_input(“Enter the DVD star name to search for: “)

 searchtext = “\”%s\”” % (searchtext)

 elif choice == “3”:

Chapter 3: DVD Inventory System

67

 searchby = “DVD_COSTAR_NAME”

 searchtext = raw_input(“Enter the DVD costar name to search for: “)

 searchtext = “\”%s\”” % (searchtext)

 elif choice == “4”:

 searchby = “DVD_YEAR”

 searchtext = raw_input(“Enter the DVD release year to search for: “)

 searchtext = “\”%s\”” % (searchtext)

 elif choice == “5”:

 searchby = “DVD_GENRE”

 print “””

 Enter the genre to search for:

 1 - Drama

 2 - Horror

 3 - Comedy

 4 - Romance

 “””

 entrychoice = raw_input(“\t”)

 if entrychoice == “1”:

 searchtext = “\”Drama\””

 elif entrychoice == “2”:

 searchtext = “\”Horror\””

 elif entrychoice == “3”:

 searchtext = “\”Comedy\””

 elif entrychoice == “4”:

 searchtext = “\”Romance\””

 else:

 print “ERROR IN CHOICE!”

 raw_input(“Press Enter to return to the menu: “)

 return

 As shown in the preceding example, the if construct enables users to type in a number corresponding to

their selected genre if that is what they are searching on. In addition, there is an else branch in case the

user provides an invalid entry.

 The last thing the function does is call SQLLookupDVD() , passing it the field to the search on and the

search text:

 SQLLookupDVD(searchby, searchtext)

Part I: The Projects

68

 SQLLookupDVD(searchby, searchtext)

 The SQLLookupDVD() function performs the SQL query to look up any matching records and then

outputs the results to the screen. It takes the field to search on and the search text, and creates a string

variable with the SQL query:

 SQL = “SELECT * FROM DVD WHERE %s = %s” % (searchby, searchtext)

 The next code block is a try/except block that connects to the database and executes the query,

assigning the result set to the variable output :

 try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL)

 output = c.fetchall()

 c.close()

 db.close()

 except:

 print “THERE WAS A PROBLEM ACCESSING THE DATABASE”

 raw_input(“Press Enter to continue: “)

 return

 With the results assigned to the variable output , the function then displays the results to the screen:

os.system(‘cls’)

 print “===============================”

 print “DVD SEARCH RESULTS:”

 print “===============================”

 if not output:

 print “NO RECORDS FOUND”

 print “===============================”

 for entry in output:

 print “Title:\t”, entry[0]

 print “Star:\t”, entry[1]

 print “Costar:\t”, entry[2]

 print “Year:\t”, entry[3]

 print “Genre:\t”, entry[4]

 print “===============================”

 raw_input(“\n\nPress enter to continue: “)

 Notice that if the result set is empty, then it prints out a message indicating there are “ no records found. ”

 modify_dvd.py
 The modify_dvd module is the most complex in the program, which is not unexpected — it is much

trickier to edit database records in place than to delete them or add them. Here ’ s the whole module. As

before, look it over and then we ’ ll break the method down:

Chapter 3: DVD Inventory System

69

import MySQLdb

def ModifyDVD():

 print “===============================”

 print “MODIFY A DVD RECORD:”

 print “===============================”

 dvdTitle = raw_input(“\nEnter the title of the DVD to modify: “)

 SQL_LOOKUP = “SELECT * FROM DVD WHERE DVD_TITLE = \”%s\”” % dvdTitle

 try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL_LOOKUP)

 searchResult = c.fetchall()

 if searchResult[0] == ():

 raise

 except:

 print “THERE WAS A PROBLEM ACCESSING THE RECORD IN THE DATABASE!”

 raw_input(“Press Enter to continue: “)

 return

 try:

 print “===============================”

 print “DVD TO MODIFY:”

 print “===============================”

 print “1 - Title:\t”, searchResult[0][0]

 print “2 - Star:\t”, searchResult[0][1]

 print “3 - Costar:\t”, searchResult[0][2]

 print “4 - Year:\t”, searchResult[0][3]

 print “5 - Genre:\t”, searchResult[0][4]

 print “===============================”

 choice = raw_input(“Type the number for the field \

 \nyou want to modify and press Enter: “)

 titleChanged = False

 modify = “”

 newvalue = “”

 if choice == “1”:

 modify = “DVD_TITLE”

 newvalueTitle = raw_input(“Enter the new DVD title name: “)

 newvalue = “\”%s\”” % newvalueTitle

 titleChanged = True

 elif choice == “2”:

 modify = “DVD_STAR_NAME”

 newvalue = raw_input(“Enter the new DVD star name: “)

 newvalue = “\”%s\”” % newvalue

 elif choice == “3”:

 modify = “DVD_COSTAR_NAME”

 newvalue = raw_input(“Enter the new DVD costar name: “)

(continued)

Part I: The Projects

70

 newvalue = “\”%s\”” % newvalue

 elif choice == “4”:

 modify = “DVD_YEAR”

 newvalue = raw_input(“Enter the new DVD year of release: “)

 newvalue = “\”%s\”” % newvalue

 elif choice == “5”:

 modify = “DVD_GENRE”

 print “===============================”

 print “Enter the genre to apply to this DVD:”

 print “1 - Drama”

 print “2 - Horror”

 print “3 - Comedy”

 print “4 - Romance”

 entrychoice = raw_input(“Type the number for the genre \

 \nyou want to apply and press Enter: “)

 if entrychoice == “1”:

 newvalue = “\”Drama\””

 elif entrychoice == “2”:

 newvalue = “\”Horror\””

 elif entrychoice == “3”:

 newvalue = “\”Comedy\””

 elif entrychoice == “4”:

 newvalue = “\”Romance\””

 SQL_UPDATE = “UPDATE DVD SET %s = %s WHERE DVD_TITLE = \”%s\”” \

 % (modify, newvalue, dvdTitle)

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL_UPDATE)

 db.commit()

 if titleChanged:

 SQL_LOOKUP = “SELECT * FROM DVD WHERE DVD_TITLE = \”%s\”” %

newvalueTitle

 c = db.cursor()

 c.execute(SQL_LOOKUP)

 modifyResult = c.fetchall()

 c.close()

 db.close()

 except:

 print “THERE WAS A PROBLEM MODIFYING THE RECORD”

 raw_input(“Press Enter to continue: “)

 return

 print “===============================”

 print “MODIFIED RECORD:”

 print “===============================”

 print “1 - Title:\t”, modifyResult[0][0]

 print “2 - Star:\t”, modifyResult[0][1]

(continued)

Chapter 3: DVD Inventory System

71

 print “3 - Costar:\t”, modifyResult[0][2]

 print “4 - Year:\t”, modifyResult[0][3]

 print “5 - Genre\t”, modifyResult[0][4]

 print “===============================”

 raw_input(“Press enter to continue: “)

 ModifyDVD()

 The function starts out simply enough — it prints the header for the “ modify ” screen:

 print “===============================”

 print “MODIFY A DVD RECORD:”

 print “===============================”

 Then the user is prompted for the title of the DVD to be modified, and the response is assigned to the

variable dvdTitle :

 dvdTitle = raw_input(“\nEnter the title of the DVD to modify: “)

 Users need to be able to see what they are modifying, so the first thing you need to do is look up the

record:

 SQL_LOOKUP = “SELECT * FROM DVD WHERE DVD_TITLE = \”%s\”” % dvdTitle

 try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL_LOOKUP)

 searchResult = c.fetchall()

 if searchResult[0] == ():

 raise

 except:

 print “THERE WAS A PROBLEM ACCESSING THE RECORD IN THE DATABASE!”

 raw_input(“Press Enter to continue: “)

 return

 As before, using a try / except block is well - advised when accessing a database, just in case problems

occur. As you can see from the preceding code block, if no results are found from the search, then you

raise an exception, which displays an error message and returns to the main menu.

 Now you are at the bulk of the function — when you actually modify the record. This entire part is

encased in a try / except block.

Part I: The Projects

72

 First, display a menu asking users which field they want to modify (and assign their answer to the

variable choice):

 print “===============================”

 print “DVD TO MODIFY:”

 print “===============================”

 print “1 - Title:\t”, searchResult[0][0]

 print “2 - Star:\t”, searchResult[0][1]

 print “3 - Costar:\t”, searchResult[0][2]

 print “4 - Year:\t”, searchResult[0][3]

 print “5 - Genre:\t”, searchResult[0][4]

 print “===============================”

 choice = raw_input(“Type the number for the field \

 \nyou want to modify and press Enter: “)

 The next part is a branching section with a nested if statement:

 titleChanged = False

 modify = “”

 newvalue = “”

 if choice == “1”:

 modify = “DVD_TITLE”

 newvalueTitle = raw_input(“Enter the new DVD title name: “)

 newvalue = “\”%s\”” % newvalueTitle

 titleChanged = True

 elif choice == “2”:

 modify = “DVD_STAR_NAME”

 newvalue = raw_input(“Enter the new DVD star name: “)

 newvalue = “\”%s\”” % newvalue

 elif choice == “3”:

 modify = “DVD_COSTAR_NAME”

 newvalue = raw_input(“Enter the new DVD costar name: “)

 newvalue = “\”%s\”” % newvalue

 elif choice == “4”:

 modify = “DVD_YEAR”

 newvalue = raw_input(“Enter the new DVD year of release: “)

 newvalue = “\”%s\”” % newvalue

 elif choice == “5”:

 modify = “DVD_GENRE”

 print “===============================”

 print “Enter the genre to apply to this DVD:”

 print “1 - Drama”

 print “2 - Horror”

 print “3 - Comedy”

 print “4 - Romance”

 entrychoice = raw_input(“Type the number for the genre \

 \nyou want to apply and press Enter: “)

 if entrychoice == “1”:

 newvalue = “\”Drama\””

 elif entrychoice == “2”:

Chapter 3: DVD Inventory System

73

 newvalue = “\”Horror\””

 elif entrychoice == “3”:

 newvalue = “\”Comedy\””

 elif entrychoice == “4”:

 newvalue = “\”Romance\””

 Did you notice that there are a few variables assigned at the top of this code snippet? The first one is

very important. Because all the fields can be changed when a record is modified, you need to ensure that

you can redisplay the record after you ’ re done if the field you used to look it up has changed. To do

so, you have to monitor whether the title is being modified, and keep track of the title as it appeared

originally. That way, you can be sure to display the same record.

 The following code does the actual update of the record:

 SQL_UPDATE = “UPDATE DVD SET %s = %s WHERE DVD_TITLE = \”%s\”” \

 % (modify, newvalue, dvdTitle)

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL_UPDATE)

 db.commit()

 At this point, our SQL_LOOKUP string variable contains the value of the DVD title originally entered. If

you didn ’ t modify the title, that ’ s fine. However, if you did modify the title, then you need to change the

query. Therefore, you next put in a simple little if statement:

if titleChanged:

 SQL_LOOKUP = “SELECT * FROM DVD WHERE DVD_TITLE = \”%s\”” % newvalueTitle

 Next, run a query for the modified record and assign its result set to the variable modifyResult :

 c = db.cursor()

 c.execute(SQL_LOOKUP)

 modifyResult = c.fetchall()

 c.close()

 db.close()

 Note that there is an exception statement, like the others you ’ ve looked at, displaying an error message if

you have a problem with your database connection.

Part I: The Projects

74

 Finally, display the modified record:

 print “===============================”

 print “MODIFIED RECORD:”

 print “===============================”

 print “1 - Title:\t”, modifyResult[0][0]

 print “2 - Star:\t”, modifyResult[0][1]

 print “3 - Costar:\t”, modifyResult[0][2]

 print “4 - Year:\t”, modifyResult[0][3]

 print “5 - Genre\t”, modifyResult[0][4]

 print “===============================”

 raw_input(“Press enter to continue: “)

 delete_dvd.py
 The delete_dvd.py module enables users to delete DVD records from the database. Users will be

prompted to ensure that they want to make the deletion, but deletions are permanent. This module

includes two functions, DeleteDVD() and SQLDeleteDVD() , which are described following the code in

their entirety:

import MySQLdb, os

#RUN THE SQL STATEMENT TO DELETE THE SELECTED RECORD

def SQLDeleteDVD(dvdToDelete):

 try:

 SQL_DELETE = “DELETE DVD FROM DVD WHERE DVD_TITLE = \”%s\”” %

dvdToDelete

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL_DELETE)

 db.commit()

 c.close()

 db.close()

 raw_input(“Item deleted, press enter to continue: “)

 except:

 print “THERE WAS A PROBLEM DELETING THE RECORD”

 raw_input(“Press Enter to continue: “)

#TAKE USER INPUT AND RUN FUNCTION TO DELETE THE SELECTED RECORD

def DeleteDVD():

 os.system(‘cls’)

 print “===============================”

 print “DELETE A DVD RECORD:”

 print “===============================”

 dvdToDelete = raw_input(“\nEnter the title of the DVD to delete:\t”)

 SQL_DELETE = “DELETE DVD FROM DVD WHERE DVD_TITLE = \”%s\”” %

dvdToDelete

Chapter 3: DVD Inventory System

75

 try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL_LOOKUP)

 searchResult = c.fetchall()

 if searchResult[0] == ():

 raise

 except:

 print “THERE WAS A PROBLEM ACCESSING THE RECORD IN THE DATABASE!”

 raw_input(“Press Enter to continue: “)

 return

 print “===============================”

 print “DVD TO DELETE:”

 print “===============================”

 print “Title:\t”, searchResult[0][0]

 print “Star:\t”, searchResult[0][1]

 print “Costar:\t”, searchResult[0][2]

 print “Year released:\t”, searchResult[0][3]

 print “Genre:\t:”, searchResult[0][4]

 print “===============================”

 print ‘’’

 Are you sure you want to delete? Enter a choice and press enter

 (Y/y = yes, Anything else = No)

 ‘’’

 choice = raw_input(“\t”)

 if (choice == “Y” or choice == “y”):

 SQLDeleteDVD(dvdToDelete)

 else:

 c.close()

 db.close()

 raw_input(“Item NOT deleted, press enter to continue: “)

 DeleteDVD()

 The DeleteDVD() function prompts users for the title of the DVD they want to delete, shows them the

record, makes sure that they want to delete it, and (assuming they confirm), calls the

 SQLDeleteDVD() function to make the deletion.

 It starts by simply displaying the banner for the menu:

 os.system(‘cls’)

 print “===============================”

 print “DELETE A DVD RECORD:”

 print “===============================”

 Then, the user is prompted for the title of the DVD to be deleted, and this information is assigned to the

variable dvdToDelete :

 dvdToDelete = raw_input(“\nEnter the title of the DVD to delete:\t”)

Part I: The Projects

76

 A SQL query is then built (so the record can be looked up) and assigned to a variable:

 SQL_LOOKUP = “SELECT * FROM DVD WHERE DVD_TITLE = \”%s\”” % dvdToDelete

 The record is then looked up and the result set assigned to a variable:

try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL_LOOKUP)

 searchResult = c.fetchall()

 if searchResult[0] == ():

 raise

 except:

 print “THERE WAS A PROBLEM ACCESSING THE RECORD IN THE DATABASE!”

 raw_input(“Press Enter to continue: “)

 return

 Again, use try/except because you are accessing the database.

 Now it ’ s time to display the record to the user and confirm whether they really want to delete it:

 print “===============================”

 print “DVD TO DELETE:”

 print “===============================”

 print “Title:\t”, searchResult[0][0]

 print “Star:\t”, searchResult[0][1]

 print “Costar:\t”, searchResult[0][2]

 print “Year released:\t”, searchResult[0][3]

 print “Genre:\t:”, searchResult[0][4]

 print “===============================”

 print ‘’’

 Are you sure you want to delete? Enter a choice and press enter

 (Y/y = yes, Anything else = No)

 ‘’’

 choice = raw_input(“\t”)

 At this point, the function does its work based on what the user input:

if (choice == “Y” or choice == “y”):

 SQLDeleteDVD(dvdToDelete)

 else:

 c.close()

 db.close()

 raw_input(“Item NOT deleted, press enter to continue: “)

 If the user selects Y or y and presses Enter, then the SQLDeleteDVD() function is called, passing the title

of the DVD to delete. If the user types anything else, then an error message is displayed and the user is

returned to the main menu.

Chapter 3: DVD Inventory System

77

 SQLDeleteDVD(dvdToDelete)

 This function takes the title of the DVD to delete from DeleteDVD() and executes the deletion. Because

the function is fairly short and straightforward, it is shown in its entirety here:

def SQLDeleteDVD(dvdToDelete):

 try:

 SQL_DELETE = “DELETE DVD FROM DVD WHERE DVD_TITLE = \”%s\”” % dvdToDelete

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL_DELETE)

 db.commit()

 c.close()

 db.close()

 raw_input(“Item deleted, press enter to continue: “)

 except:

 print “THERE WAS A PROBLEM DELETING THE RECORD”

 raw_input(“Press Enter to continue: “)

 Basically, it takes the title through a parameter, builds a SQL statement, connects to the database, runs

the statement, and closes the connection. Because it ’ s in a try/except block, if problems are

encountered when connecting to the database, then a friendly error message is displayed.

 csvreport_dvd.py
 The csvreport_dvd.py module enables users to export the complete list of DVDs to a CSV file, which

can then be retrieved and used in a spreadsheet program. It consists of a single function, WriteCSV() .

Here is the code:

import MySQLdb, csv, os

#FUNCTION TO WRITE ENTIRE DVD LIST TO CSV

def WriteCSV():

 SQL = “SELECT * FROM DVD”

 try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL)

 output = c.fetchall()

 c.close()

 db.close()

 except:

 print “THERE WAS A PROBLEM ACCESSING THE DATABASE!”

 raw_input(“Press Enter to return to the menu: “)

 return

(continued)

Part I: The Projects

78

 try:

 os.system(‘cls’)

 print “===============================”

 print “EXPORT DATABASE TO CSV:”

 print “===============================”

 filename = raw_input(“Enter base filename (will be given a .csv extension): “)

 filename = filename + “.csv”

 writer = csv.writer(open(filename, “wb”))

 writer.writerow((“TITLE”, “STAR NAME”, “COSTAR NAME”, “YEAR”, “GENRE”))

 writer.writerows(output)

 print filename, “ successfully written, press Enter to continue: “

 raw_input(“”)

 return

 except:

 print “ERROR WRITING FILE!”

 raw_input(“Press Enter to return to the menu: “)

 WriteCSV()

 The program begins by assigning to a string variable a SQL statement to query all records in the

database:

 SQL = “SELECT * FROM DVD”

 Following this is a try/except block to query for all the records in the database, assigning the result set

to variable output:

 try:

 db = MySQLdb.connect(“localhost”, “root”, “zanzibar”, “DVDCOLLECTION”)

 c = db.cursor()

 c.execute(SQL)

 output = c.fetchall()

 c.close()

 db.close()

 except:

 print “THERE WAS A PROBLEM ACCESSING THE DATABASE!”

 raw_input(“Press Enter to return to the menu: “)

 return

 Finally, a try/except block does the following:

 Prompts the user for the filename to use

 Uses Python ’ s csv module (which we imported) to take the tuple of values (assigned to

identifier output) and export them to a csv file with the filename the user input

 Provides the user with success status when the file has been written

❑

❑

❑

(continued)

Chapter 3: DVD Inventory System

79

try:

 os.system(‘cls’)

 print “===============================”

 print “EXPORT DATABASE TO CSV:”

 print “===============================”

 filename = raw_input(“Enter base filename (will be given a .csv extension): “)

 filename = filename + “.csv”

 writer = csv.writer(open(filename, “wb”))

 writer.writerow((“TITLE”, “STAR NAME”, “COSTAR NAME”, “YEAR”, “GENRE”))

 writer.writerows(output)

 print filename, “ successfully written, press Enter to continue: “

 raw_input(“”)

 return

 except:

 print “ERROR WRITING FILE!”

 raw_input(“Press Enter to return to the menu: “)

 Testing
 Database programs can be tricky to test. As you test them, you ’ ll want to think about implementing the

following tactics:

 Test each field individually with several different data sets — use valid data, invalid data, and

valid data right at the “ boundary ” (e.g., if a field can hold integers up to 10,000, then enter

10,000 and 10,001).

 Test with “ user scenarios, ” — that is, consider what some typical records or data sets would look

like and use those.

 Learn how to create export files with your database of choice so you can quickly import them to

seed your database. This will save a great deal of time.

 Modifying the Program
 There are several ways this project could be enhanced, including the following:

 You could implement a web interface for the product — in chapter 8 , you ’ ll look at Plone, a

Python - based web framework designed for just this kind of project.

 You could expand on the reporting capabilities — for example, you could enable users to create

specific queries for building CSV files.

 You could include a field for “ rating ” and then export it to a CSV file and produce a graph in

Excel showing comparisons of different groups of DVDs.

❑

❑

❑

❑

❑

❑

Part I: The Projects

80

 Summary
 In this chapter, you learned how to write an application to access and integrate with a database. You

learned how to search for information, add records, modify records, and delete records — all from

Python. This knowledge serves as a foundation that can help you to build countless applications.

 To build truly useful programs with Python, you ’ ll also have to know how to combine the power of a

database with the accessibility of computer networks, which is exactly what you ’ ll learn next.

 Web Performance Tester

 So far, the programs we ’ ve written have been useful, but they ’ ve shared one main limitation —

 they are largely self contained, intended to be run on a single computer (although the

database program could certainly have a database housed on another computer). Our next

program will change that.

 The Web Performance Tester has two main functions (I use “ function ” in the generic sense here):

 It will use Python ’ s urllib2 module to emulate a web browser, access several

well - known web sites, and report the amount of time it took to get back the HTML from

the page accessed. It will also write its results to a log file, which can be accessed later.

 It will communicate with a simple Python web server on another machine on the

computer ’ s internal network, download a text file and a binary file (through HTTP), and

report the results. It will record the results in a logfile .

❑

❑

Why Is This Application Important?

Much of the work done by computers is done over networks. Whether it is browsing
web pages, connecting to terminal servers via telnet, downloading files via FTP, or per-
forming some other network task, connecting to other computers is one of the most
vital tasks a computer performs today.

Using Python, you can act as a server for many of the most popular Internet protocols:
HTTP (Web), FTP (File Transfer), Telnet (Remote login), SMTP (Mail service), and
SNMP (Network Management), just to name a few.

This application demonstrates how to use Python and its rich collection of modules to
interface with a network.

Part I: The Projects

82

 Using the Program
 The application is available for download from www.wrox.com . There are actually two separate

programs that are run in this application: the Python web server and the Web Performance client.

 Running the Python Web Server
 Before you run the Python web server, you ’ ll need to determine what port you want to run it on. It

needs to be a port that isn ’ t being used by some other program. This chapter ’ s example uses port 8006.

 You will want to run the Python web server from any server that you want to monitor for HTTP

response performance. To run it, you just need to open a command prompt window and navigate to the

Chapter 4 application directory and type python webserver.py 8006 .

 Notice that you need to type the name of the program, followed by the port number as a command - line

argument (sometimes called a parameter). Later in the chapter you ’ ll learn how to implement command -

 line arguments in your Python code so that users can “ feed ” the program customized information when

they run your program.

 When you run the program, a simple window will be displayed, as shown in Figure 4 - 1 .

 Figure 4 - 1

 To test the web server, bring up your browser and type the following in your browser ’ s address control:

 http://localhost:8006/testpage.html .

 You should get a page that displays the following text (by the way, this is the quintessential Python

philosophy, known as “ The Zen of Python, ” and it can be viewed if you simply type import this at a

Python interpreter prompt):

Chapter 4: Web Performance Tester

83

This is a test page for the Python Web Server.

The Zen of Python, by Tim Peters:

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

NameSpaces are one honking great idea -- let’s do more of those!

 The web server window should show a line like the following:

jim-PC - - [04/Dec/2007 21:42:08] “GET /testpage.html HTTP/1.1” 200 -

 At this point, the web server is now up and running. Start this for all the servers on your network on

which you ’ d like to test HTTP performance.

 When Problems Occur

 If for some reason the web server is not able to load, you will get an appropriate error message, which is

what happened when I loaded the web server on my machine that was already running a web server on

port 8080.

There was a problem starting the webserver at port 8080

 Running the Performance Profiler Client
 You can find this application on the Wrox website (www.wrox.com). To run the client, simply type the

following: python webperf.py .

Part I: The Projects

84

 When you do, you ’ ll be presented with the following menu:

 ==

 WEB PERFORMANCE TESTER

 ==

 1 - Test client connection to external web sites

 2 - Test internal web server performance

 3 - Display log file

 4 - Exit

 ==

 Enter a choice and press enter:

 You have four options: Connect to external websites and observe the performance from your client

machine; connect to internal Python web servers to observe internal HTTP network performance;

display the log file in Notepad; and exit. The following sections examine each option.

 Testing Connection Performance to External Websites

 If you type 1 and press Enter to test connection performance to external websites, you ’ ll be presented

with the following prompt:

 ==

 WEB PERFORMANCE TESTER - EXTERNAL SITE CHECK

 ==

 Enter the websites to check, separated by spaces:

 For example, to connect to amazon.com , novell.com , and harvard.edu , you would type the following,

respectively: www.amazon.com , www.novell.com , www.harvard.edu , which results in the following

output:

 ==

 WEB PERFORMANCE TESTER - EXTERNAL SITE CHECK

 ==

 Enter the websites to check, separated by spaces:

 www.amazon.com www.novell.com www.harvard.edu

Tue, 04 Dec 2007 22:06:28

Site www.amazon.com took 2.36 seconds to load

Site www.novell.com took 0.26 seconds to load

Site www.harvard.edu took 0.66 seconds to load

Press Enter to Continue:

 As shown in the preceding output, the results show you exactly how long each site took to load.

Chapter 4: Web Performance Tester

85

Where’s the Browser?

You may be wondering how it loaded those websites when you didn’t see a browser
load! Part of the magic of Python is that it has a module (urllib2) that can retrieve
web pages through Hypertext Transfer Protocol (HTTP), just the way a web browser
does. By doing it through Python, you are saved the overhead of actually loading the
browser, and the benchmark is a truer test of the speed of the actual HTTP response
 delivered to your client machine.

 If there is a problem connecting to a website (such as not being able to find the website), then the user

will get an appropriate error, including the name of the problem website:

Error connecting to site www.lkdsjflkdsajf.com

 Testing Internal Web Server Performance

 If you type 2 at the main menu and press Enter to test internal web server performance, you ’ ll get the

following prompt:

 ==

 WEB PERFORMANCE TESTER - INTERNAL WEBSERVER CHECK

 ==

 Enter the ip addresses of the web servers

 running the Python Webserver, seperated by spaces:

 For example, if you had two servers running the Python web server and their IP addresses were

192.168.1.102 and 192.168.1.103, at the prompt you would type the following:

 192.168.1.102 192.168.1.103

 When I typed the preceding addresses and pressed Enter, the following result displayed in the client

program:

 ==

 WEB PERFORMANCE TESTER - INTERNAL WEBSERVER CHECK

 ==

 Enter the ip addresses of the web servers

 running the Python Webserver, seperated by spaces:

(continued)

Part I: The Projects

86

 192.168.1.102 192.168.1.103

Enter the port the web server is listening on: 8006

Tue, 04 Dec 2007 22:18:20

192.168.1.102:

textfile.txt took 9.09 seconds to load

binaryfile.exe took 9.12 seconds to load

192.168.1.103:

textfile.txt took 0.03 seconds to load

binaryfile.exe took 0.04 seconds to load

Press Enter to Continue:

 As you can see, the program downloads both a text file and a binary file from each web server (both text

files and binary files are supplied and need to be kept in the same directory as webserver.py). The

program reports on the amount of time each file took to load, for each web server indicated.

(continued)

For both of these options, note that each test run displays a date-time stamp. This is
also output to the log file.

 If a problem occurs when connecting to one of the servers (such as the server crashed and is no longer

running), the user will get an appropriate error, with the IP address of the server in question:

Error connecting to server 192.168.1.102

 Displaying the Log File

 When profiling and testing web performance, it is critical to be able to view historical data. This enables

you to see trends. Moreover, if there are problems, you can go back and see when the problems started.

You can also monitor the effects of changes on performance.

 If you type 3 and press Enter to view the log file, the program will launch Windows Notepad and bring

up the file (if you are running on Linux or Mac, it is easy enough to modify the program to launch vi or

 TextMate or whatever editor you prefer).

 When connecting to external websites, the log entry written to the log file will have a date - time stamp

and the result of all the connection attempts, successful or not, and how long it took to connect, as shown

in the following example:

Chapter 4: Web Performance Tester

87

Tue, 04 Dec 2007 20:44:38

Site www.novell.com took 0.36 seconds to load

Site www.microsoft.com took 0.15 seconds to load

Error connecting to site www.dlkjdflkjf.com

 When connecting to internal web servers, the log entry written to the log file will have a date - time stamp

and the result of all the connection attempts, successful or not, and how long it took to connect, as shown

in the following example:

Tue, 04 Dec 2007 22:48:25

192.168.1.103:

textfile.txt took 0.01 seconds to load

binaryfile.exe took 0.02 seconds to load

192.168.1.102:

Error connecting to server 192.168.1.102

 For example, in my running program, if I choose to view the log file, this is what is displayed in

Notepad:

Tue, 04 Dec 2007 20:44:38

Site www.novell.com took 0.36 seconds to load

Site www.microsoft.com took 0.15 seconds to load

Error connecting to site www.dlkjdflkjf.com

Tue, 04 Dec 2007 20:44:55

192.168.1.103:

textfile.txt took 0.01 seconds to load

binaryfile.exe took 0.02 seconds to load

1.1.1.1:

Error connecting to server 1.1.1.1

Tue, 04 Dec 2007 20:47:44

Tue, 04 Dec 2007 22:06:28

Site www.amazon.com took 2.36 seconds to load

Site www.novell.com took 0.26 seconds to load

Site www.harvard.edu took 0.66 seconds to load

Tue, 04 Dec 2007 22:18:20

192.168.1.102:

textfile.txt took 9.09 seconds to load

binaryfile.exe took 9.12 seconds to load

192.168.1.103:

(continued)

Part I: The Projects

88

textfile.txt took 0.03 seconds to load

binaryfile.exe took 0.04 seconds to load

Tue, 04 Dec 2007 22:26:45

Error connecting to site www.lkdsjflkdsajf.com

Tue, 04 Dec 2007 22:29:17

192.168.1.102:

Error connecting to server 192.168.1.102

 As you can see, each activity is logged to the log file (the file is called logfile.txt and is stored in the

same directory as the client program).

 When Problems Occur

 Typically, problems won ’ t occur because all this option does is open the log file. However, if for some

reason the log file is not there, then Notepad will simply prompt the user to create it.

 Design
 There are actually two components to this program: the server component and the client component.

In this respect, it is similar to many network applications (such as Telnet, SMTP mail, FTP, HTTP, and

so on). The components are laid out thus:

 webserver.py is the web server, and it runs on a server on which you want to check HTTP

response performance. It imports other standard library modules, but no other modules that are

part of this application. It does use textfile.txt , binaryfile.exe , and testpage.html to

facilitate testing.

 webperf.py is the main client program that is run. It displays the menu, accepts user selections,

and does some work, but mostly it calls functions in webclient.py .

 webclient.py has the modules that comprise the “ guts ” of the client application. Its modules

are called by webperf.py .

❑

❑

❑

(continued)

Test Files

Three support files are included in the chapter’s source code folder: textfile.txt,
 binaryfile.exe, and testpage.html. They need to exist in the directory where you
put webserver.py on your server. You can replace them with other files if you like
(if you want to download a larger file, for example), but your new file will have to be
named the same in order for the program to work.

Chapter 4: Web Performance Tester

89

 How It All Fits Together
 Although this program does not have as much actual code as some of the other examples, it is more

complex in one significant way. Whereas all the programs have used multiple modules, this is the first

program for which the user actually runs two different programs. Often an “ application ” will consist of

more than one program that a user runs, and this chapter ’ s project is a good example.

 Modules
 This application has three modules, one for the web server and two for the client. The following sections

look at these in turn.

 webserver.py

 The webserver.py module takes the port number to start the web server as a command - line argument

and starts the web server, displaying status activity messages to standard output. Table 4 - 1 shows the

function of the webserver.py module.

 This function could have just been run as part of the main program, but by encapsulating it in a
function it can now be imported and called if necessary from another program.

 Table 4 - 1

 Function Return Type Description

 RunServer() none Executes a Python - based web server

 webperf.py

 The webperf.py module presents the user menu and launches the appropriate functions from

 webclient.py based on user menu options. Table 4 - 2 shows the function of the webperf.py module.

 Table 4 - 2

 Function Return Type Description

 Menu() string This takes the user ’ s selection, based on menu options, and returns

it to the main program, which launches it.

 webclient.py

 The webclient.py module connects to either external websites or internal web servers based on which

function is called, and presents the results both to the screen and to the log file. Table 4 - 3 shows the

functions of the webclient module.

Part I: The Projects

90

 Table 4 - 3

 Function Return Type Description

 CheckExternalSites() none Takes a list of external sites (passed to it from

the main program in webperf.py) and

attempts to connect to each site, reporting to

the screen and the log file success or failure,

and how long the connection took.

 CheckInternalWebServers() none Takes a list of internal web servers (passed to

it from the main program in webperf.py)

and attempts to connect to each site, reporting

to the screen and the log file success or

failure, and how long the connection took.

 Code and Code Explanation
 As you examine the code, you may begin to form preferences for how to do things, and those preferences

may be slightly different from mine. For example, I name functions with the first letter of each word

capitalized. That ’ s one way to do it, but you could also use underscores, such as function_name, or just

use lowercase — Python doesn ’ t care. However, for readability, you should be consistent in these stylistic

decisions. Always think of the code reader, who may be someone other than you.

 Let ’ s look at some code.

 webserver.py
 As mentioned earlier, webserver.py is run on your server. It starts a lightweight Python - based web

server at the port you designate. As usual, we ’ ll look at the entire program, and then go through it

section by section:

import SimpleHTTPServer, SocketServer, sys

#SET THE PORT VARIABLE TO COMMAND-LINE ARGUMENT

PORT = sys.argv[1]

def RunServer():

 try:

 httphandler = SimpleHTTPServer.SimpleHTTPRequestHandler

 httpd = SocketServer.TCPServer((“”, int(PORT)), httphandler)

 print “Python Web Server, serving at port” + PORT

 httpd.serve_forever()

Chapter 4: Web Performance Tester

91

 except (KeyboardInterrupt, SystemExit):

 print “Exiting...”

 sys.exit

 except:

 print “There was a problem starting the webserver at port “ + PORT

RunServer()

 Looks pretty simple, doesn ’ t it? That ’ s the beauty of Python — difficult tasks suddenly become easy.

 Main()

 The main part of the program does three things. First, it imports the SimpleHTTPServer and

 SocketServer modules (along with sys), which are the Python modules that provide HTTP server

support:

import SimpleHTTPServer, SocketServer, sys

 Second, it assigns the first command - line argument to the variable PORT :

#SET THE PORT VARIABLE TO COMMAND-LINE ARGUMENT

PORT = sys.argv[1]

 Third, after the function code (remember, a function has to be read in before it can be called), the main

program calls the RunServer() function:

RunServer()

 RunServer()

 RunServer() is the main part of the Python web server. As I said earlier, this could have been part of the

main program, but sometimes it is nice to encapsulate code in functions simply so that you can call that

function later from another program, should you want to.

 Here ’ s the code for the function:

def RunServer():

 try:

 httphandler = SimpleHTTPServer.SimpleHTTPRequestHandler

 httpd = SocketServer.TCPServer((“”, int(PORT)), httphandler)

 print “Python Web Server, serving at port”, PORT

 httpd.serve_forever()

 except:

 print “There was a problem starting the webserver at port “ + PORT

Part I: The Projects

92

 As you can see, the running of the web server is encapsulated inside a try / except block. This is

because anytime you start a server process, issues can arise (for example, the port you ’ ve selected could

already be in use). Therefore, it ’ s a good idea to use the try / except block.

 The first thing this function does is create an HTTP request handler object and assign it to the identifier

 httphandler :

 httphandler = SimpleHTTPServer.SimpleHTTPRequestHandler

 You then create a TCP server, passing it the port number and the httphandler object:

 httpd = SocketServer.TCPServer((“”, int(PORT)), httphandler)

 You then output a message to the screen indicating that you are starting the service, and run the TCP

server ’ s serve_forever() method, which actually starts the web server:

 print “Python Web Server, serving at port”, PORT

 httpd.serve_forever()

 If there is a problem, then you have an except block that will handle it and present a nice error message

to the user:

except:

 print “There was a problem starting the webserver at port “ + PORT

 webperf.py
 The webperf.py module is the module actually run on the client machine. Here is the code for it:

import webclient, os

#MAIN MENU

def Menu():

 os.system(‘cls’)

 print “””

 ==

 WEB PERFORMANCE TESTER

 ==

 1 - Test client connection to external web sites

 2 - Test internal web server performance

 3 - Display log file

 4 - Exit

 ==

 “””

 choice = raw_input(“\tEnter a choice and press enter: “)

 return choice

Chapter 4: Web Performance Tester

93

#TAKE CHOICE AND LAUNCH MODULE

choice = “”

while choice != “4”:

 choice = Menu()

 if choice == “1”:

 os.system(‘cls’)

 sites = []

 print “””

 ==

 WEB PERFORMANCE TESTER - EXTERNAL SITE CHECK

 ==

 “””

 siteresponse = raw_input(“\tEnter the websites to check,

separated by spaces:\n\n\t”)

 sites = siteresponse.split()

 webclient.CheckExternalSites(sites)

 elif choice == “2”:

 os.system(‘cls’)

 servers = []

 print “””

 ==

 WEB PERFORMANCE TESTER - INTERNAL WEBSERVER CHECK

 ==

 “””

 print “””

 Enter the ip addresses of the web servers

 running the Python Webserver, seperated by spaces:\n\t”””

 serverresponse = raw_input(“\t”)

 servers = serverresponse.split()

 port = raw_input(“Enter the port the web server is listening on: “)

 webclient.CheckInternalWebServers(servers, port)

 elif choice == “3”:

 os.system(“notepad logfile.txt”)

 Notice that raw_input() is used differently in the preceding two instances. In the
first, raw_input includes the prompt to the user. In the second, the user is prompted
with a print statement , and then the raw_input gets the user input. Either can be
used — in this case, for the second item I chose to include a print statement first
because it was easier to print a multi - line string that way.

Part I: The Projects

94

 Main()

 In the code below, on line 3 the Menu() function is called, and its return value is assigned to the variable

choice. It then uses a while loop to present the menu:

choice = “”

while choice != “4”:

 choice = Menu()

 if choice == “1”:

 os.system(‘cls’)

 sites = []

 print “””

 ==

 WEB PERFORMANCE TESTER - EXTERNAL SITE CHECK

 ==

 “””

 siteresponse = raw_input(“\tEnter the websites to check,

separated by spaces:\n\n\t”)

 sites = siteresponse.split()

 webclient.CheckExternalSites(sites)

 elif choice == “2”:

 os.system(‘cls’)

 servers = []

 print “””

 ==

 WEB PERFORMANCE TESTER - INTERNAL WEBSERVER CHECK

 ==

 “””

 print “””

 Enter the ip addresses of the web servers

 running the Python Webserver, seperated by spaces:\n\t”””

 serverresponse = raw_input(“\t”)

 servers = serverresponse.split()

 port = raw_input(“Enter the port the web server is listening on: “)

 webclient.CheckInternalWebServers(servers, port)

 elif choice == “3”:

 os.system(“notepad logfile.txt”)

 Again, the while loop continues to call the Menu() function until the user types 4 and presses Enter,

which will break the loop; and because the while loop is the last code in the program, this ends the

program and returns the user to a system prompt.

 The first two options should be fairly straightforward to you by now. Option 3 simply loads

notepad.exe and opens the log file. If you want to run a different editor, simply change the parameter

for the os.system() command.

 Menu()

 The Menu() function displays the user menu and gets the user ’ s input, assigning it to the variable

 choice :

Chapter 4: Web Performance Tester

95

def Menu():

 os.system(‘cls’)

 print “””

 ==

 WEB PERFORMANCE TESTER

 ==

 1 - Test client connection to external web sites

 2 - Test internal web server performance

 3 - Display log file

 4 - Exit

 ==

 “””

 choice = raw_input(“\tEnter a choice and press enter: “)

 return choice

 The function then returns the value of choice to the command that called it.

 webclient.py
 webclient.py contains the functions that do the main processing for the client application. Here is the

code for it:

from urllib2 import urlopen

import socket, sys, time, datetime

socket.setdefaulttimeout(15)

def CheckExternalSites(sites):

 logfile = open (“logfile.txt”, “a”)

 logtime = time.strftime(“\n%a, %d %b %Y %H:%M:%S”)

 print logtime

 logfile.write(logtime + “\n”)

 for site in sites:

 try:

 start = time.time()

 data = urlopen(“http://” + site)

 stuff = data.read()

 end = time.time()

 difference = end - start

 output = “Site %s took %2.2f seconds to load” %(site, difference)

 logfile.write(output + “\n”)

 print output

 except:

 errno, errstr = sys.exc_info()[:2]

 if errno == socket.timeout:

 timeouterror = “there was a timeout”

 logfile.write(timeouterror + “\n\n”)

 print timeouterror + “\n”

 raw_input(“Press Enter to Continue: “)

(continued)

Part I: The Projects

96

 return

 else:

 genericerror = “Error connecting to site %s” % (site)

 logfile.write(genericerror + “\n\n”)

 print genericerror + “\n”

 raw_input(“Press Enter to Continue: “)

 return

 print “\n”

 logfile.write(“\n”)

 logfile.close()

 raw_input(“Press Enter to Continue: “)

def CheckInternalWebServers(serverlist, port):

 logfile = open (“logfile.txt”, “a”)

 logtime = time.strftime(“\n%a, %d %b %Y %H:%M:%S”)

 print logtime

 logfile.write(logtime + “\n”)

 textfile = “textfile.txt”

 binaryfile = “binaryfile.exe”

 for server in serverlist:

 try:

 start = time.time()

 serveroutput = server + “:”

 logfile.write(serveroutput + “\n”)

 print serveroutput

 for file in textfile, binaryfile:

 data = urlopen(“http://%s:%s/%s”) % (server, port, file)

 stuff = data.read()

 end = time.time()

 difference = end - start

 print file, “ took %2.2f seconds to load” %(difference)

 logfile.write(“%s took %2.2f seconds to load” %(file,

difference) + “\n”)

 except:

 errno, errstr = sys.exc_info()[:2]

 if errno == socket.timeout:

 timeouterror = “there was a timeout”

 logfile.write(timeouterror + “\n\n”)

 print timeouterror

 logfile.close()

 raw_input(“Press Enter to continue: “)

 return

 else:

 genericerror = “Error connecting to server “ + server

 logfile.write(genericerror + “\n\n”)

 print genericerror

 raw_input(“Press Enter to Continue: “)

 return

 print “\n”

 logfile.write(“\n”)

 logfile.close()

 raw_input(“Press Enter to Continue: “)

(continued)

Chapter 4: Web Performance Tester

97

Using from in Import Statements

 On the first line of the preceding code, did you notice I put a twist in the import
 statement for urllib2 ? If you don ’ t want to have to type ‘ module name ’ every time
you access a module ’ s properties or methods, you can do this. However, be careful:
One problem with using from is that you can no longer tell just from looking at a line
of code where the property or method is coming from. Another danger when using
 from is that you could run into namespace collisions, whereby you wind up importing
a method from an object that has the same name as a method from another object.

 The sole line of executable code in this module not tied to a method simply sets the timeout value for the

socket connection to 15 seconds:

socket.setdefaulttimeout(15)

 CheckExternalSites(sites)

 This function connects to a list of websites passed to it by webperf.Main() and reports the results to the

screen and to a log file. Here is the code:

def CheckExternalSites(sites):

 logfile = open (“logfile.txt”, “a”)

 logtime = time.strftime(“\n%a, %d %b %Y %H:%M:%S”)

 print logtime

 logfile.write(logtime + “\n”)

 for site in sites:

 try:

 start = time.time()

 data = urlopen(“http://” + site)

 stuff = data.read()

 end = time.time()

 difference = end - start

 output = “Site %s took %2.2f seconds to load” %(site, difference)

 logfile.write(output + “\n”)

 print output

 except:

 errno, errstr = sys.exc_info()[:2]

 if errno == socket.timeout:

 timeouterror = “there was a timeout”

 logfile.write(timeouterror + “\n\n”)

 print timeouterror + “\n”

 raw_input(“Press Enter to Continue: “)

 return

 else:

 genericerror = “Error connecting to site %s” % (site)

(continued)

Part I: The Projects

98

 logfile.write(genericerror + “\n\n”)

 print genericerror + “\n”

 raw_input(“Press Enter to Continue: “)

 return

 print “\n”

 logfile.write(“\n”)

 logfile.close()

 raw_input(“Press Enter to Continue: “)

 The first few lines of code open the logfile for appending and simply output the formatted date and

time to the screen and to the logfile :

logfile = open (“logfile.txt”, “a”)

 logtime = time.strftime(“\n%a, %d %b %Y %H:%M:%S”)

 print logtime

 logfile.write(logtime + “\n”)

 The next block of code is comprised of a for loop that iterates through the list of sites passed to the

function by the main program. This loop records the time, connects to the site (using urllib2 ’ s urlopen

method), records the time again, and then reports the time difference as an elapsed time:

for site in sites:

 try:

 start = time.time()

 data = urlopen(“http://” + site)

 stuff = data.read()

 end = time.time()

 difference = end - start

 output = “Site %s took %2.2f seconds to load” %(site, difference)

 logfile.write(output + “\n”)

 print output

 except:

 errno, errstr = sys.exc_info()[:2]

 if errno == socket.timeout:

 timeouterror = “there was a timeout”

 logfile.write(timeouterror + “\n\n”)

 print timeouterror + “\n”

 raw_input(“Press Enter to Continue: “)

 return

 else:

 genericerror = “Error connecting to site %s” % (site)

 logfile.write(genericerror + “\n\n”)

 print genericerror + “\n”

 raw_input(“Press Enter to Continue: “)

 return

 As you can see, this is encapsulated in a try / except block. In this case, the function is checking for a

specific exception first (a socket timeout). If that isn ’ t detected, then any other timeouts get a generic

error message.

(continued)

Chapter 4: Web Performance Tester

99

 Finally, the function writes its results to the screen and logfile :

 print “\n”

 logfile.write(“\n”)

 logfile.close()

 raw_input(“Press Enter to Continue: “)

 Note two important things about how the logfile is handled:

 Every time the function outputs to the screen, it also writes to the logfile .

 The logfile is always closed after it is used.

❑

❑

 Why Close the Log File?

 Whenever you have a program that logs to a file, it is important to close the log file
when you ’ re done with it. The reasons are numerous, but probably the most important
is that your computer is using valuable resources to keep files open; in order to be a
 “ good citizen ” on your computer with all the other programs, it ’ s an essential practice
to return any unused resources to the computer to be used for other things when
you ’ re done.

 CheckInternalWebServers(serverlist, port)

 This function takes the list of servers to check and the port the servers are listening on from webperf

.Main() and connects to each server. It downloads a canned text file and binary file, and reports how

long it took to download each, for each server. If there are errors, then it reports those:

def CheckInternalWebServers(serverlist, port):

logfile = open (“logfile.txt”, “a”)

 logtime = time.strftime(“\n%a, %d %b %Y %H:%M:%S”)

 print logtime

 logfile.write(logtime + “\n”)

 textfile = “textfile.txt”

 binaryfile = “binaryfile.exe”

 for server in serverlist:

 try:

 start = time.time()

 serveroutput = server + “:”

 logfile.write(serveroutput + “\n”)

 print serveroutput

 for file in textfile, binaryfile:

 data = urlopen(“http://%s:%s/%s”) % (server, port, file)

(continued)

Part I: The Projects

100

 stuff = data.read()

 end = time.time()

 difference = end - start

 print file, “ took %2.2f seconds to load” %(difference)

 logfile.write(“%s took %2.2f seconds to load” %(file,

difference) + “\n”)

 except:

 errno, errstr = sys.exc_info()[:2]

 if errno == socket.timeout:

 timeouterror = “there was a timeout”

 logfile.write(timeouterror + “\n\n”)

 print timeouterror

 logfile.close()

 raw_input(“Press Enter to continue: “)

 return

 else:

 genericerror = “Error connecting to server “ + server

 logfile.write(genericerror + “\n\n”)

 print genericerror

 raw_input(“Press Enter to Continue: “)

 return

 print “\n”

 logfile.write(“\n”)

 logfile.close()

 raw_input(“Press Enter to Continue: “)

 As with the other function, the first few lines of code open the logfile for appending and simply

output the formatted date and time to the screen and to the logfile :

 logfile = open (“logfile.txt”, “a”)

 logtime = time.strftime(“\n%a, %d %b %Y %H:%M:%S”)

 print logtime

 logfile.write(logtime + “\n”)

 It then assigns variables to the text and binary files:

 textfile = “textfile.txt”

 binaryfile = “binaryfile.exe”

 The next block of code is a for loop, similar in some ways to the one in the CheckExternalSites()

function. Again, a try/except construct is used. For each server, it connects to the web server and

attempts to download each type of file via HTTP. If successful, it writes to the screen how long it takes.

If an error occurs, then that is handled through an exception (again, either through a socket timeout or a

generic exception):

 for server in serverlist:

 try:

 start = time.time()

(continued)

Chapter 4: Web Performance Tester

101

 serveroutput = server + “:”

 logfile.write(serveroutput + “\n”)

 print serveroutput

 for file in textfile, binaryfile:

 data = urlopen(“http://%s:%s/%s”) % (server, port, file)

 stuff = data.read()

 end = time.time()

 difference = end - start

 print file, “ took %2.2f seconds to load” %(difference)

 logfile.write(“%s took %2.2f seconds to load” %(file,

difference) + “\n”)

 except:

 errno, errstr = sys.exc_info()[:2]

 if errno == socket.timeout:

 timeouterror = “there was a timeout”

 logfile.write(timeouterror + “\n\n”)

 print timeouterror

 logfile.close()

 raw_input(“Press Enter to continue: “)

 return

 else:

 genericerror = “Error connecting to server “ + server

 logfile.write(genericerror + “\n\n”)

 print genericerror

 raw_input(“Press Enter to Continue: “)

 return

 Finally, the result is output to the screen and the logfile and then the logfile is closed:

 print “\n”

 logfile.write(“\n”)

 logfile.close()

 raw_input(“Press Enter to Continue: “)

 Other Support Files

 It is worth noting a few other files that are part of this application:

 textfile.txt — This is a text file that is stored in the directory where you run the web server.

It is used to test web server performance.

 binaryfile.exe — This is a text file that is stored in the directory where you run the web

server. It is also used to test web server performance.

 testpage.html — This is an HTML file that is stored in the directory where you run the web

server. It is used to verify that the web server is running.

❑

❑

❑

Part I: The Projects

102

 Testing
 One difficulty in testing network applications is determining whether the error or problem you are

seeing is due to a network problem or a software defect. A good standard practice is to ensure that the

program can detect network errors and report them without crashing. With that goal in mind, here are

some testing ideas:

 When testing external website connections, enter a bogus website name, enter an extremely long

website name, or enter an IP address instead of a website name.

 When testing internal web server connections, enter a bogus IP address, enter a valid IP address

for a server without the web server running, or enter a hostname instead of an IP address.

 Delete the logfile and try to choose the menu option to bring it up — see what happens. Set

the logfile to readonly and try to write to it — see what happens.

 Modifying the Program
 There are several ways this project could be enhanced. The following are only a few suggestions:

 You could perform multiple types of downloads from the internal web server, such as large files.

 You could change the logfile to be a csv file, so that you could perform analysis in a

spreadsheet on performance data.

 You could expand the program to also test performance of FTP and Telnet servers.

 You could set the program to run entirely through command - line arguments, so that it could be

run periodically as a scheduled task.

 Summary
 This chapter ’ s project explored how to connect to remote computers and perform various operations

using Python. The following topics were addressed:

 How to build a web server entirely in Python

 Connecting to external servers with Python

 Managing logging and log files in a Python program

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

 Customer Follow - Up
System

 All the applications examined thus far have involved a character - based user interface, based on

characters viewed and typed in a terminal. In this chapter, you will explore using mod_python , an

add - on module for the popular open - source Apache web server, to use Python to interact with

client users through a web browser.

 The Customer Follow - up application will perform two main functions:

 It will use the mod_python Apache module to present an HTML form to a client user, and

enable users to type in their information (including comments) and submit it.

 It will use the Python smtplib module to connect to an SMTP mail server and send an

e - mail message to a predefined “ webmaster ” e - mail address.

 For each comment submitted, it will enter a log entry to a csv file stored on the web

server machine. This log can then be queried and sorted like any other spreadsheet file.

 Using the Program
 There are basically two user interfaces to the program: the web page that enables a comment to be

entered and e - mailed, and the log file, which can be viewed with any spreadsheet (for the screen

shots in this chapter, I used the OpenOffice.org Calc program).

❑

❑

❑

Part I: The Projects

104

What Is a Handler?

In Apache, a handler is simply an instruction to the web server to do certain things
when it encounters a file of a certain type. For example, there might be a handler that
launches Adobe Acrobat Reader when a PDF file is encountered.

There are implicit handlers that are built into the web server, and explicit handlers that
are configurable through the <web server root>\conf\httpd.conf file.
mod_python uses explicit handlers to tell Apache how to handle files with a .py
extension.

 Preliminaries
 Before you can use the application, an Apache web server needs to be running, on which mod_python is

installed and configured. mod_python has several different handlers , and in the example for this chapter

the Publisher handler is used.

Although the examples in this chapter are all based on Windows (including the
installs), installation on Linux/UNIX is fairly straightforward, and the instructions
here can still be used as a basic guide to the order of install steps.

Note also that the Apache Server for Windows is supported on Windows 2000,
Windows 2003, and Windows XP (with Service Pack 2 applied), but not on Windows 95,
ME, or 98.

 Installing Apache

 Apache is the most popular web server on the Internet. It is available for multiple operating systems,

including Windows and Linux. Although Apache itself is extremely customizable, the installation of the

web server is fairly straightforward.

 To install Apache:

 Download Apache (the current version is 2.2) from http://httpd.apache.org/download.cgi . When

installing on Windows (as in this example), it would be a good idea to review the tips for Windows

found at www.hightechimpact.com/Apache/httpd/binaries/win32/README.html .

To actually download, go to www.trieuvan.com/apache/httpd/binaries/ . From there, you will get

a directory listing showing folders representing different operating systems, as shown in Figure 5 - 1 .

Chapter 5: Customer Follow - Up System

105

Figure 5-1

 Click the Win32 folder. A page will be presented with a list of possible files to download. Assuming

version 2.6 is still the latest version, click the file called apache_2.2.6 - win32 - x86 - no_ssl.msi . This

will install the Win32 version of Apache 2.2.6, without SSL support (which we don ’ t need for this

chapter ’ s project).

Keep in mind that these instructions are for installing a version of Apache for
Windows that will give you the functionality you need to run this chapter’s
application. Apache is a very robust and configurable web server, and a complete
treatment of it is beyond the scope of this book.

 Once you ’ ve downloaded the file, simply double - click it in Windows Explorer to start the install process.

The first screen displays the Welcome page of the Installation Wizard, as shown in Figure 5 - 2 .

Part I: The Projects

106

Figure 5-2

 Click the Next button to bring up the next screen, the License Agreement page, as shown in Figure 5 - 3 .

Figure 5-3

 Click the “ I accept . . . ” radio button, and click Next. This will bring up the README information, as

shown in Figure 5 - 4 .

Chapter 5: Customer Follow - Up System

107

Figure 5-4

 Click Next to bring up the configuration screen. It will look similar to the dialog shown in Figure 5 - 5 .

Figure 5-5

 Assuming the Apache server is being set up simply to test the application in this chapter, anything can

be entered in the Network Domain field (I typed “ www.knowlton.com ”). The other fields should be pre -

 populated, and they can be left alone. Once the fields have been filled in, click Next, which will bring up

the Setup Type screen shown in Figure 5 - 6 .

Part I: The Projects

108

Figure 5-6

 Leave the setup type as Typical and click Next. The Destination Folder window will appear, as shown in

Figure 5 - 7 .

Figure 5-7

 Click Next, and then click Install to begin the install. When the install is finished, the dialog shown in

Figure 5 - 8 will appear, indicating that the install is complete.

Chapter 5: Customer Follow - Up System

109

Figure 5-8

 Click Finish to close the install program.

 Installing mod_python

 Once you have Apache installed, the next step in setting up the system to support Python web

applications is to install and configure mod_python .

What Is mod_python?

mod_python is an Apache module that embeds a Python interpreter within the Apache
web server. It enables you to integrate the Python language with web content. Using
mod_python, you can develop web applications that will often run faster than
Common Gateway Interface (CGI) applications and that provide access to advanced
features such as maintaining connections to databases and parsing XML. Moreover, all
this can be done with the Python language.

 To install mod_python :

 Download mod_python (the current version as of this writing is 3.3.1) from http://httpd.apache

.org/modules/python - download.cgi . Click the link on the page called Win32 Binaries and then

download the latest version.

 With the file downloaded, simply double - click it to start the installer. Figure 5 - 9 shows the first screen of

the Setup Wizard.

Part I: The Projects

110

Figure 5-9

 Click Next. The next screen, shown in Figure 5 - 10 , enables you to select the directory where Python is

located.

Figure 5-10

 Make sure the install is pointing to your Python program directory (it should be), and click Next.

 Click Next again to begin the install.

Chapter 5: Customer Follow - Up System

111

Figure 5-11

 Select the Apache program location and click OK. Figure 5 - 12 shows the final screen of the Setup Wizard.

Figure 5-12

 Do not close this last window until you have copied the line in item #1 of the confirmation dialog to the

clipboard. Once you have done that, click Finish.

 You will be prompted for the location where Apache is installed, as shown in Figure 5 - 11 .

Part I: The Projects

112

 Configuring Apache for mod_python

 Configuring Apache for mod_python involves two steps:

 1. Open the < apache dir > \conf\httpd.conf file and locate the section where the modules are

loaded. You can identify this section easily by the group of lines that all start with LoadModule .

Paste the line you copied to the clipboard in the preceding section:

LoadModule python_module modules/mod_python.so

 2. In the same file, add the following lines (they can be added anywhere in the file):

AddHandler mod_python .py

PythonHandler mod_python.publisher

PythonDebug On

 Copying Program Files into Their Proper Directories

 To set up the application for use, follow these steps:

 1. Create a directory called test under < apache dir > \htdocs .

 2. Create a directory named c:\logs .

 3. Copy form.py and form.html into the test directory.

 4. Copy feedbacklog.csv into the c:\logs directory .

 Running the Program
 Although there is a significant amount of “ under the hood ” activity in this application, the interface

presented to the user is fairly simple. Basically, users leave comments through their web browser, and

the administrator has a CSV log file that can be viewed and sorted.

 Entering Comments at the Website

 Assuming your Apache web server is running on your local machine, type http://loalhost/test/form.html

into the address area of your web browser. Figure 5 - 13 shows the feedback dialog that appears.

Chapter 5: Customer Follow - Up System

113

Figure 5-13

 Type a name in the Name field (see Figure 5 - 14).

Figure 5-14

 Enter a phone number in the Phone number field, as shown in Figure 5 - 15 .

Figure 5-15

Part I: The Projects

114

 Enter an e - mail address in the Email field, as shown in Figure 5 - 16 .

Figure 5-16

 Enter some comments in the Comment field, as shown in Figure 5 - 17 .

Figure 5-17

 Finally, click the Submit button, as shown in Figure 5 - 18 .

Figure 5-18

The application assumes you have an SMTP server running on the web server
machine. If you don’t, you’ll get an error right at this point, but don’t worry about
it — we’ll modify the script later to point to your SMTP server.

Chapter 5: Customer Follow - Up System

115

 The following status message will now display:

Dear Jim Knowlton,

Thank You for your kind comments, we will get back to you shortly.

 When Problems Occur

 If the fields are not all filled in, then the following error message will display when Submit is clicked:

A required parameter is missing, please go back and correct the error

 Viewing and Sorting the Log File

 On the web server machine, navigate to the c:\logs directory.

 In your favorite spreadsheet, retrieve the feedbacklog.csv file. You ’ ll see something similar to the file

shown in Figure 5 - 19 (I have formatted the columns a little for readability).

Figure 5-19

 Design
 The application has two interfaces: the web page for users to enter and submit comments, and the CSV

log file for administrators.

 How It All Fits Together
 The basic architecture of the program is fairly simple, as shown in Figure 5 - 20 .

Part I: The Projects

116

End user

Apache Web Server

Form.py
form.html

logfile

SMTP Server

Figure 5-20

 The application flows as follows:

 The end user connects to the web server to bring up form.html (which will be in the test

subdirectory). This HTML file presents the feedback form.

 When the user clicks the Submit button, the HTML file passes the filled - in form information to

 form.py , which it then launches.

 form.py constructs an e - mail message and sends it to the webmaster, using an SMTP server

connection defined in the script.

 form.py also writes to a CSV log file, which can then be parsed and sorted.

 Modules
 There is just one module in this program, form.py .

 form.py

 form.py is the module that is launched from the form.html file. It contains two functions. Table 5 - 1

shows the functions of the form.py module.

❑

❑

❑

❑

Table 5-1

Function Return Type Description

email(req, name, phone, email,

comment)

string Takes form information from form

.html and constructs and sends an

e-mail message. It returns a successful

status message to users through the

browser.

writeCSVLog(name, phone, email,

comment)

none Takes comment information passed to it

and writes log information to a CSV file,

along with the current date

Chapter 5: Customer Follow - Up System

117

 Code and Code Explanation
 This application might appear to be simple, since there is only one Python source file, but there are

several “ moving parts, ” which we ’ ll cover thoroughly.

 In the interests of page space, I ’ ve omitted the code headers, but make sure you use them. Your coworkers
will thank you.

 form.html
 Although it is not a Python source file, this file is critical to the operation of the program, so it is explored

here in its entirety:

 < HTML >

 < BODY LANG=”en-US” BGCOLOR=”#ccffff” >

 < P > Please provide feedback below:

 < /P >

 < FORM ACTION=”form.py/email” METHOD=”POST” >

 < P > Name: < BR > < INPUT TYPE=TEXT NAME=”name” > < BR > < BR > < BR >

 < /P >

 < P > Phone number: < BR > < INPUT TYPE=TEXT NAME=”phone” > < BR > < BR > < BR >

 < /P >

 < P > Email: < BR > < INPUT TYPE=TEXT NAME=”email” > < /P >

 < P > < BR > Comment: < /P >

 < P >

 < TEXTAREA NAME=”comment” ROWS=10 COLS=45 STYLE=”width: 4in; height:

2in” > < /TEXTAREA >

 < BR > < BR > < BR >

 < /P >

 < P > INPUT TYPE=SUBMIT VALUE=”SUBMIT” >

 < /P >

 < /FORM >

 < /BODY >

 < /HTML >

 The < BODY > tag defines the body of the HTML page, and sets the color:

 < BODY LANG=”en-US” BGCOLOR=”#ccffff” >

 Next is some text prompting users so that they know what to do:

 < P > Please provide feedback below:

 < /P >

Part I: The Projects

118

 The next line initiates the form, and points to the Python function to run when the form is submitted:

 < FORM ACTION=”form.py/email” METHOD=”POST” >

 The next part of the file contains the input fields for the name, phone number, e - mail address, and

comment:

 < P > Name: < BR > < INPUT TYPE=TEXT NAME=”name” > < BR > < BR > < BR >

 < /P >

 < P > Phone number: < BR > < INPUT TYPE=TEXT NAME=”phone” > < BR > < BR > < BR >

 < /P >

 < P > Email: < BR > < INPUT TYPE=TEXT NAME=”email” > < /P >

 < P > < BR > Comment: < /P >

 < P >

 < TEXTAREA NAME=”comment” ROWS=10 COLS=45 STYLE=”width: 4in;

height: 2in” > < /TEXTAREA >

 < BR > < BR > < BR >

 < /P >

 Next is the HTML code for the Submit button:

 < p > < INPUT TYPE=SUBMIT VALUE=”SUBMIT” >

 < /P >

 The file ends with the closing tags for the different elements in the file:

 < /FORM >

 < /BODY >

 < /HTML >

 form.py
 The form.py file is the main “ guts ” of the program:

import smtplib, csv, datetime, sys

WEBMASTER = “jknowlton525@gmail.com”

SMTP_SERVER = “localhost”

def writeCSVLog(name, phone, email, comment):

 python_exec = sys.executable

 if python_exec.find(“exe”) != -1:

 dir_root = “c:\\logs\\”

 else:

 dir_root = “//usr//local//logs//”

 today = datetime.datetime.now().strftime(“%m/%d/%Y”)

Chapter 5: Customer Follow - Up System

119

 row = [today, name, phone, email, comment]

 try:

 writer = csv.writer(open(dir_root + “feedbacklog.csv”, “a”))

 writer.writerow(row)

 except:

 print “There was a problem writing to the logfile!”

 sys.exit

def email(req, name, phone, email, comment):

 # make sure the user provided all the parameters

 if not (name and phone and email and comment):

 return “A required parameter is missing, \

 please go back and correct the error”

 # create the message text

 msg = “””\

From: %s

Subject: feedback

To: %s

I have the following comment:

%s

Thank You,

%s

%s

“”” % (email, WEBMASTER, comment, name, phone)

 # send it out

 try:

 conn = smtplib.SMTP(SMTP_SERVER)

 conn.sendmail(email, [WEBMASTER], msg)

 conn.quit()

 except:

 print “There was a problem sending the email!”

 sys.exit

 # provide feedback to the user

 s = “””\

 < html >

 < BODY BGCOLOR=”#ccffff” DIR=”LTR” >

Dear %s, < br >

Thank You for your kind comments, we

will get back to you shortly.

 < /BODY >

 < /html > ””” % name

 writeCSVLog(name, phone, email, comment)

 return s s

Part I: The Projects

120

 First, the needed modules are imported:

import smtplib, csv, datetime

 Then variables are declared for the webmaster and the SMTP server:

WEBMASTER = “jknowlton525@gmail.com”

SMTP_SERVER = “localhost”

As shown in the preceding code, the program assumes that the SMTP server is
running on the same physical machine as the web server. If this is not the case, then
you can simply change localhost to the hostname or IP address of your SMTP
server.

 In order to follow the natural flow of the program, let ’ s move down to the email() function.

 The email(req, name, phone, email, comment)

 The e - mail function is the main function for the program. It takes the parameters from the HTML file,

sends the e - mail message, and calls the function to write to the log file. Here is the entire function:

def email(req, name, phone, email, comment):

 # make sure the user provided all the parameters

 if not (name and phone and email and comment):

 return “A required parameter is missing, \

 please go back and correct the error”

 # create the message text

 msg = “””\

From: %s

Subject: feedback

To: %s

I have the following comment:

%s

Thank You,

%s

%s

“”” % (email, WEBMASTER, comment, name, phone)

Chapter 5: Customer Follow - Up System

121

 # send it out

 try:

 conn = smtplib.SMTP(SMTP_SERVER)

 conn.sendmail(email, [WEBMASTER], msg)

 conn.quit()

 except:

 print “There was a problem sending the email!”

 sys.exit

 # provide feedback to the user

 s = “””\

 < html >

 < BODY BGCOLOR=”#ccffff” DIR=”LTR” >

Dear %s, < br >

Thank You for your kind comments, we

will get back to you shortly.

 < /BODY >

 < /html > ””” % name

 writeCSVLog(name, phone, email, comment)

 return s

 This function definition takes its parameters from the HTML file:

def email(req, name, phone, email, comment):

 Following that is an error - checking routine to ensure that all the parameters have been entered:

 # make sure the user provided all the parameters

 if not (name and phone and email and comment):

 return “A required parameter is missing, \

 please go back and correct the error”

 The next block of code constructs the e - mail message, using information entered into the HTML form

by the user:

 # create the message text

 msg = “””\

From: %s

Subject: feedback

To: %s

I have the following comment:

%s

Thank You,

(continued)

Part I: The Projects

122

%s

%s

“”” % (email, WEBMASTER, comment, name, phone)

 The next logical step is to send the e - mail message, and that ’ s what is done here:

 # send it out

 try:

 conn = smtplib.SMTP(SMTP_SERVER)

 conn.sendmail(email, [WEBMASTER], msg)

 conn.quit()

 except:

 print “There was a problem sending the email!”

 sys.exit

 The program then writes a message to the user, letting them know the e - mail message was sent:

 # provide feedback to the user

 s = “””\

 < html >

 < BODY BGCOLOR=”#ccffff” DIR=”LTR” >

Dear %s, < br >

Thank You for your kind comments, we

will get back to you shortly.

 < /BODY >

 < /html > ””” % name

 Finally, the writeCSVLog() function is called to write the information to the log file:

 writeCSVLog(name, phone, email, comment)

 return s

 writeCSVLog(name, phone, email, comment)

 The writeCSVLog function, as the name implies, writes an entry to the log file. Here is the code:

def writeCSVLog(name, phone, email, comment):

 python_exec = sys.executable

 if python_exec.find(“exe”) != -1:

 dir_root = “c:\\logs\\”

 else:

 dir_root = “//usr//local//logs//”

 today = datetime.datetime.now().strftime(“%m/%d/%Y”)

 row = [today, name, phone, email, comment]

 try:

 writer = csv.writer(open(dir_root + “feedbacklog.csv”, “a”))

 writer.writerow(row)

(continued)

Chapter 5: Customer Follow - Up System

123

 The function definition line accepts the required parameters:

def writeCSVLog(name, phone, email, comment):

 It then takes the current date and formats it into a string variable, for use in the log entry:

 today = datetime.datetime.now().strftime(“%m/%d/%Y”)

 The next line is to define a list with the current date and the supplied parameters:

 row = [today, name, phone, email, comment]

 Finally, the log file is opened and written to:

try:

 writer = csv.writer(open(dir_root + “feedbacklog.csv”, “a”))

 writer.writerow(row)

 except:

 print “There was a problem writing to the logfile!”

 Testing
 There are many ways to test web applications. Some ideas are as follows:

 Test field data. Remember that each entered field is passed as a parameter to the Python

function, so one test would be to enter unexpected data (such as digits for a “ name ”) and see

what happens.

 Enter large amounts of text and make sure the program doesn ’ t crash.

 Test the web page UI itself. For example, minimize and maximize it, resize it, or try it in different

browsers.

 Modifying the Program
 There are several ways this project could be enhanced, including the following:

 You could implement an “ admin ” web UI so that an administrator doesn ’ t have to retrieve the

CSV file to view comments entered.

 You could store the log information in an XML file or a database so that it is easier to query.

 You could create a system to query the log file and send a follow - up e - mail to anyone with

comments after a certain number of days.

❑

❑

❑

❑

❑

❑

Part I: The Projects

124

 Summary
 In this chapter, you built a web form to take user comments and forward those comments to an e - mail

server. You also learned how to set up a simple SMTP (e - mail) server in Python. You explored how to use

the csv module to log activity to a comma - separated value (CSV) file. Along the way, you learned the

following:

 How to install Apache ’ s mod_python module

 How to configure mod_python for your Python interpreter

 How to create a web form and have it run a Python program in response to user action on the

web form

 How to send an e - mail message entirely through Python

❑

❑

❑

❑

 Test Management/
Reporting System

 In Chapter 3 , you learned how to access a database to store and retrieve structured data for use in

a Python script, but what about situations where a database is overkill? It is precisely for these

kinds of situations that XML exists, and Python is brimming with features to enable you to write

to, query, and otherwise manipulate XML.

 The test management and reporting system in this chapter shows how you can use XML to store

and retrieve structured data in a Python script.

 The application will perform the following functions:

 Enable a user to run tests and report on the pass or fail results of the tests

 Enable a user to list the test runs, by date

 Enable a user to show test run results for any previous test run

 Enable a user to output the results of any completed test run to an HTML file, so that

results can be viewed in a web browser

❑

❑

❑

❑

 What Are We Testing?

 You ’ ll notice as you look at the application that the “ program under test ” is fairly
 trivial. That ’ s because the focus of the application is the test framework, not the
 program that ’ s being tested. It can easily be adapted to a more complex application
under test.

Part I: The Projects

126

 Using the Program
 You can get to the program by navigating to the directory corresponding to this chapter. As in the

previous chapters, the files are available for download from www.wrox.com . To run the application,

simply go to a command prompt, and from the directory on your system where the Chapter 6 program

files are located, type python test_manager.py .

 This will bring up a menu like the one shown here:

 ================================

 TEST MANAGEMENT/REPORTING SYSTEM

 ================================

 1 - Run tests

 2 - List test runs

 3 - Show test results

 4 - Generate HTML test report

 5 - Help

 6 - Exit

 ================================

Enter a choice and press enter:

 From here, you can run tests, list all completed test runs, show results for any completed test run,

generate an HTML test report, view a help screen, or exit the program. The following sections walk

through each of the program features.

 You won ’ t be able to do anything with option 2, 3, or 4 until you run tests at
least once.

 Running Tests
 If you choose 1 to run tests, you ’ ll receive the following prompt:

================================

RUN TESTS

================================

 Enter your first name:

 The program will prompt for three sets of information. Based on the information supplied by the user,

the tests will either pass or fail. Since I wrote the program, I set the “ correct ” answer for first name to

 “ Jim, ” so for now, type Jim and press Enter.

Chapter 6: Test Management/Reporting System

127

 When you do, you ’ ll get the next prompt:

================================

RUN TESTS

================================

 Enter your first name: Jim

 Enter your last name:

 Type Knowlton and press Enter. After you do, you ’ ll get the final prompt:

================================

 RUN TESTS

 ================================

 Enter your first name: Jim

 Enter your last name: Knowlton

 Prime number test - enter a number:

 The final prompt checks an input number to determine whether it is a prime number. If it is, then the test

passes. In order to ensure that all the tests will pass (for now), type the number 2 (a prime number) and

press Enter. You ’ ll then see the results of the tests:

 ================================

 TEST RUN RESULTS

 ================================

 Test first name - PASSED

 Test last name - PASSED

 Test prime number - PASSED

 ================================

 Total tests passed: 3

 Total tests failed: 0

 Total tests with errors: 0

Press [Enter] to continue:

 As you can see, all the tests passed.

 How Test Results Are Stored

 The test report is stored in the test_runs directory under the program directory, and is saved in the

format mm - dd - yyyy.xml . In other words, a report of a test run on January 1, 2008 would be stored as

 01 - 01 - 2008.xml .

Part I: The Projects

128

 If you open the XML file (which you don ’ t have to do to run the program), it will look like this:

 < testresult >

 < testfirstname > PASSED < /testfirstname >

 < testlastname > PASSED < /testlastname >

 < testprimenumber > FAILED - 4 is not a prime number < /testprimenumber >

 < testspassed > 2 < /testspassed >

 < testsfailed > 1 < /testsfailed >

 < testserror > 0 < /testserror >

 < /testresult >

 What If Some Tests Fail?

 If you enter incorrect information in one of the first two prompts and the test fails, the test results

indicate a failure and provide troubleshooting information, as shown in the following example:

 ================================

 RUN TESTS

 ================================

 Enter your first name: Joe

 Enter your last name: Knowlton

 Prime number test - enter a number: 2

 ================================

 TEST RUN RESULTS

 ================================

 Test first name - FAILED - EXPECTED Jim but was Joe

 Test last name - PASSED

 Test prime number - PASSED

 ================================

 Total tests passed: 2

 Total tests failed: 1

 Total tests with errors: 0

Press [Enter] to continue:

 If you enter a non - prime number for the third test and the test fails, the program shows a failure and

simply tells you it is not a prime number:

 ================================

 RUN TESTS

 ================================

 Enter your first name: Jim

 Enter your last name: Knowlton

 Prime number test - enter a number: 4

 ================================

 TEST RUN RESULTS

 ================================

Chapter 6: Test Management/Reporting System

129

 Test first name - PASSED

 Test last name - PASSED

 Test prime number - FAILED - 4 is not a prime number

 ================================

 Total tests passed: 2

 Total tests failed: 1

 Total tests with errors: 0

Press [Enter] to continue:

 Press Enter to return to the main menu.

 Listing Test Runs
 To list test runs, type 2 at the menu and you ’ ll get a screen like the following:

 ================================

 LIST TEST RUNS

 ================================

 01-13-2008

 01-14-2008

 01-15-2008

 ================================

Press [Enter] to continue:

 Press Enter to return to the main menu.

 Showing Test Results
 If you type 3 and press Enter to show results for a particular test run, you ’ ll get the following prompt:

================================

 SHOW TEST RESULTS

 ================================

Enter the date of the test run in the

 following format: ‘01-01-2008’

 (or type ‘today’ for today)

Part I: The Projects

130

 If you enter a date corresponding to an existing test run (you can check what is existing by choosing

option 2 to list test runs, as described previously), the results are output in the following screen:

 ================================

 SHOW TEST RESULTS

 ================================

Enter the date of the test run in the

 following format: ‘01-01-2008’

 (or type ‘today’ for today)

 ================================

 TEST RUN RESULTS 01-14-2008

 ================================

 Test first name - PASSED

 Test last name - PASSED

 Test prime number - FAILED - 4 is not a prime number

 ================================

 Total tests passed: 2

 Total tests failed: 1

 Total tests with errors: 0

Press [Enter] to continue:

 When Problems Occur

 If for some reason the program cannot find the test run file, you will get an appropriate error message:

 ================================

 SHOW TEST RESULTS

 ================================

 Enter the date of the test run in the

 following format: ‘01-01-2008’

 01-20-2008

 Problem opening test run file!

Press [Enter] to continue:

 Press Enter to return to the main menu.

 Generating an HTML Test Report
 If you type 4 and press Enter to generate an HTML test report, you ’ ll get the following screen:

Chapter 6: Test Management/Reporting System

131

================================

 GENERATE HTML REPORT

 ================================

 Enter the date of the test run in the

 following format: ‘01-01-2008’

 Type the date of an existing test run and press Enter. After the report is generated, you will see the

following status displayed on the screen:

================================

GENERATE HTML REPORT

================================

Enter the date of the test run in the

following format: ‘01-01-2008’

01-14-2008

 -- HTML Report Generated --

 Press [Enter] to continue:

 The report is stored in the test_report_html directory under the program directory, and is saved as

 mm - dd - yyyy.html . In other words, an HTML report of a test run on January 1, 2008 would be stored as

 01 - 01 - 2008.html .

 Examining the HTML File
 Open the generated HTML file in a browser. It should look something like what is shown in Figure 6 - 1 .

Figure 6-1

Part I: The Projects

132

 Press Enter to return to the main menu.

 When Problems Occur

 If for some reason the program cannot find the test run file, you will get an appropriate error message:

 ================================

 GENERATE HTML REPORT

 ================================

 Enter the date of the test run in the

 following format: ‘01-01-2008’

 01-20-2008

 Problem opening test run file!

Press [Enter] to continue:

 Press Enter to return to the main menu.

 Displaying Product Help
 If you type 5 and press Enter to display help, the following screen appears:

 ================================

 TEST MANAGEMENT/REPORTING SYSTEM

 ================================

 Welcome to the Test Management/Reporting system.

 Using this program, you can run tests, list test

 runs, show test results to the screen, and generate

 HTML reports.

Press [Enter] to continue:

 Press Enter to return to the main menu.

Chapter 6: Test Management/Reporting System

133

 Design
 No doubt familiar to you by now, this is a text - based, menu - driven program. It essentially runs and tests

the data, and then outputs the results both to the screen and to an XML file. It then has options for

querying the XML file for data and presenting it, or querying the XML file and then generating HTML

from the query.

 Modules
 There are five modules in this application:

 test_manager.py is the main program, and it contains the menu that drives user interaction.

 test_run.py runs the tests and stores the results.

 test_list.py lists existing test runs.

 test_results.py shows results on the screen for any test run.

 test_html.py takes any existing test run as input and outputs the results to a formatted

HTML page.

 test_manager.py

 test_manager.py is the module that a user actually loads. It contains the user menu and has one

function. Table 6 - 1 shows the test_manager module function.

❑

❑

❑

❑

❑

Table 6-1

Function Return Type Description

menu() string Presents a user menu. Takes the user selection and returns it to

the caller.

 test_run.py

 test_run.py is the module that actually runs the tests, writes the results to an XML file, and outputs

the results to the screen. It has four functions, described in Table 6 - 2 .

Part I: The Projects

134

 test_list.py

 test_list.py lists, by date, all test runs. It has one function, described in Table 6 - 3 .

Table 6-2

Function Return Type Description

test_firstname(fname) string Takes a first name as an argument, and then asks the

user to enter a first name. If the names match, then

the test passes; otherwise, the test fails. Test status is

returned to the caller.

test_lastname(lname) string Takes a last name as an argument, and then asks the

user to enter a last name. If the names match, then

the test passes; otherwise, the test fails. Test status is

returned to the caller.

test_prime_number() string Asks the user to enter a number. If the number entered

is a prime number, then the test passes; otherwise, the

test fails. Test status is returned to the caller.

run_tests() none Runs the tests (calling the above functions). Outputs

results to an XML file and to the screen.

Table 6-3

Function Return Type Description

list_tests() none Lists all test runs, based on the XML files stored in the

test_runs subdirectory

Table 6-4

Function Return Type Description

show_test_results() none Asks the user for a date corresponding to a completed

test run, and then queries the XML file, extracting the

results. Results are then formatted and output to the

screen in a screen report.

 test_results.py

 test_results.py is the module that enables the user to enter a date corresponding to a completed test

run, displaying the results of the test on the screen. It has one function, described in Table 6 - 4 .

Chapter 6: Test Management/Reporting System

135

 test_html.py

 test_html is the module that enables the user to enter a date corresponding to a completed test run,

outputting the results to a formatted HTML file. It has one function, described in Table 6 - 5 .

Table 6-5

Function Return Type Description

test_html_report() none Asks the user for a date corresponding to a completed

test run, and then queries the XML file, extracting the

results. Results are then formatted and output to an

HTML file.

 Code and Code Explanation
 Essentially, this application uses XML files as a database of sorts. This is the strength of XML — it enables

you to have structured information that can be queried without the overhead of a database. The

following sections look at each code file, so you can see how the application is put together.

 In the interests of page space, I ’ ve omitted the code headers, but make sure you use them. Your coworkers
will thank you.

 test_manager.py
 The test_manager module is the program users actually run. It contains code that ’ s run at the module

level, and one function, main() :

import os, sys

import test_run, test_list, test_results, test_html

if sys.executable.find(“exe”) != -1:

 clearscreen = “cls”

 testpath = “.\\test_runs\\”

else:

 clearscreen = “clear”

 testpath = “./test_runs/”

#MAIN MENU

def menu():

 os.system(clearscreen)

 print “””

(continued)

Part I: The Projects

136

 ================================

 TEST MANAGEMENT/REPORTING SYSTEM

 ================================

 1 - Run tests

 2 - List test runs

 3 - Show test results

 4 - Generate HTML test report

 5 - Help

 6 - Exit

 ================================

 “””

 choice = raw_input(“Enter a choice and press enter: “)

 return choice

#TAKE CHOICE AND LAUNCH MODULE

choice = “”

while choice != “6”:

 choice = menu()

 if choice == “1”:

 os.system(clearscreen)

 test_run.run_tests(testpath)

 elif choice == “2”:

 os.system(clearscreen)

 test_list.list_tests()

 elif choice == “3”:

 os.system(clearscreen)

 test_results.show_test_results(testpath)

 elif choice == “4”:

 os.system(clearscreen)

 test_html.test_html_report(testpath)

 elif choice == “5”:

 os.system(clearscreen)

 print “””

 ================================

 TEST MANAGEMENT/REPORTING SYSTEM

 ================================

 Welcome to the Test Management/Reporting system.

 Using this program, you can run tests, list test

 runs, show test results to the screen, and generate

 HTML reports.

 “””

 raw_input(“Press [Enter] to continue: “)

 Main Program

 Initially, the program imports modules that will be used:

import os, sys

import test_run, test_list, test_results, test_html

(continued)

Chapter 6: Test Management/Reporting System

137

 Notice that the user - created modules are on a different line than the standard modules (os and system).

This is just to make the program more readable.

 Just below the import statements is a block of code to initialize variables based on the operating system

the user is running:

if sys.executable.find(“exe”) != -1:

 clearscreen = “cls”

 testpath = “.\\test_runs\\”

else:

 clearscreen = “clear”

 testpath = “./test_runs/”

 Skipping over the menu() function for now, you can see the main program code:

#TAKE CHOICE AND LAUNCH MODULE

choice = “”

while choice != “6”:

 choice = menu()

 if choice == “1”:

 os.system(clearscreen)

 test_run.run_tests(testpath)

 elif choice == “2”:

 os.system(clearscreen)

 test_list.list_tests()

 elif choice == “3”:

 os.system(clearscreen)

 test_results.show_test_results(testpath)

 elif choice == “4”:

 os.system(clearscreen)

 test_html.test_html_report(testpath)

 elif choice == “5”:

 os.system(clearscreen)

 print “””

 ================================

 TEST MANAGEMENT/REPORTING SYSTEM

 ================================

 Welcome to the Test Management/Reporting system.

 Using this program, you can run tests, list test

 runs, show test results to the screen, and generate

 HTML reports.

 “””

 raw_input(“Press [Enter] to continue: “)

Part I: The Projects

138

 As in previous programs, you initialize the choice variable, and then use a while loop to call the

 menu() function and assign the return value to the variable choice :

choice = “”

while choice != “6”:

 choice = menu()

 You then use an if - elif construct to perform different operations based on what the user entered

(and what was assigned to the choice variable):

choice = “”

while choice != “6”:

 choice = menu()

 if choice == “1”:

 os.system(clearscreen)

 test_run.run_tests(testpath)

 elif choice == “2”:

 os.system(clearscreen)

 test_list.list_tests()

 elif choice == “3”:

 os.system(clearscreen)

 test_results.show_test_results(testpath)

 elif choice == “4”:

 os.system(clearscreen)

 test_html.test_html_report(testpath)

 elif choice == “5”:

 os.system(clearscreen)

 print “””

 ================================

 TEST MANAGEMENT/REPORTING SYSTEM

 ================================

 Welcome to the Test Management/Reporting system.

 Using this program, you can run tests, list test

 runs, show test results to the screen, and generate

 HTML reports.

 “””

 raw_input(“Press [Enter] to continue: “)

 If the user enters 6 , then execution falls through the end of the if statement, and the program

terminates.

Chapter 6: Test Management/Reporting System

139

 menu()

 The menu() function displays a user menu, takes a user selection, and returns that choice to the caller:

def menu():

 os.system(‘cls’)

 print “””

 ================================

 TEST MANAGEMENT/REPORTING SYSTEM

 ================================

 1 - Run tests

 2 - List test runs

 3 - Show test results

 4 - Generate HTML test report

 5 - Help

 6 - Exit

 ================================

 “””

 choice = raw_input(“Enter a choice and press enter: “)

 return choice

 As shown in the preceding code, this function first clears the screen:

 os.system(clarscreen)

 After that, a menu is displayed:

 print “””

 ================================

 TEST MANAGEMENT/REPORTING SYSTEM

 ================================

 1 - Run tests

 2 - List test runs

 3 - Show test results

 4 - Generate HTML test report

 5 - Help

 6 - Exit

 ================================

 “””

 Finally, the user ’ s selection is assigned to a variable, whose value is returned to the caller:

 choice = raw_input(“Enter a choice and press enter: “)

 return choice

Part I: The Projects

140

 test_run.py
 The test_run.py module is responsible for running tests, displaying the results on the screen, and

creating the XML test run file. It is the longest, most complex module in the application:

import datetime, math

def test_firstname(fname):

 fname_input = raw_input(“\tEnter your first name: “)

 if fname_input == fname:

 return “PASSED”

 else:

 return “FAILED - EXPECTED “ + fname + “ but was “ + fname_input

def test_lastname(lname):

 lname_input = raw_input(“\tEnter your last name: “)

 if lname_input == lname:

 return “PASSED”

 else:

 return “FAILED - EXPECTED “ + lname + “ but was “ + lname_input

def test_prime_number():

 primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, \

 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

 num = raw_input(“\tPrime number test - enter a number from 1 to 99: “)

 number = int(num)

 if number in primes:

 return “PASSED”

 else:

 return “FAILED - “ + str(number) + “ is not a prime number 1 to 99”

def run_tests():

 def testcount(test_results):

 #Compile test results and return them in a list

 tests_passed = 0

 tests_failed = 0

 tests_error = 0

 for test_result in test_results:

 if test_result == “PASSED”:

 tests_passed += 1

 elif test_result[0:6] == “FAILED”:

 tests_failed += 1

 else:

 tests_error += 1

 results = [tests_passed, tests_failed, tests_error]

 return results

Chapter 6: Test Management/Reporting System

141

 #Run tests

 print “””

 ================================

 RUN TESTS

 ================================

 “””

 result_firstname = test_firstname(“Jim”)

 result_lastname = test_lastname(“Knowlton”)

 result_prime_number = test_prime_number()

 total_results = [result_firstname, result_lastname, result_prime_number]

 results = testcount(total_results)

 #Output test results to screen

 print “””

 ================================

 TEST RUN RESULTS

 ================================

 Test first name - %s

 Test last name - %s

 Test prime number - %s

 ================================

 Total tests passed: %i

 Total tests failed: %i

 Total tests with errors: %i

 “”” % (result_firstname, result_lastname, result_prime_number, \

 results[0], results[1], results[2])

 #Format XML output for test run

 test_output_xml = “”” < testresult >

 < testfirstname > %s < /testfirstname >

 < testlastname > %s < /testlastname >

 < testprimenumber > %s < /testprimenumber >

 < testspassed > %i < /testspassed >

 < testsfailed > %i < /testsfailed >

 < testserror > %i < /testserror >

 < /testresult > ””” % \

 (result_firstname, result_lastname, result_prime_number, \

 results[0], results[1], results[2])

 today = datetime.datetime.now().strftime(“%m-%d-%Y”)

 output_filename = “.\\test_runs\\” + today + “.xml”

 test_output = open(output_filename, ‘w’)

 test_output.write(test_output_xml)

 test_output.close()

 raw_input(“Press [Enter] to continue: “)

 Whew! Yes, there ’ s a lot going on. Let ’ s look at this module function by function.

Part I: The Projects

142

 test_firstname(fname)

 The first three functions are the tests. Let ’ s look at the first of them:

def test_firstname(fname):

 fname_input = raw_input(“\tEnter your first name: “)

 if fname_input == fname:

 return “PASSED”

 else:

 return “FAILED - EXPECTED “ + fname + “ but was “ + fname_input

 This function simply takes a string parameter fname . It prompts the user to enter a first name and

assigns the result to a string variable:

 fname_input = raw_input(“\tEnter your first name: “)

 It then compares what the user has entered to the string passed as a parameter. If they match, then the

string “ PASSED ” is returned; otherwise, a failure string is returned:

 if fname_input == fname:

 return “PASSED”

 else:

 return “FAILED - EXPECTED “ + fname + “ but was “ + fname_input

 test_lastname(lname)

 The second test function looks very similar:

def test_lastname(lname):

 lname_input = raw_input(“\tEnter your last name: “)

 if lname_input == lname:

 return “PASSED”

 else:

 return “FAILED - EXPECTED “ + lname + “ but was “ + lname_input

 This function simply takes a string parameter lname . It prompts the user to enter a last name and assigns

the result to a string variable:

 lname_input = raw_input(“\tEnter your last name: “)

 It then compares what the user has entered to the string passed as a parameter. If they match, then the

string “ PASSED ” is returned; otherwise, a failure string is returned:

 if lname_input == lname:

 return “PASSED”

 else:

 return “FAILED - EXPECTED “ + lname + “ but was “ + lname_input

Chapter 6: Test Management/Reporting System

143

 test_prime_number()

 The final test function determines whether a number is a prime number:

def test_prime_number():

 primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, \

 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

 num = raw_input(“\tPrime number test - enter a number from 1 to 99: “)

 number = int(num)

 if number in primes:

 return “PASSED”

 else:

 return “FAILED - “ + str(number) + “ is not a prime number 1 to 99”

 First, it initializes a list comprising all the prime numbers less than 100. Then it prompts the user to enter

a number, assigns the number to a variable, and converts the string entered to its integer equivalent:

 num = raw_input(“\tPrime number test - enter a number from 1 to 99: “)

 number = int(num)

 The next block of code tests the number to determine whether it is in the list. If it is, then it returns a

 “ PASSED ” string; otherwise, it returns a failure string:

 if number in primes:

 return “PASSED”

 else:

 return “FAILED - “ + str(number) + “ is not a prime number 1 to 99”

 run_tests()

 Although this function shows up last in the module sequentially, it drives everything else:

def run_tests(testpath):

 def testcount(test_results):

 #Compile test results and return them in a list

 tests_passed = 0

 tests_failed = 0

 tests_error = 0

 for test_result in test_results:

 if test_result == “PASSED”:

 tests_passed += 1

 elif test_result[0:6] == “FAILED”:

 tests_failed += 1

 else:

 tests_error += 1

 results = [tests_passed, tests_failed, tests_error]

 return results

(continued)

Part I: The Projects

144

 #Run tests

 print “””

 ================================

 RUN TESTS

 ================================

 “””

 result_firstname = test_firstname(“Jim”)

 result_lastname = test_lastname(“Knowlton”)

 result_prime_number = test_prime_number()

 total_results = [result_firstname, result_lastname, result_prime_number]

 results = testcount(total_results)

 #Output test results to screen

 print “””

 ================================

 TEST RUN RESULTS

 ================================

 Test first name - %s

 Test last name - %s

 Test prime number - %s

 ================================

 Total tests passed: %i

 Total tests failed: %i

 Total tests with errors: %i

 “”” % (result_firstname, result_lastname, result_prime_number, \

 results[0], results[1], results[2])

 #Format XML output for test run

 test_output_xml = “”” < testresult >

 < testfirstname > %s < /testfirstname >

 < testlastname > %s < /testlastname >

 < testprimenumber > %s < /testprimenumber >

 < testspassed > %i < /testspassed >

 < testsfailed > %i < /testsfailed >

 < testserror > %i < /testserror >

 < /testresult > ””” % \

 (result_firstname, result_lastname, result_prime_number, \

 results[0], results[1], results[2])

 today = datetime.datetime.now().strftime(“%m-%d-%Y”)

 output_filename = testpath + today + “.xml”

try:

 test_output = open(output_filename, “w”)

 test_output.write(test_output_xml)

 test_output.close()

 except:

 print “Problem writing to file!”

 raw_input(“Press [Enter] to continue: “)

 We ’ ll skip over the testcount() function for now, returning to it in a minute.

(continued)

Chapter 6: Test Management/Reporting System

145

 The first bit of code inside the function displays a menu banner:

 print “””

 ================================

 RUN TESTS

 ================================

 “””

 Notice that the first block of code is a nested function. A nice feature of Python is that functions can be

nested, enabling you to provide a service to just the functions they are nested inside of.

 The next three lines of code actually call the test functions and assign the results to variables:

 result_firstname = test_firstname(“Jim”)

 result_lastname = test_lastname(“Knowlton”)

 result_prime_number = test_prime_number()

 As you can see, I set the correct answers for the first two tests to correspond with my name (naturally).

Feel free to change them to your name — or anything else you choose, for that matter.

 The next line creates an array with the results for each test that has been run:

total_results = [result_firstname, result_lastname, result_prime_number]

 Then, the testcount() function is called, which returns a list containing the cumulative count of passed,

failed, and error tests. (We ’ ll look more at that function in a minute). The cumulative counts are assigned

to variable results:

 results = testcount(total_results)

 The next step is to output the results to the screen, in a readable format:

 #Output test results to screen

 print “””

 ================================

 TEST RUN RESULTS

 ================================

 Test first name - %s

 Test last name - %s

 Test prime number - %s

 ================================

 Total tests passed: %i

 Total tests failed: %i

 Total tests with errors: %i

 “”” % (result_firstname, result_lastname, result_prime_number, \

 results[0], results[1], results[2])

Part I: The Projects

146

 Next, the program needs to write the results to an XML file. First, the program creates a string variable

and populates it with the XML text to go in the file:

 test_output_xml = “”” < testresult >

 < testfirstname > %s < /testfirstname >

 < testlastname > %s < /testlastname >

 < testprimenumber > %s < /testprimenumber >

 < testspassed > %i < /testspassed >

 < testsfailed > %i < /testsfailed >

 < testserror > %i < /testserror >

 < /testresult > ””” % \

 (result_firstname, result_lastname, result_prime_number, \

 results[0], results[1], results[2])

 Because the filename is based on the date, the next step is to get the system date and then format a string

that will be the name of the file:

 today = datetime.datetime.now().strftime(“%m-%d-%Y”)

 output_filename = testpath + today + “.xml”

 Finally, the file is opened, written to using the formatted string (with the XML code), and closed:

 try:

 test_output = open(output_filename, “w”)

 test_output.write(test_output_xml)

 test_output.close()

 except:

 print “Problem writing to file!”

 testcount()

 The testcount() function, which is nested inside of test_run() , takes a list of test results and

counts the number of passed, failed, and error tests:

def testcount(test_results):

 #Compile test results and return them in a list

 tests_passed = 0

 tests_failed = 0

 tests_error = 0

 for test_result in test_results:

 if test_result == “PASSED”:

 tests_passed += 1

 elif test_result[0:6] == “FAILED”:

 tests_failed += 1

 else:

 tests_error += 1

 results = [tests_passed, tests_failed, tests_error]

 return results

Chapter 6: Test Management/Reporting System

147

 The function first initializes the variables for passed, failed, and error tests to zero:

 tests_passed = 0

 tests_failed = 0

 tests_error = 0

 Following that, the function implements a for loop, which iterates through all the results and

increments the count of each category based on the respective results found:

 for test_result in test_results:

 if test_result == “PASSED”:

 tests_passed += 1

 elif test_result[0:6] == “FAILED”:

 tests_failed += 1

 else:

 tests_error += 1

 Finally, the results are compiled into a list and returned to the caller:

 results = [tests_passed, tests_failed, tests_error]

 return results

 test_list.py
 The test_list.py module lists all test runs by simply parsing a directory listing of test run files.

 list_tests()

 list_tests() is the only function in the module:

import os, glob

def list_tests():

 os.chdir(“test_runs”)

 filelist = glob.glob(“*.xml”)

 print “””

 ================================

 LIST TEST RUNS

 ================================

 “””

 for f in filelist:

 item = f.strip(‘.xml’)

 print “\t” + item

 print “””

 ================================

 “””

 raw_input(“Press [Enter] to continue: “)

Part I: The Projects

148

 The function starts by changing the current directory to the directory where the test run files are located:

 os.chdir(“test_runs”)

 Then it uses the glob module to assign to the list filelist all XML files in the directory:

 filelist = glob.glob(“*.xml”)

 The next step is to print the menu item banner:

 print “””

 ================================

 LIST TEST RUNS

 ================================

 “””

 To print the list of test runs, a for loop is used to iterate through the list that was created. The strip string

method is used to strip out the . xml extension from each file, so that it just shows a date for each item:

 for f in filelist:

 item = f.strip(‘.xml’)

 print “\t” + item

 Finally, the bottom bar of the banner is displayed on the screen:

 print “””

 ================================

 “””

 test_results.py
 The test_results.py module enables a user to enter a date corresponding to a test run and retrieve

the results from the XML file and display them on the screen:

from xml.dom import minidom

import time

def show_test_results(testpath):

 print “””

 ================================

 SHOW TEST RESULTS

 ================================

 “””

Chapter 6: Test Management/Reporting System

149

 prompt = “””

 Enter the date of the test run in the

 following format: ‘01-01-2008’

 (or type ‘today’ for today)

 “””

 test_date = raw_input (prompt)

 if test_date == “today”:

 test_date == datetime.datetime.now().strftime(“%m-%d-%Y”)

 test_run_file = testpath + test_date + “.xml”

 #Get nodes from XML document

 try:

 test_run = minidom.parse(test_run_file)

 except:

 print “\n\tProblem opening test run file!\n”

 raw_input(“Press [Enter] to continue: “)

 return

 test_result_node = test_run.childNodes[0]

 test_firstname_node = test_result_node.childNodes[1]

 test_lastname_node = test_result_node.childNodes[3]

 test_prime_node = test_result_node.childNodes[5]

 test_passed_node = test_result_node.childNodes[7]

 test_failed_node = test_result_node.childNodes[9]

 test_error_node = test_result_node.childNodes[11]

 #Get text from relevant nodes

 test_firstname_result = test_firstname_node.firstChild.data

 test_lastname_result = test_lastname_node.firstChild.data

 test_prime_result = test_prime_node.firstChild.data

 test_passed_result = test_passed_node.firstChild.data

 test_failed_result = test_failed_node.firstChild.data

 test_error_result = test_error_node.firstChild.data

 #Produce result to screen

 print “””

 ================================

 TEST RUN RESULTS %s

 ================================

 Test first name - %s

 Test last name - %s

 Test prime number - %s

 ================================

 Total tests passed: %s

 Total tests failed: %s

 Total tests with errors: %s

 “”” % (test_date, test_firstname_result, test_lastname_result, \

 test_prime_result, test_passed_result, test_failed_result, \

 test_error_result)

 raw_input(“Press [Enter] to continue: “)

Part I: The Projects

150

 show_test_results()

 This function starts out by displaying the menu item banner:

 print “””

 ================================

 SHOW TEST RESULTS

 ================================

 “””

 Then the user is prompted to enter a date corresponding to a test run, and the user ’ s entry is assigned to

a variable:

 prompt = “””

 Enter the date of the test run in the

 following format: ‘01-01-2008’

 “””

 test_date = raw_input (prompt)

 A variable is then created for the path and name of the XML file:

 test_run_file = testpath + test_date + “.xml”

 Next, it is time to open the XML file and parse it, using the minidom module:

 #Get nodes from XML document

 try:

 test_run = minidom.parse(test_run_file)

 except:

 print “\n\tProblem opening test run file!\n”

 raw_input(“Press [Enter] to continue: “)

 return

 Notice that the opening of the file is enclosed in a try / except block, just in case there is a problem,

such as the file not being found.

 The next step is to use the node stored in the test_run variable and create variables corresponding to

all the nodes from which we need to extract data:

 test_result_node = test_run.childNodes[0]

 test_firstname_node = test_result_node.childNodes[1]

 test_lastname_node = test_result_node.childNodes[3]

 test_prime_node = test_result_node.childNodes[5]

 test_passed_node = test_result_node.childNodes[7]

 test_failed_node = test_result_node.childNodes[9]

 test_error_node = test_result_node.childNodes[11]

Chapter 6: Test Management/Reporting System

151

 Once the nodes are assigned to variables, the data from those nodes can be extracted and assigned to

variables:

 #Get text from relevant nodes

 test_firstname_result = test_firstname_node.firstChild.data

 test_lastname_result = test_lastname_node.firstChild.data

 test_prime_result = test_prime_node.firstChild.data

 test_passed_result = test_passed_node.firstChild.data

 test_failed_result = test_failed_node.firstChild.data

 test_error_result = test_error_node.firstChild.data

 Finally, the test results for the retrieved XML file can be displayed on the screen:

 #Produce result to screen

 print “””

 ================================

 TEST RUN RESULTS %s

 ================================

 Test first name - %s

 Test last name - %s

 Test prime number - %s

 ================================

 Total tests passed: %s

 Total tests failed: %s

 Total tests with errors: %s

 “”” % (test_date, test_firstname_result, test_lastname_result, \

 test_prime_result, test_passed_result, test_failed_result, \

 test_error_result)

 test_html.py
 The test_html.py module enables a user to enter a date corresponding to a test run, and generates an

HTML report that can be viewed in a web browser:

from xml.dom import minidom

def test_html_report(testpath):

 print “””

 ================================

 GENERATE HTML REPORT

 ================================

 “””

 prompt = “””

 Enter the date of the test run in the

 following format: ‘01-01-2008’

 “””

 test_date = raw_input (prompt)

 test_run_file = testpath + test_date + “.xml”

(continued)

Part I: The Projects

152

 #Get nodes from XML document

 try:

 test_run = minidom.parse(test_run_file)

 except:

 print “\n\tProblem opening test run file!\n”

 raw_input(“Press [Enter] to continue: “)

 return

 test_result_node = test_run.childNodes[0]

 test_firstname_node = test_result_node.childNodes[1]

 test_lastname_node = test_result_node.childNodes[3]

 test_prime_node = test_result_node.childNodes[5]

 test_passed_node = test_result_node.childNodes[7]

 test_failed_node = test_result_node.childNodes[9]

 test_error_node = test_result_node.childNodes[11]

 #Get text from relevant nodes

 test_firstname_result = test_firstname_node.firstChild.data

 test_lastname_result = test_lastname_node.firstChild.data

 test_prime_result = test_prime_node.firstChild.data

 test_passed_result = test_passed_node.firstChild.data

 test_failed_result = test_failed_node.firstChild.data

 test_error_result = test_error_node.firstChild.data

 #Produce result to html

 html_output = “””

 < HTML >

 < TITLE > Test Report - %s < /TITLE >

 < HR >

 < H1 > TEST RUN RESULTS %s < /H1 >

 < HR >

 < BODY >

 Test first name - %s < br >

 Test last name - %s < br >

 Test prime number - %s < br >

 < HR >

 Total tests passed: %s < br >

 Total tests failed: %s < br >

 Total tests with errors: %s < br >

 < /BODY >

 < /HTML >

 “”” % (test_date, test_date, test_firstname_result, test_lastname_result, \

 test_prime_result, test_passed_result, test_failed_result, test_error_result)

 filename = os.path.join(os.curdir, ‘test_report_html’, test_date + “.html”)

 output_file = open(filename, ‘w’)

 output_file.write(html_output)

 output_file.close()

 print “\n\t-- HTML Report Generated --”

 raw_input(“\tPress [Enter] to continue: “)

(continued)

Chapter 6: Test Management/Reporting System

153

 test_html_report ()

 This function starts out by displaying the menu item banner:

 print “””

 ================================

 GENERATE HTML REPORT

 ================================

 “””

 The user is prompted to enter the date associated with a test run, in the appropriate format:

 prompt = “””

 Enter the date of the test run in the

 following format: ‘01-01-2008’

 “””

 test_date = raw_input (prompt)

 The function then has a line of code to construct a string variable with the date input above, adding the

path to the test run files and the .XML extension:

 test_run_file = testpath + test_date + “.xml”

 The XML test run file is then opened and parsed, using the minidom module:

 #Get nodes from XML document

 try:

 test_run = minidom.parse(test_run_file)

 except:

 print “\n\tProblem opening test run file!\n”

 raw_input(“Press [Enter] to continue: “)

 return

 Variables associated with all the nodes to be accessed are then created:

 test_result_node = test_run.childNodes[0]

 test_firstname_node = test_result_node.childNodes[1]

 test_lastname_node = test_result_node.childNodes[3]

 test_prime_node = test_result_node.childNodes[5]

 test_passed_node = test_result_node.childNodes[7]

 test_failed_node = test_result_node.childNodes[9]

 test_error_node = test_result_node.childNodes[11]

Part I: The Projects

154

 With the nodes assigned to variables, the data can be extracted from the nodes and assigned to variables:

 #Get text from relevant nodes

 test_firstname_result = test_firstname_node.firstChild.data

 test_lastname_result = test_lastname_node.firstChild.data

 test_prime_result = test_prime_node.firstChild.data

 test_passed_result = test_passed_node.firstChild.data

 test_failed_result = test_failed_node.firstChild.data

 test_error_result = test_error_node.firstChild.data

 After all the needed data from the XML file is assigned to variables, the HTML text can be constructed:

html_output = “””

 < HTML >

 < TITLE > Test Report - %s < /TITLE >

 < HR >

 < H1 > TEST RUN RESULTS %s < /H1 >

 < HR >

 < BODY >

 Test first name - %s < br >

 Test last name - %s < br >

 Test prime number - %s < br >

 < HR >

 Total tests passed: %s < br >

 Total tests failed: %s < br >

 Total tests with errors: %s < br >

 < /BODY >

 < /HTML >

 “”” % (test_date, test_date, test_firstname_result, test_lastname_result, \

 test_prime_result, test_passed_result, test_failed_result, test_error_result)

 The next bit of code is to open the HTML file for writing, and then write the HTML to the file:

 filename = os.path.join(os.curdir, ‘test_report_html’, test_date + “.html”)

 output_file = open(filename, ‘w’)

 output_file.write(html_output)

 output_file.close()

 Finally, a status message is displayed, letting the user know that the HTML file has been created:

 print “\n\t-- HTML Report Generated --”

Chapter 6: Test Management/Reporting System

155

 Testing
 There are several “ moving parts ” with this application, so there are several potential areas for testing:

 The tests in this application are fairly simple and trivial. You could expand on the test suite by

testing a “ real ” application, and see what issues or problems arise. This framework could even

be used with the Python unittest module, which is covered in Chapter 10 .

 Examine the XML files that are being created, to verify that the format of the files is consistent

and expected.

 Create a suite with a large number of tests (which would create a large XML file). Are there any

issues with the minidom parser when working with large files?

 Modifying the Program
 There are several ways this project could be enhanced, including the following:

 Currently, the application saves test data by date, such that multiple runs on one day overwrite

each other. You could change this behavior by having the files use a date - time stamp.

 You could have an option to look at “ test history, ” which takes the name of a test as input and

then goes through each test run and produces a report of each result, based on the date.

 You could create command - line arguments so that, for example, if you just want to execute a test

run and don ’ t want to have to see the menu, you can do that.

 Summary
 In this chapter you learned how to build your own “ homegrown ” framework for testing software, but

more important, you learned how to work with XML files, which are a great resource to use as a

lightweight source for structured, persistent data. Specifically, you learned how to do the following:

 Create XML documents based on input from the user

 Query XML documents using the minidom module

 Create HTML from XML data

❑

❑

❑

❑

❑

❑

❑

❑

❑

Part I: The Projects

156

 More About the Minidom Module
 Here are some more interesting things to know about the minidom module:

 It supports both byte and Unicode strings, making it useful if your application needs to support

multiple languages.

 It can also be used to access and manipulate XHTML documents.

 There is a parseString() function that enables you to take an XML string (not from a file) and

parse it; this is very useful if you have two programs that are communicating through XML.

❑

❑

❑

 Version Management
System

 Imagine you are the administrator of three computer labs. Some of the machines have had their

versions of Java and Python updated, but you ’ re not sure how many, or which ones. You could go

to each computer individually and check.

 But you ’ re not going to do that.

 By building a Python script to connect to your machines and check version levels, you can

automatically build a list of the version of installed applications on each computer.

 The version management system in this chapter shows how you can use Telnet to retrieve version

information for a list of applications (in this program, the applications checked will be Java,

Python, and Perl). The program will then write the results of the check to a CSV log file.

 The application will perform the following functions:

 Allow the user to identify an IP address and a list of applications to check for (entered via

command - line arguments)

 Log in, using Telnet, to the machine and check the version numbers of each application

 Write the results of the query to a CSV log file

❑

❑

❑

Part I: The Projects

158

What Is Telnet?

Telnet is an Internet protocol used on Internet or Local Area Network (LAN) networks.
Basically, Telnet enables you to log on to remote systems to perform various tasks.
Python has a telnetlib module that enables a script to emulate a Telnet client. That is
how the program in this chapter will get application version information about each
remote computer.

 Using the Program
 Before the program is run, any remote computers to be connected to from the application must be set up.

The computers connected to in this application were Linux machines, but the
application could easily be adapted to also connect to Windows machines.

 Setting Up Remote Computers
 Remote computers need to have the following features enabled:

 1. Java, Python, and Perl should be installed.

 2. A Telnet server should be installed and running (the application assumes it is running on its

default port).

 3. A common account (with a common password) should be set for each machine.

Important Security Note!

In this application, we are creating an account with the same user and password for
every machine in the system. This is not a good security practice in real life. Check out
the end of the chapter for some suggested security enhancements.

 Running the Program — Command - Line Syntax
 You can get to the program by navigating to the directory corresponding to this chapter. Once again, the

files are available for download from the website (www.wrox.com). To run the application, simply go to a

command prompt, and from the directory on your system where the Chapter 7 program files are located,

type the following:

python version_checker.py < ip address > < applications >

Chapter 7: Version Management System

159

 The command - line options are as follows:

 < ip address > — Enter the IP address to connect to.

 < applications > — Enter the applications, enclosed in quotes. The applications can be selected

from the following:

❑ Java

❑ Python

❑ Perl

 Command - Line Examples

 If the following is typed at the command line, the script will connect to IP address 192.168.1.108 and

check the versions of Java, Python, and Perl:

python version_checker.py 192.168.1.108 “java python perl”

 The result will look something like this:

I:\Applied_Python\Chapter_7 > python version_checker.py 192.168.1.108 “java python

 perl”

HOST - 192.168.1.108

Java version = 1.6.0_0

Python version = 2.5.1

Perl version = 5.8.8

 If the following is typed at the command line, the script will connect to IP address 192.168.1.108 and

check the versions of Java and Perl:

python version_checker.py 192.168.1.108 “java perl”

 The result will look something like this:

I:\Applied_Python\Chapter_7 > python version_checker.py 192.168.1.108 “java perl”

HOST - 192.168.1.108

Java version = 1.6.0_0

Perl version = 5.8.8

 If the following is typed at the command line, the script will connect to IP address 192.168.1.108 and

check the versions of Perl and Python:

python version_checker.py 192.168.1.108 “perl python”

❑

❑

Part I: The Projects

160

 Notice that the order of the applications listed does not matter. The result will look something like this:

I:\Applied_Python\Chapter_7 > python version_checker.py 192.168.1.108 “perl python”

HOST - 192.168.1.108

Python version = 2.5.1

Perl version = 5.8.8

 If the following is typed at the command line, the script will connect to IP address 192.168.1.108 and

check the version of Perl:

python version_checker.py 192.168.1.108 “perl”

 The result will look something like this:

I:\Applied_Python\Chapter_7 > python version_checker.py 192.168.1.108 “ perl”

HOST - 192.168.1.108

Perl version = 5.8.8

 If you don ’ t enter all the options, a message like the following one will be displayed:

I:\Applied_Python\Chapter_7 > python version_checker.py 192.168.1.108

 Insufficient arguments: suggested use -

 python version_checker.py < ip address > “ < applications to check > ”

 NOTES:

 1. Replace < ip address > with the ip address you want to check.

 2. Replace < applications to check > with any combination of the following

 applications (in quotes):

 java

 python

 perl

 EXAMPLE:

 python version_checker.py 1.1.1.1 “python java”

 This command will check the versions of Python and Java on computer with

ip address 1.1.1.1.

 Viewing the CSV Log File

 After you have run a few reports, you can view the CSV log of the version checks. If you open the CSV

file in a spreadsheet program, it will look something like what is shown in Figure 7 - 1 .

Chapter 7: Version Management System

161

Figure 7-1

 Running Against Several Different Machines in Batch Mode

 To run the script against several different machines in batch mode, you could simply create a shell script

(or batch file, if on Windows) that runs the script against several different machines, as in the following

example:

python version_checker.py 192.168.1.108 “java python perl”

python version_checker.py 192.168.1.109 “java perl”

python version_checker.py 192.168.1.110 “java python perl”

python version_checker.py 192.168.1.111 “python perl”

python version_checker.py 192.168.1.112 “python”

python version_checker.py 192.168.1.113 “perl python”

python version_checker.py 192.168.1.114 “java”

python version_checker.py 192.168.1.115 “perl”

python version_checker.py 192.168.1.116 “java python perl”

python version_checker.py 192.168.1.117 “java perl”

python version_checker.py 192.168.1.118 “python perl”

python version_checker.py 192.168.1.119 “perl”

python version_checker.py 192.168.1.120 “java python perl”

python version_checker.py 192.168.1.121 “java perl”

python version_checker.py 192.168.1.122 “python”

python version_checker.py 192.168.1.123 “java python perl”

Part I: The Projects

162

 Design
 This is the first application that doesn ’ t have any kind of a “ driveable ” user interface — it uses the

command line to pass options to the script. This enables a script to be more easily implemented in

another script or batch file, which is why it was handled this way in this case.

 Modules
 There are three modules in this application:

 version_checker.py is the main program. It receives the command - line option, prints error

messages, and calls functions in other modules to do the checking and output to the CSV file.

 check_versions.py logs in to the remote machine and returns the version of the particular

application being checked.

 csv_report.py takes a version check result and writes it to the CSV log file.

 version_checker.py

 version_checker.py is the main program. It calls the functions to run checks and output the results

to a CSV. It also displays output to the screen. Table 7 - 1 shows the version_checker module

functions.

❑

❑

❑

Table 7-1

Function Return Type Description

check_arguments() none Checks arguments entered at the command line.

If there are insufficient arguments, then it generates

an error message and exits.

get_versions () none Launches functions to log in to the remote computer

to display and log results.

 check_versions.py

 check_versions.py is called by version_checker.py and checks versions of the respective

applications being checked. Table 7 - 2 shows the check_versions module functions.

Chapter 7: Version Management System

163

Table 7-2

Function Return Type Description

check_java(host, user,

password)

string Takes hostname, username, and password as

arguments, connects to the host, checks the

version of Java, and returns that version to

the caller

check_python(host, user,

password)

string Takes hostname, username, and password as

arguments, connects to the host, checks the

version of Python, and returns that version to

the caller

check_perl(host, user,

password)

string Takes hostname, username, and password as

arguments, connects to the host, checks the

version of Perl, and returns that version to

the caller

 csv_report.py

 csv_report.py takes the results of a version check and outputs the results to the CSV report log.

Table 7 - 3 shows the csv_report module function.

Table 7-3

Function Return Type Description

write_csv_log(host,

application, version)

none Takes host, application, and version information as

parameters and outputs an entry to the CSV log file

 Code and Code Explanation
 Essentially, this application takes parameters at the command line, logs in (through Telnet) to a remote

computer, checks the version of an identified application, and reports the result to the screen and to a

CSV log file.

 In the interests of page space, I ’ ve omitted the code headers, but make sure you use them. Your coworkers
will thank you.

Part I: The Projects

164

 version_checker.py
 The version_checker module is the program users actually run on the command line. It contains code

that ’ s run at the module level, and two functions:

import sys

import check_versions, csv_report

HOST = sys.argv[1]

USER = “jars”

PASSWORD = “jars”

def check_arguments():

 if (len(sys.argv)) < 3:

 print “”” Insufficient arguments: suggested use -

 python version_checker.py < ip address > “ < applications to check > ”

 NOTES:

 1. Replace < ip address > with the ip address you want to check.

 2. Replace < applications to check > with any combination of the following

applications (in quotes):

 java

 python

 perl

 EXAMPLE:

 python version_checker.py 1.1.1.1 “python java”

 This command will check the versions of Python and Java on computer with ip

address 1.1.1.1.”””

 sys.exit()

def get_versions():

 print “HOST - “, HOST

 if “java” in sys.argv[2]:

 java_version = check_versions.check_java(HOST, USER, PASSWORD)

 csv_report.write_csv_log(HOST, “Java”, java_version)

 print “Java version = “, java_version

 if “python” in sys.argv[2]:

 python_version = check_versions.check_python(HOST, USER, PASSWORD)

 csv_report.write_csv_log(HOST, “Python”, python_version)

 print “Python version = “, python_version

 if “perl” in sys.argv[2]:

 perl_version = check_versions.check_perl(HOST, USER, PASSWORD)

 csv_report.write_csv_log(HOST, “Perl”, perl_version)

 print “Perl version = “, perl_version

check_arguments()

get_versions()

Chapter 7: Version Management System

165

 Main Program

 The main program starts off by importing the modules it needs:

import sys

import check_versions, csv_report

 Then variables are initialized for the host, user, and password:

HOST = sys.argv[1]

USER = “jars”

PASSWORD = “jars”

 Note two things about the preceding code:

 The variable HOST is assigned the first command - line parameter. This is how Python enables a

program to take command - line arguments and use them in a Python script.

 The user and password are assigned here. If you want the password to be something different,

change it here.

 Down at the bottom of the module (after the function definitions), the program runs the functions to

check both the arguments and the versions:

check_arguments()

get_versions()

 check_arguments()

 check_arguments() checks the command - line arguments entered at the command line to ensure that

the correct number of arguments appears. If not, it generates an error and exits:

def check_arguments():

 if len(sys.argv) < 3:

 print “”” Insufficient arguments: suggested use -

 python version_checker.py < ip address > “ < applications to check > ”

 NOTES:

 1. Replace < ip address > with the ip address you want to check.

 2. Replace < applications to check > with any combination of the

following applications (in quotes):

 java

 python

 perl

 EXAMPLE:

❑

❑

(continued)

Part I: The Projects

166

 python version_checker.py 1.1.1.1 “python java”

 This command will check the versions of Python and Java on computer with

ip address 1.1.1.1.”””

 sys.exit()

 The function initially determines whether two arguments appear (the first argument is the Python script

name, so there should be three elements in sys.argv):

if len(sys.argv) < 3:

 If there are fewer than two command - line arguments, it prints an error/help message:

 print “”” Insufficient arguments: suggested use -

 python version_checker.py < ip address > “ < applications to check > ”

 NOTES:

 1. Replace < ip address > with the ip address you want to check.

 2. Replace < applications to check > with any combination of the following

applications (in quotes):

 java

 python

 perl

 EXAMPLE:

 python version_checker.py 1.1.1.1 “python java”

 This command will check the versions of Python and Java on computer with ip

address 1.1.1.1.”””

 The last line of the if loop (and the function) is a command to exit:

 sys.exit(1)

 Notice that you exit with a 1. Non - zero exit codes are for situations in which
 something has gone wrong, so if you exit the program in an error condition, it
makes sense to pass a 1.

 get_versions()

 The get_versions() function launches the various functions to check the application version, based on

what the user entered on the command line:

(continued)

Chapter 7: Version Management System

167

def get_versions():

 print “HOST - “, HOST

 if sys.argv[2].find(“java”) != -1:

 java_version = check_versions.check_java(HOST, USER, PASSWORD)

 csv_report.write_csv_log(HOST, “Java”, java_version)

 print “Java version = “, java_version

 if sys.argv[2].find(“python”) != -1:

 python_version = check_versions.check_python(HOST, USER, PASSWORD)

 csv_report.write_csv_log(HOST, “Python”, python_version)

 print “Python version = “, python_version

 if sys.argv[2].find(“perl”) != -1:

 perl_version = check_versions.check_perl(HOST, USER, PASSWORD)

 csv_report.write_csv_log(HOST, “Perl”, perl_version)

 print “Perl version = “, perl_version

 The first thing the function does is print a header with the IP address of the entered host:

 print “HOST - “, HOST

 Then the function implements an if block to determine whether “ java ” was entered on the command

line. If it was, then the check_java() function is called and the result is assigned to the variable

 java_version :

 java_version = check_versions.check_java(HOST, USER, PASSWORD)

 Then the write_csv_log() function is called to write the result to the CSV log file:

 csv_report.write_csv_log(HOST, “Java”, java_version)

 The if block ends by printing the result to the screen:

 print “Java version = “, java_version

 Then the function implements an if block to determine whether “ python ” was entered on the command

line. If it was, then the check_python() function is called and the result is assigned to the variable

 python_version:

 python_version = check_versions.check_python(HOST, USER, PASSWORD)

 Then the write_csv_log() function is called to write the result to the CSV log file:

 csv_report.write_csv_log(HOST, “Python”, python_version)

Part I: The Projects

168

 The if block ends by printing the result to the screen:

 print “Python version = “, python_version

 Then the function implements an if block to determine whether perl was entered on the command

line. If it was, then the check_perl() function is called and the result is assigned to the variable

 perl_version :

 perl_version = check_versions.check_perl(HOST, USER, PASSWORD)

 Then the write_csv_log() function is called to write the result to the CSV log file:

 csv_report.write_csv_log(HOST, “Perl”, perl_version)

 The if block ends by printing the result to the screen:

 print “Perl version = “, perl_version

 check_versions.py
 The check_versions.py module is responsible for logging into the remote computer, checking the

version of the application, and returning the result to the calling program:

import sys

import telnetlib

def check_java(host, user, password):

 java_version = “”

 tn = telnetlib.Telnet(host)

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

 tn.write(“java -version\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 result_list = result.split(“\n”)

 for line in result_list:

Chapter 7: Version Management System

169

 if line.startswith(“java version”):

 java_version = line[14:21]

 return java_version

def check_python(host, user, password):

 python_version = “”

 tn = telnetlib.Telnet(host)

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

 tn.write(“python -V\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 result_list = result.split(“\n”)

 for line in result_list:

 if line.startswith(“Python “):

 python_version = line[7:]

 return python_version

def check_perl(host, user, password):

 perl_version = “”

 tn = telnetlib.Telnet(host)

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

 tn.write(“perl -version\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 result_list = result.split(“\n”)

 for line in result_list:

 if line.startswith(“This is perl”):

 perl_version = line[15:20]

 return perl_version

Part I: The Projects

170

 check_ java()

 The check_java() function logs into the identified server and runs the java – version command, which

returns the version of Java. It captures the result of that command and returns it to the calling program:

def check_java(host, user, password):

 java_version = “”

 tn = telnetlib.Telnet(host)

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

 tn.write(“java -version\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 result_list = result.split(“\n”)

 for line in result_list:

 if line.startswith(“java version”):

 java_version = line[14:21]

 return java_version

Why [14:21]?

If you are wondering why I specifically chose the numbers that appear in the preceding
example, it’s because, for the systems I was looking at, those happened to be the
 characters that reported the version number. You can play with these values to get the
version numbers you want for whatever application you are checking.

 After initializing variables, the function opens a Telnet connection to the host:

 tn = telnetlib.Telnet(host)

 The function then logs in, providing username and password:

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

Chapter 7: Version Management System

171

 Then the Java version is captured and the screen output assigned to a variable:

 tn.write(“java -version\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 The Java version is then parsed out of the output of the Telnet session:

 result_list = result.split(“\n”)

 for line in result_list:

 if line.startswith(“java version”):

 java_version = line[14:21]

 Finally, the Java version is returned to the calling program:

 return java_version

 check_python()

 The check_python() function logs into the identified server and runs the python – V command, which

returns the version of Python. It captures the result of that command and returns it to the calling program:

def check_python(host, user, password):

 python_version = “”

 tn = telnetlib.Telnet(host)

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

 tn.write(“python -V\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 result_list = result.split(“\n”)

 for line in result_list:

 if line.startswith(“Python “):

 python_version = line[7:]

 return python_version

 After initializing variables, the function opens a Telnet connection to the host:

 tn = telnetlib.Telnet(host)

Part I: The Projects

172

 The function then logs in, providing username and password:

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

 Then the Python version is captured and the screen output assigned to a variable:

 tn.write(“python -V\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 The Python version is then parsed out of the output of the Telnet session:

 result_list = result.split(“\n”)

 for line in result_list:

 if line.startswith(“Python “):

 python_version = line[7:]

 Finally, the Python version is returned to the calling program:

 return python_version

 check_perl()

 The check_perl() function logs into the identified server and runs the perl – version command,

which queries the version of Perl. It captures the result of that query and returns it to the calling

program:

def check_perl(host, user, password):

 perl_version = “”

 tn = telnetlib.Telnet(host)

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

 tn.write(“perl -version\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 result_list = result.split(“\n”)

Chapter 7: Version Management System

173

 for line in result_list:

 if line.startswith(“This is perl”):

 perl_version = line[15:20]

 return perl_version

 After initializing variables, the function opens a Telnet connection to the host:

 tn = telnetlib.Telnet(host)

 The function then logs in, providing username and password:

 tn.read_until(“login: “)

 tn.write(user + “\n”)

 if password:

 tn.read_until(“Password: “)

 tn.write(password + “\n”)

 Then the Java version is captured and the screen output assigned to a variable:

 tn.write(“perl -version\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 The Java version is then parsed out of the output of the Telnet session:

 tn.write(“java -version\n”)

 tn.write(“exit\n”)

 result = tn.read_all()

 result_list = result.split(“\n”)

for line in result_list:

 if line.startswith(“This is perl”):

 perl_version = line[15:20]

 Finally, the Perl version is returned to the calling program:

 return perl_version

 csv_report.py
 The csv_report.py module captures version check information and writes it to the CSV log file.

Part I: The Projects

174

 write_csv_log()

 The write_csv_log() function writes the version check information to the CSV log file. The log file,

 versionchecklog.csv , is in the program directory. It can be viewed, sorted, and queried with a

spreadsheet program.

 Here is the function:

def write_csv_log(host, application, version):

 today = datetime.datetime.now().strftime(“%m/%d/%Y”)

 row = [today, host, application, version]

 try:

 writer = csv.writer(open(“versionchecklog.csv”, “a”))

 writer.writerow(row)

 except:

 print “Error writing to file!”

 sys.exit(1)

 The first line of the function formats the current date and assigns it to a variable:

 today = datetime.datetime.now().strftime(“%m/%d/%Y”)

 Then it assigns to a list the date, the IP address, the application, and the version:

 row = [today, host, application, version]

 Finally, the function uses a try / except block to open the CSV file and write the row to the CSV file:

 try:

 writer = csv.writer(open(“versionchecklog.csv”, “a”))

 writer.writerow(row)

 except:

 print “Error writing to file!”

 sys.exit(1)

 Testing
 This program takes a multitude of parameters, so that is where testing should be focused. Here are some

testing ideas:

 Enter all possible combinations of applications, including changing case and changing the order

of applications.

 Set up a batch file to run a series of IP addresses, to ensure that the system does not time out.

 Log in to multiple operating systems, to ensure that there are no issues with that.

❑

❑

❑

Chapter 7: Version Management System

175

 Modifying the Program
 There are several ways this project could be enhanced, including the following:

 Modify the program to accept application names in any format (i.e., uppercase or lowercase).

 Modify the program to accept hostnames in addition to IP addresses.

 Security Considerations
 This program did not take into account two security considerations that would need to be addressed in a

real - world scenario:

 The program uses a single login and password for every hostname. You could allow command -

 line arguments to enable users to pass a username and password when the script is run.

 Telnet, a protocol that was invented in 1969, is fairly insecure. For increased security, use SSH.

(There are open - source Python SSH modules available on the web — just do a Google search

and you ’ ll have more tools than you know what to do with.)

 Summary
 In this chapter, you learned how to use Python as a telnet client, and to capture and process telnet

output.

 One of the most important domains for an interpreted language like Python is in the area of system

administration. Whether it is moving files, checking the status of processes, or (in the case of this project)

checking version levels on a list of computers on a network, Python is ideally suited to the task. Being a

cross - platform language, it enables you to access Windows, Linux/Unix, and even Macintosh computers

if necessary.

❑

❑

❑

❑

 Content Management
System

 So far, we ’ ve created applications to do many different things – – log in to servers, connect to

databases, manipulate XML, and the like. However, every program has been created from scratch.

What if you don ’ t want to start from scratch? That is what frameworks were built for.

 The application in this chapter uses Plone, an open - source Python - based content management system.

What Is a Content Management System?

A content management system (CMS) is a system used to manage content. Content
management systems are deployed to enable multiple users to create and edit content
for access by others, usually on a website — for example, the website Wikipedia.

 Plone Overview
 Plone is such a large, full - featured application that it makes sense to provide a “ 10,000 foot ”

overview of it before diving in to create custom applications.

 What Is Plone?
 Plone is a content management system with all of the following features:

 It is multiplatform, meaning it can be run on different operating systems/architectures.

 It is based on Python.

❑

❑

Part I: The Projects

178

 It is built on Zope, a Python - based application server framework.

 It has a scalable interface – – nontechnical users can simply enter or edit content, and more

knowledgeable users can create custom applications in Python.

 It was designed to allow for multiple users and various permission levels.

 It is free and extensible.

❑

❑

❑

❑

What You’ll Need

In this example, we are installing Plone on Linux. However, you can easily adapt these
instructions to install Plone on a Windows or Macintosh system.

This version of Plone installs its own Python distribution –– it’s great to check Plone
out, but it may not be the best solution for a production deployment. Check out the
Plone website at www.plone.org for more information on Plone distributions.

 Installing and Configuring Plone
 Installing and configuring Plone involves several steps:

 1. Downloading the current build of Plone for your particular operating system

 2. Extracting the download to an install directory

 3. Running the install

 4. Discovering the admin password

 5. Starting the Plone server

 6. Logging in as admin

 7. Setting up a user

 8. Logging in as the set - up user

These instructions are based on the 3.05 version of Plone, which was current at the
time this was written. Subsequent versions may look a little different, but should
follow basically the same process.

Chapter 8: Content Management System

179

Figure 8-1

 Downloading Plone
 You can get Plone by going to the Plone website at www.plone.org .

The Plone Website

The Plone website (www.plone.org) is itself a great example of the Plone interface. In
addition, it offers numerous documents, training videos, links to great books (including
a free online one), example applications, and more. It’s a place you’ll want to spend
some time if you implement Plone.

 To download Plone:

 1. In a web browser, go to www.plone.org . Figure 8 - 1 shows the Plone home page.

 2. Click the Download Plone link under the Get Plone heading. You ’ ll then be presented with the

screen shown in Figure 8 - 2 , which provides release information.

Part I: The Projects

180

 3. For this example, Plone is going to be installed on Linux, so click the Get Plone for Linux link.

You ’ ll be prompted to download the file. Download it to a temporary location (you could even

just put it in a folder on your desktop).

 Extracting the Plone Install
 After you download the install, you will have a file on your system (wherever you downloaded it) called

something like Plone - 3.0.5 - UnifiedInstaller.tar.gz . In a terminal window, in the directory

where the file is located, type the following and press Enter:

tar -zxvf Plone-3.0.5-UnifiedInstaller.tar

 This will extract the installation directory. You will now have a directory on your system at the location

you chose called Plone - 3.0.5 - UnifiedInstaller (the directory name may be slightly different).

 The directory contents will look something like what is shown in Figure 8 - 3 .

Figure 8-2

Chapter 8: Content Management System

181

Figure 8-3

 Running the Plone Install
 Once you have extracted the installation directory, you ’ ll want to run the install. Plone can be installed as

the root user or as a non - root user.

Installing as Root User versus Installing as Non-Root User

The non-root method produces an install that will run the Zope server with the same
privileges as the installing user. This is probably not an acceptable security profile for a
production server, but it may be acceptable for testing and development purposes.

The root method produces an install that runs the Zope server as a distinct user
identity with minimal privileges (unless you add them). Providing adequate security
for a production server requires many more steps, but this is a better starting point.

For the purposes of this example, we’ll install as a non-root user.

 Logged in as the same user who downloaded and extracted the install, from the

Plone - 3.0.5 - UnifiedInstaller directory, type the following:

./install.sh standalone

Part I: The Projects

182

 This will install Plone with a single standalone instance of the Zope application server (the simplest

installation).

 Starting Plone
 To start Plone, simply type the following on the command line and press Enter:

$HOME/Plone-3.0.5/zinstance/bin/zopectl start

 Plone is now started and can be connected to.

 Discovering the Admin User Password
 When Plone is installed, it generates a password for the admin account. To get the password, go to the

 $HOME/Plone - 3.0.5/zinstance directory, which should contain a file called adminPassword.txt .

If you open the file, it will look like the following (in this case, the user who installed Plone was “ jars ”):

Use the account information below to log into the Zope Management Interface

The account has full ‘Manager’ privileges.

 Username: admin

 Password: sQuv!WX!

Before you start Plone, you should review the settings in:

 /home/jars/Plone-3.0.5/zinstance/etc/zope.conf

Adjust the ports Plone uses before starting the site, if necessary

To start Plone, issue the following command in a Terminal window:

 /home/jars/Plone-3.0.5/zinstance/bin/zopectl start

To stop Plone, issue the following command in a Terminal window:

 /home/jars/Plone-3.0.5/zinstance/bin/zopectl stop

 As shown in the preceding code, the admin password is located in the file, as well as instructions for

how to run Plone.

 Logging In as the Admin User
 To log in, from a browser go to http://localhost:8080/Plone (from the machine on which you

installed Plone). You ’ ll see a Login screen like the one shown in Figure 8 - 4 .

Chapter 8: Content Management System

183

Figure 8-5

Figure 8-4

 Enter admin in the Login Name text box, and then enter the password found in the adminPassword

.txt file. You ’ ll then see the Welcome screen shown in Figure 8 - 5 .

Part I: The Projects

184

 Setting Up the E - mail Server
 You will need to set up an e - mail server to support the e - mailing of passwords to new users.

 Log in as the admin user and click the Site Setup link in the upper - right corner. You ’ ll then be presented

with the Configuration screen shown in Figure 8 - 6 .

Figure 8-6

 At this point, you may get a warning that the mail server hasn ’ t been set up yet. You can continue the
install and set up the mail server later.

Chapter 8: Content Management System

185

Figure 8-7

 Click the Mail link. You ’ ll then see the Mail Settings screen shown in Figure 8 - 7 .

 Enter the SMTP server IP (assuming the SMTP server is on the same machine where Plone was installed,

choose localhost). Click the Save button.

 Setting Up a User
 One of the first things you ’ ll want to do once you are installed is to set up users. For this example, you ’ ll

set up a user named John Smith. Log in as the admin user and click the Site Setup link in the upper - right

corner.

 Click the Users and Groups link. You ’ ll be presented with the Users Overview screen shown in

Figure 8 - 8 .

Figure 8-8

Part I: The Projects

186

 Click the Add New User button. The Personal Details screen shown in Figure 8 - 9 will appear.

Figure 8-9

Figure 8-10

 Enter the fields for Full Name, User Name, and E - mail, and then click the Register button.

 Logging In as the Set - Up User
 You will receive an e - mail message containing the password at the e - mail address you used when you

set up the user account. After you have received the e - mailed password, you can log in as that user. Point

your browser to http://localhost:8080/Plone (assuming you are running on the computer where

you installed Plone). When you log in, you ’ ll see the screen shown in Figure 8 - 10 .

Chapter 8: Content Management System

187

 Design
 Plone has a basic, standard layout, as shown in Figure 8 - 11 (taken from the plone.org website):

Header Area

Log In, Location Information

Left Area Main Area Right Area

Footer Area

Figure 8-11

 Certainly you can deviate from this basic design, but your design should still contain certain elements

commonly found on all Plone sites (such as the Login link and the Site Setup link).

 As mentioned earlier, the www.plone.org website itself is a great example of a Plone website. Two

others include the following, as shown in Figure 8 - 12 and Figure 8 - 13 , respectively.

 Discover Magazine: www.discovermagazine.com

 Free Software Foundation: www.fsf.org

❑

❑

Part I: The Projects

188

Figure 8-12

Figure 8-13

Chapter 8: Content Management System

189

 Navigation
 Generally, a Plone site will contain several common elements:

 The header area, which is simply the title of the website, usually in large print — optionally with

a graphic

 Login or location information, just below the header area

 The left area, usually used for navigation

 The main area, for the main content of your page

 The right area, for supplemental information (or sometimes advertising)

 The footer

 For a view of how all these elements are arranged, refer to Figure 8 - 11 .

 Content Management
 The main advantage of content management systems is that they enable you to create content easily. You

can create news items and calendar events, post images, and publish many other types of items. For

example, from any menu, you can choose the Add New pull - down menu and you ’ ll have several

options. We ’ ll go through the process of creating a few common items here.

 Creating a Page
 Choose the Add New pull - down menu. As shown in Figure 8 - 14 , you are provided with several options.

❑

❑

❑

❑

❑

❑

Figure 8-14

Part I: The Projects

190

Figure 8-17

 Choose a page. You ’ ll be presented with a window in which you can enter page information. The first

field is for a title, as shown in Figure 8 - 15 .

Figure 8-15

 Enter a title for the page.

 The next field is the Description field, as shown in Figure 8 - 16 .

Figure 8-16

 Next is the Body Text area, as shown in Figure 8 - 17 .

Chapter 8: Content Management System

191

 As you can see, several rich - text tools are available, enabling you to easily create context for the page.

Enter body text information.

 At the bottom is a Change note field where you can enter any optional notes relating to the edit you are

making on this page, as shown in Figure 8 - 18 .

 Creating a Collection
 A collection is a stored search that can later be accessed anytime you like.

 From the Add New pull - down menu, choose Collection. The Add Collection dialog shown in Figure 8 - 20

will be displayed.

 When you are done entering text in all the fields, click the Save button.

 Your page will then be displayed, as shown in the example in Figure 8 - 19 .

Figure 8-18

Figure 8-19

Part I: The Projects

192

Figure 8-20

 Notice that many of the fields are the same as those that appear in the Add a Page dialog. Enter a title, a

description, and body text as before. Below those fields are some options unique to the Collection type.

 The first set of fields is related to limiting search results, as shown in Figure 8 - 21 .

Figure 8-21

 Entering a value here enables you to limit the number of search results returned to the user, which makes

searching faster. For example, if a search that would normally return 500 items is limited to returning 50

items, the search will return much more quickly.

 For this example, check the Limit Search Results checkbox and enter 5 for the number of items.

 The last set of controls on the page is related to displaying search results as a table, as shown in Figure 8 - 22 .

Chapter 8: Content Management System

193

Figure 8-22

 This option enables you to show the search results as a table. In addition, you can pick which columns to

show in the results table (by default, only the Title column is shown). For this example, check the

checkbox and choose all the fields for displaying.

 At this point, the bottom part of the page should look like Figure 8 - 23 .

Figure 8-23

 Click the Save button. You ’ ll then see the My search collection screen shown in Figure 8 - 24 .

Figure 8-24

Part I: The Projects

194

 As the message on the page indicates, criteria still need to be set up in order for the collection to be

functional — in other words, it needs something to search on. Click the Criteria tab to bring up the

Criteria dialog shown in Figure 8 - 25 .

Figure 8-25

 There are other options in this dialog, but for this example we will set up date range criteria. Click the

Field name drop - down list box and select Creation Date. Then, from the Criteria type drop - down list

box, choose Date Range. Click the Add Criteria button. The screen shown in Figure 8 - 26 will appear.

Figure 8-26

 This screen enables the user to select a data range as the criteria for the search. Enter a range from Jan 1,

2001 to the current day (just to make sure you get some results). Check off “ Creation Date ” on the left,

and then click the Save button. After it saves, click the View tab to look at the results (the content will be

different from the example in Figure 8 - 27 , but the display should look the same).

Chapter 8: Content Management System

195

Figure 8-27

 Notice that the table runs off the page to the right. The collection can easily be edited to limit the number

of fields displayed by clicking the Edit tab and changing the values.

 There are many more options available for creating content; covering all of them is beyond the scope of
this book. For more Plone resources, please see Appendix B .

 User Permissions
 Users can be set up with one of several available roles:

 Contributor

 Editor

 Member

 Reader

 Reviewer

 Manager

❑

❑

❑

❑

❑

❑

Part I: The Projects

196

 Each of these roles allows for different permissions in the Plone system. They are based on permissions

managed in the underlying Zope framework. For more information, please see the Plone documentation

at www.plone.org/documentation .

 Summary
 This chapter has barely scratched the surface of all the features available in Plone. The great thing about

Plone is that it is written in Python, so it can be extended using Python. There are also other frameworks

in areas such as the following:

 Web frameworks, such as Django and TurboGears

 Desktop GUIs, such as GTK and Tk

 And many other applications

❑

❑

❑

Part II

Advanced Topics

 Interacting with the
Operating System

 Whether a program helps a user balance a checkbook, play a game, write a letter, or connect to a

website, all applications share one common feature — they all reside on top of an operating

system. Be it Linux, Windows, or some other operating system, most applications (including

Python scripts) must interface with the computer through its operating system. As with most

scripting languages such as Perl or Ruby, Python has a vast collection of modules to enable the

script programmer to interface with the operating system programmatically.

 This chapter examines ways to communicate with the operating system through Python. Rather

than a single, large application illustrating programming techniques, we will cover many topics

with various snippets of code.

 The commands and modules covered in this chapter are a small subset of what is available. For
complete coverage of operating system services, see the Python Reference Manual.

 The chapter covers three main topic areas:

 Generic operating system services — Many features of an operating system are shared

among the systems. For example, all operating systems have some way of listing files.

Python ’ s ability to access these generic operating system services makes programs more

cross - platform.

 Windows services — Python has many features to enable developers to access Windows

services, such as the Windows Registry, the Windows Event Viewer, Windows services,

and more. Techniques for accessing these services are explored in depth.

 Unix/Linux services — As with Windows, with Unix or Linux there are services specific to

the operating systems, such as syslog access, password and shadow password services,

and others.

❑

❑

❑

Part II: Advanced Topics

200

 Generic Operating System Services
 The modules covered in this section are related to operating system services that can be used regardless

of the operating system in which the script runs.

 The os Module — Generic OS Services
 The os module has a unique purpose. It verifies the operating system that the user is running under and

then calls the OS - specific function. For example, consider a function written as follows:

os.stat

 If the user is running on Unix or Linux, the stat function in the posix.stat function will be called;

whereas if the user is running on Windows, then the nt.stat function will be called. This enables a

program to be platform - independent.

 Examples

 The following sections provide some examples that demonstrate several of the features of the os

module.

 Example 1

 In this first example, a function takes a directory as a parameter, changes to that directory, and outputs

the name of the directory and its contents:

import os

def get_directory_info(dir):

 os.chdir(dir)

 current_dir = os.getcwd()

 dir_contents = os.listdir(dir)

 print “”

 print “Current directory = “, current_dir

 print “Directory contents = “, dir_contents

 print””

get_directory_info(‘C:\\python25’)

get_directory_info(‘C:\\’)

Chapter 9: Interacting with the Operating System

201

 The output is as follows:

Current directory = C:\python25

Directory contents = [‘DLLs’, ‘Doc’, ‘include’, ‘Lib’, ‘libs’, ‘python.exe’,

‘python25.exe’, ‘pythonw.exe’, ‘pythonw25.exe’, ‘tcl’, ‘Tools’, ‘w9xpopen.exe’]

Current directory = C:\

Directory contents = [‘$Recycle.Bin’, ‘autoexec.bat’, ‘Boot’, ‘bootmgr’,

‘BOOTSECT.BAK’, ‘config.sys’, ‘Documents and Settings’, ‘EasyEclipse-for-Python-

1.2.2.2’, ‘hiberfil.sys’, ‘jim’, ‘MSOCache’, ‘pagefile.sys’, ‘Program Files’,

‘ProgramData’, ‘Python25’, ‘ruby’, ‘sqmdata00.sqm’, ‘sqmnoopt00.sqm’, ‘System

Volume Information’, ‘Users’, ‘Windows’]

 Example 2

 This example uses the os.urandom() function. This function randomly generates byte data of a length

indicated as a parameter to the function. On a Unix or Linux system, this will query /dev/urandom , and

on Windows it will use CryptGenRandom . It can work well for cryptography or passing a unique

signature from one program to another:

import os

x = os.urandom(25)

y = x

z = os.urandom(25)

print “Does x = y? “, x==y

print “Does x == z? “, x==z

print “x = “, x

 The output is as follows:

Does x = y? True

Does x == z? False

x = 12

 The time Module — Format and Manipulate System Time
 The time module provides various functions related to manipulating and formatting time. The module

is always available, but not all functions are available on all platforms. Implementation of some of the

functions varies by operating system, so it might be helpful to consult the documentation for your

particular OS.

Part II: Advanced Topics

202

 The time value is a sequence of nine integers. The return values of gmtime() , localtime() , and

 strptime() also offer attribute names for individual fields. The following table indicates those attribute

names and values:

 Index Attribute Values

 0 tm_year Example, 2001

 1 tm_mon Range[1 - 12]

 2 tm_mday Range[1 - 31]

 3 tm_hour Range[0 - 23]

 4 tm_min Range[0 - 59]

 5 tm_sec Range[0 - 61]

 6 tm_wday Range[0 - 6]; Monday is 0

 7 tm_yday Range[1 - 366]

 8 tm_isdst 0, 1, - 1

 Examples

 The following examples show the time module in action.

 Example 1

 This example shows the time() method, which is a floating - point number expressed in seconds since the

epoch (January 1, 1970), in UTC:

import time

raw_input(“Press the [Enter] key: “)

time1 = time.time()

raw_input(“Wait a few seconds, then press the [Enter] key again: “)

time2 = time.time()

difference = int(time2 - time1)

print “There were “, difference, “seconds bettween the two choices”

 The output is as follows:

Press the [Enter] key:

Wait a few seconds, then press the [Enter] key again:

There were 5 seconds bettween the two choices

Chapter 9: Interacting with the Operating System

203

 Example 2

 This second example shows some implementations of displaying the time. Time can be shown as a tuple

or as a string, and can be formatted in many different ways. In addition, different time representations

are provided for (such as local time or Greenwich Mean Time [GMT] offset time):

import time

print “GMT Time as tuple: “, time.gmtime()

print “GMT Time as string: “, time.asctime(time.gmtime())

print “Local Time as tuple: “, time.localtime()

print “Local time as string: “, time.asctime(time.localtime())

print “Formatted local time in < month day, year > format: “, \

 time.strftime(“%B %d, %Y”)

 The output is as follows:

GMT Time as tuple: (2008, 2, 11, 1, 10, 36, 0, 42, 0)

GMT Time as string: Mon Feb 11 01:10:36 2008

Local Time as tuple: (2008, 2, 10, 17, 10, 36, 6, 41, 0)

Local time as string: Sun Feb 10 17:10:36 2008

Formatted local time in < month day, year > format: February 10, 2008

 The optparse Module — Parse Command - Line Options
 The optparse module gives you convenient functions for managing command - line options. It has a

built - in feature to display help if a user types a - - h or - - help option.

 Example

 The following example shows how the optparse module can create options for the user:

from optparse import OptionParser

parser = OptionParser()

parser.add_option(“-n”, “--name”, dest=”name”,

 help=”print name”)

(options, args) = parser.parse_args()

print “your name is “, options.name

 If the user runs the program with the preceding command - line option, the following output results:

I:\Applied_Python\Chapter_9 > python optparse-example1.py --name “Jim Knowlton”

your name is Jim Knowlton

Part II: Advanced Topics

204

 If the program is run with a - - h option, then this is the output:

I:\Applied_Python\Chapter_9 > python optparse-example1.py --h

Usage: optparse-example1.py [options]

Options:

 -h, --help show this help message and exit

 -n NAME, --name=NAME print name

 The platform Module — Get Platform Information
 The platform module includes both platform - specific functions and cross - platform functions. This

section addresses the cross - platform capability. The platform module enables you to query for both

hardware and software platform information. You can then parse the information returned and act

accordingly in your script.

 Example

 The following example demonstrates how to query for a particular operating system and then branch

the code based on the operating system in which the script is running:

import platform

if platform.system() == ‘Windows’:

 print “The platform is Windows”

 #put Windows-specific code here

elif platform.system() == ‘Linux”:

 print “The platform is Linux”

 #put Linux-specific code here

 If the script is run on a Windows box, then it will return the following message:

The platform is Windows

 If the script is run on a Linux box, then it will return this message:

The platform is Linux

 The getpass Module — Generate and Check Passwords
 The getpass module provides functionality to prompt the user for a password, and enables a script to

authenticate the user based on whether the correct password was entered. It also has a function to return

the login of the currently logged - in user.

Chapter 9: Interacting with the Operating System

205

 Example

 The following example prompts for a password and if the correct password is entered, displays the login

of the currently logged - in user:

import getpass

password = getpass.getpass()

if password == “letmein”:

 print(“Logged in username is “ + getpass.getuser())

 Some Other Things You Can Do
 This, of course, is just a sampling of the cross - platform operating system functionality available through

Python. Here are a few other areas to look into:

 The curses module provides access to the curses library, for portable advanced terminal

handling.

 The logging module assists in managing generic system logs.

 The errno module enables a script to translate error codes to error descriptions.

 Accessing Windows Services
 The following modules reflect some popular ways to access Windows services through Python.

 You ’ ll notice there isn ’ t any coverage of Windows UI programming here. Although it certainly can be
done, such a discussion is beyond the scope of this book.

 The winreg Module — Manipulate the Windows Registry
 The Windows Registry is a database that contains program and system information and settings. Often it

can be useful to access the Registry (to read from it or write to it) via a script. The winreg module makes

this easy to do in Python.

❑

❑

❑

Part II: Advanced Topics

206

 Example

 The following example queries a particular key in the Registry and outputs all the subkeys for that key:

import _winreg

explorer = _winreg.OpenKey(

 _winreg.HKEY_CURRENT_USER,

 “Software\\Microsoft\\Windows\\CurrentVersion\\Explorer”)

list values owned by this registry key

i = 0

try:

 while 1:

 name, value, type = _winreg.EnumValue(explorer, i)

 print repr(name),

 i += 1

except:

 print

 The following is the output for this program:

I:\Applied_Python\Chapter_9 > python winreg-example1.py

‘ShellState’ ‘CleanShutdown’ ‘Browse For Folder Width’ ‘Browse For Folder Height

‘ ‘link’ ‘Logon User Name’

 The winsound Module
 The winsound module enables a script to access the sound - playing functionality of Windows platforms.

It includes functions and several built - in constants. The module enables a script to play Windows system

sounds or WAV files.

 Example

 The following example shows how to play various sounds with the winsound module:

import winsound

print “Play Windows exit sound.”

winsound.PlaySound(“SystemExit”, winsound.SND_ALIAS)

print “Probably play Windows default sound”

winsound.PlaySound(“*”, winsound.SND_ALIAS)

print “Play a message beep”

winsound.MessageBeep()

print “Play an evil laugh”

winsound.PlaySound(‘evil_laugh.wav’,winsound.SND_FILENAME)

Chapter 9: Interacting with the Operating System

207

 As shown in the preceding example, the PlaySound() function has two parameters. The first parameter

contains either audio data formatted as a string, a WAV file, or nothing. Its second parameter is a

constant that tells the function what to do. The following table describes the available constants.

 Constant Name Description

 SND_LOOP Play the sound repeatedly. The SND_ASYNC flag must also be used to

avoid blocking. Cannot be used with SND_MEMORY .

 SND_MEMORY The sound parameter to PlaySound() is a memory image of a WAV file,

as a string.

 SND_PURGE Stop playing all instances of the specified sound.

 SND_ASYNC Returns immediately, allowing sounds to play asynchronously .

 SND_NODEFAULT If the specified sound cannot be found, do not play the system default

sound.

 SND_NOSTOP Do not interrupt sounds currently playing.

 SND_NOWAIT Return immediately if the sound driver is busy.

 MB_ICONASTERISK Play the SystemDefault sound.

 MB_ICONEXCLAMATION Play the SystemExclamation sound.

 MB_ICONHAND Play the SystemHand sound.

 MB_ICONQUESTION Play the SystemQuestion sound.

 MB_OK Play the SystemDefault sound.

 The MessageBeep() function takes an optional parameter of audio data formatted as a string. If no

parameter is given (as in the preceding example), the MB_OK sound is played.

 The win32serviceutil Module — Manage Windows

Services
 Windows services are processes that run on a Windows desktop or a Windows server machine. They can

be remotely started, stopped, restarted, and queried for status. To manage Windows services, there is the

 win32serviceutil module, found in Mark Hammond ’ s win32all package.

 For information on how to get the win32all package, please see Appendix B .

Part II: Advanced Topics

208

 Example

 The following example shows how to start a service, stop a service, restart a service, or get service status

through Python:

import win32serviceutil, time

def service_info(action, machine, service):

 if action == ‘stop’:

 win32serviceutil.StopService(service, machine)

 print ‘%s stopped successfully’ % service

 time.sleep(3)

 elif action == ‘start’:

 win32serviceutil.StartService(service, machine)

 print ‘%s started successfully’ % service

 time.sleep(3)

 elif action == ‘restart’:

 win32serviceutil.RestartService(service, machine)

 print ‘%s restarted successfully’ % service

 time.sleep(3)

 elif action == ‘status’:

 if win32serviceutil.QueryServiceStatus(service, machine)[1] == 4:

 print “%s is running normally” % service

 else:

 print “%s is *not* running” % service

machine = ‘localhost’

service = ‘RemoteRegistry’

service_info(‘start’, machine, service)

service_info(‘stop’, machine, service)

service_info(‘start’, machine, service)

service_info(‘restart’, machine, service)

service_info(‘status’, machine, service)

 Because this example is a little longer than the others, let ’ s examine it section by section.

 The service_info function takes an action, a machine, and a service name as parameters:

def service_info(action, machine, service):

 The rest of the function is simply an if structure that performs actions on the service based on the action

parameter passed in:

Chapter 9: Interacting with the Operating System

209

 if action == ‘stop’:

 win32serviceutil.StopService(service, machine)

 print ‘%s stopped successfully’ % service

 time.sleep(3)

 elif action == ‘start’:

 win32serviceutil.StartService(service, machine)

 print ‘%s started successfully’ % service

 time.sleep(3)

 elif action == ‘restart’:

 win32serviceutil.RestartService(service, machine)

 print ‘%s restarted successfully’ % service

 time.sleep(3)

 elif action == ‘status’:

 if win32serviceutil.QueryServiceStatus(service, machine)[1] == 4:

 print “%s is running normally” % service

 else:

 print “%s is *not* running” % service

 This function could be accessed by another program by importing the module, but in this case we want

to be able to run the program, so some code is added at the bottom of the program to run the function

multiple times, with different parameters:

machine = ‘localhost’

service = ‘RemoteRegistry’

service_info(‘start’, machine, service)

service_info(‘stop’, machine, service)

service_info(‘start’, machine, service)

service_info(‘restart’, machine, service)

service_info(‘status’, machine, service)

 When the program is run, it generates the following output:

RemoteRegistry started successfully

RemoteRegistry stopped successfully

RemoteRegistry started successfully

RemoteRegistry restarted successfully

RemoteRegistry is running normally

 The win32net Module — Access Windows

Networking Features
 The win32net module, also part of Mark Hammond ’ s win32all library of modules, includes many

functions and constants to make the management of Windows networks easier. This module enables you

to add, modify, delete, enumerate, and query for users, groups, shares, servers, and networks.

Part II: Advanced Topics

210

 Example

 The following example enumerates the users, groups, shares, and servers found on a computer. In this

example, it simply searches the local machine, but it could easily be modified to enable selecting and

authenticating to a remote computer:

import win32net

#print users

users = win32net.NetUserEnum(‘localhost’, 0)

print “USERS”

print “==========”

for user in users[0]:

 print user[‘name’] + “\n”

#print groups

groups = win32net.NetGroupEnum(‘localhost’, 0)

print “GROUPS”

print “==========”

for group in groups[0]:

 print group[‘name’] + “\n”

#print shares

shares = win32net.NetShareEnum(‘localhost’, 0)

print “SHARES”

print “==========”

for share in shares[0]:

 print share[‘netname’] + “\n”

#print servers

servers = win32net.NetServerEnum(None, 100)

print “SERVERS”

print “==========”

for server in servers[0]:

 print server[‘name’] + “\n”

 As you can see, the win32net module provides functions that enable you to enumerate different

network objects. It also enables you to perform other operations, such as the following:

 Adding objects

 Deleting objects

 Editing object properties

 Changing the level of information returned (verbosity)

❑

❑

❑

❑

Chapter 9: Interacting with the Operating System

211

 The results returned depend entirely on the particular information found, but here is the output that

resulted from running the script on my system:

I:\Applied_Python\Chapter_9 > python win32net-example1.py

USERS

==========

Administrator

Guest

jim

jim user

__vmware_user__

GROUPS

==========

None

SHARES

==========

ADMIN$

C$

IPC$

share of jim

SERVERS

==========

JIM-PC

 Some Other Things You Can Do
 In addition to what has been discussed in this section, there are many more ways to integrate a Python

script with Windows, including the following:

 win32crypt to use Windows encryption to copy protect data

 win32file to interface with Windows ’ file APIs

 win32inet to interact with Internet protocols through Windows

 wincerapi to actually write Python applications to interface with Windows CE

 For more information, be sure to check out Appendix A , which will point you toward some great
resources for programming with Python in Windows, including a book by Mark Hammond, the creator
of the win32api library for which much of this example code is written.

❑

❑

❑

❑

Part II: Advanced Topics

212

 Accessing Unix/Linux Services
 The following examples demonstrate some ways in which Python scripts can interact with a Linux or

Unix system.

 These examples were run on a computer running Ubuntu Linux 7.10. However, the examples should
run on any version of Unix.

 The termios Module — Access Unix - Style TTY Interface
 The termios module provides an interface to tty I/O control. For a complete description of these calls,

see the Linux or Unix manual pages. It is only available for those Unix versions that support POSIX

 termios style tty I/O control. All functions in this module take a file descriptor as their first argument.

This can be an integer, such as what is contained in sys.stdin.fileno() , or a file object, such as

sys.stdin itself.

 Example

 The following example shows the termios module being used to accept a password without echoing

the password to the screen, and returning the password to the caller:

def getpass(prompt = “Password: “):

 import termios, sys

 fd = sys.stdin.fileno()

 old = termios.tcgetattr(fd)

 new = termios.tcgetattr(fd)

 new[3] = new[3] & ~termios.ECHO # lflags

 try:

 termios.tcsetattr(fd, termios.TCSADRAIN, new)

 passwd = raw_input(prompt)

 finally:

 termios.tcsetattr(fd, termios.TCSADRAIN, old)

 return passwd

password = getpass()

if password == “zanzibar”:

 print “Let you in”

else:

 print “Access denied”

 The resource Module — Manage Unix System Resources
 The resource module provides a mechanism for managing and controlling the amount of resources

used by a particular program. It has several functions available, and makes use of a list of constants

related to system resources.

Chapter 9: Interacting with the Operating System

213

 Example

 The example makes use of the getrusage() function. It returns a tuple that contains 16 different data

items related to system resource usage. The following table shows all the data items returned.

 Index Field Resource

 0 ru_utime Time in user mode (float)

 1 ru_stime Time in system mode (float)

 2 ru_maxrss Maximum resident set size

 3 ru_ixrss Shared memory size

 4 ru_idrss Unshared memory size

 5 ru_isrss Unshared stack size

 6 ru_minflt Page faults not requiring I/O

 7 ru_majflt Page faults requiring I/O

 8 ru_nswap Number of swap - outs

 9 ru_inblock Block input operations

 10 ru_oublock Block output operations

 11 ru_msgsnd Messages sent

 12 ru_msgrcv Messages received

 13 ru_nsignals Signals received

 14 ru_nvcsw Voluntary context switches

 15 ru_nivcsw Involuntary context switches

 Here is the entire example:

import resource

resourcelist = [‘time in user mode’,

‘time in system mode’,

‘maximum resident set size’,

‘shared memory size’,

‘unshared memory size’,

‘unshared stack size’,

‘page faults not requiring I/O’,

‘page faults requiring I/O’,

(continued)

Part II: Advanced Topics

214

‘number of swap outs’,

‘block input operations’,

‘block output operations’,

‘messages sent’,

‘messages received’,

‘signals received’,

‘voluntary context switches’,

‘involuntary context switches’]

getresource = resource.getrusage(resource.RUSAGE_SELF)

for i, item in enumerate(resourcelist):

 print item, “: “, getresource[i]

 Now let ’ s go through the example. First, a list is created with the text for all the items:

resourcelist = [‘time in user mode’,

‘time in system mode’,

‘maximum resident set size’,

‘shared memory size’,

‘unshared memory size’,

‘unshared stack size’,

‘page faults not requiring I/O’,

‘page faults requiring I/O’,

‘number of swap outs’,

‘block input operations’,

‘block output operations’,

‘messages sent’,

‘messages received’,

‘signals received’,

‘voluntary context switches’,

‘involuntary context switches’]

 Then the getrusage() function is run, and its output is assigned to the list getresource :

getresource = resource.getrusage(resource.RUSAGE_SELF)

 Finally, a for loop is used to output the information to the screen in a readable way:

for i, item in enumerate(resourcelist):

 print item, “: “, getresource[i]

(continued)

Chapter 9: Interacting with the Operating System

215

 When the program is run, the output looks like this:

time in user mode : 0.016001

time in system mode : 0.008

maximum resident set size : 0

shared memory size : 0

unshared memory size : 0

unshared stack size : 0

page faults not requiring I/O : 733

page faults requiring I/O : 0

number of swap outs : 0

block input operations : 0

block output operations : 0

messages sent : 0

messages received : 0

signals received : 0

voluntary context switches : 1

involuntary context switches : 4

 The syslog Module — Access the Unix syslog
 Python ’ s syslog module enables you to access the syslog , write log entries, and read the log.

 Example

 The following example enables users to choose a log priority and enter a message. It then reports the

status of the attempt to write to the syslog :

import syslog

print “””

Enter a number and press [Enter]:

1 - Emergency

2 - Alert

3 - Critical

4 - Error

5 - Warning

6 - Notics

7 - Info

8 - Debug

“””

choice = raw_input(“”)

message = raw_input(“Type the log message and press [Enter]: “)

if choice == ‘1’:

 log_priority = syslog.LOG_EMERG

(continued)

Part II: Advanced Topics

216

elif choice == ‘2’:

 log_priority = syslog.LOG_ALERT

elif choice == ‘3’:

 log_priority = syslog.LOG_CRIT

elif choice == ‘4’:

 log_priority = syslog.LOG_ERR

elif choice == ‘5’:

 log_priority = syslog.LOG_WARNING

elif choice == ‘6’:

 log_priority = syslog.LOG_NOTICE

elif choice == ‘7’:

 log_priority = syslog.LOG_INFO

elif choice == ‘8’:

 log_priority = syslog.LOG_DEBUG

try:

 syslog.syslog(log_priority, message)

 print “log entry recorded”

except:

 print “problem writing to syslog”

 raise

 The first section of the program simply presents a menu so that the user can choose a log priority:

print “””

Enter a number and press [Enter]:

1 - Emergency

2 - Alert

3 - Critical

4 - Error

5 - Warning

6 - Notics

7 - Info

8 - Debug

“””

choice = raw_input(“”)

 Then the user is prompted for the message to be written to the log:

message = raw_input(“Type the log message and press [Enter]: “)

(continued)

Chapter 9: Interacting with the Operating System

217

 Based on the user ’ s selection, the program then assigns the log priority:

if choice == ‘1’:

 log_priority = syslog.LOG_EMERG

elif choice == ‘2’:

 log_priority = syslog.LOG_ALERT

elif choice == ‘3’:

 log_priority = syslog.LOG_CRIT

elif choice == ‘4’:

 log_priority = syslog.LOG_ERR

elif choice == ‘5’:

 log_priority = syslog.LOG_WARNING

elif choice == ‘6’:

 log_priority = syslog.LOG_NOTICE

elif choice == ‘7’:

 log_priority = syslog.LOG_INFO

elif choice == ‘8’:

 log_priority = syslog.LOG_DEBUG

 Finally, the syslog is written to, and the status is returned:

try:

 syslog.syslog(log_priority, message)

 print “log entry recorded”

except:

 print “problem writing to syslog”

 raise

 The commands Module — Run Commands

and Get Output
 The commands module enables you to run system commands and capture the status of the system and

the output generated by the command. It consists of the getstatus() , getoutput() , and

 getstatusoutput() functions:

 getstatus(file) — Returns the output of “ ls - ld file ” to a string

 getoutput(command) — Returns the output of a command as a string

 getstatusoutput(command) — Returns a tuple containing a status code representing the state

of the system, and the output of the command

❑

❑

❑

Part II: Advanced Topics

218

 Example

 Following is an example showing each of the functions in action:

import commands

print r”output of commands.getstatusoutput(‘ls /usr/local’)”

output1 = commands.getstatusoutput(‘ls /usr/local’)

print output1

print “”

print r”output of commands.getstatusoutput(‘cat /bin/junk’)”

output2 = commands.getstatusoutput(‘cat /bin/junk’)

print output2

print “”

print r”output of commands.getoutput(‘ls /usr/local’)”

output3 = commands.getoutput(‘ls /usr/local’)

print output3

print “”

print r”output of commands.getstatus(‘/usr/local’)”

output4 = commands.getstatus(‘/usr/local’)

print output4

print “”

 Here is what the screen output looks like for this example:

output of commands.getstatusoutput(‘ls /usr/local’)

(0, ‘bin\netc\ngames\ninclude\nlib\nman\nsbin\nshare\nsrc’)

output of commands.getstatusoutput(‘cat /bin/junk’)

(256, ‘cat: /bin/junk: No such file or directory’)

output of commands.getoutput(‘ls /usr/local’)

bin

etc

games

include

lib

man

sbin

share

src

output of commands.getstatus(‘/usr/local’)

drwxr-xr-x 10 root root 4096 2007-10-16 01:17 /usr/local

Chapter 9: Interacting with the Operating System

219

 Some Other Things You Can Do
 There are many, many ways to interact with a Linux/Unix system in Python. Here are some modules to

check out:

 posix enables you to access operating system functionality through the POSIX interface.

 grp provides access to the group database.

 pwd provides access to the password database.

 pipes provides an interface to shell pipelines.

 nis provides access to Sun ’ s NIS directory (Yellow Pages).

 Summary
 This chapter has touched on many different techniques for interacting with the operating system.

Generic operating system modules are those that can be used regardless of the operating system in

which the script is run. This chapter covered the following modules:

 The os module verifies the operating system that the user is running under, and then calls the

OS - specific function.

 The time module provides various functions related to manipulating and formatting time.

 The optparse module gives you convenient functions to manage command - line options.

 The platform module has platform - specific functions and cross - platform functions.

 The getpass module provides functionality to prompt the user for a password, and enables a

script to authenticate the user based on whether or not a correct password was entered.

 Windows - based modules enable a script to access Windows features. This chapter covered the

following Windows - based modules:

 The winreg module enables a script to read to and write from the Windows Registry.

 The winsound module enables a script to access the sound - playing functionality of Windows

platforms.

 The win32serviceutil module, found in Mark Hammond ’ s win32all package, enables a

Python script to manage Windows services.

 The win32net module, also part of Mark Hammond ’ s win32all library of modules, has many

functions and constants to make management of Windows networks easier.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Part II: Advanced Topics

220

 This chapter provided several examples demonstrating how Python scripts can interact with a Linux or

Unix system:

 The termios module provides an interface to tty I/O control.

 The resource module provides a mechanism for managing and controlling the amount of

resources used by a particular program.

 Python ’ s syslog module enables you to access the syslog to write log entries and read the log.

 The commands module enables you to run system commands and capture the status of the

system and the output generated by the command.

❑

❑

❑

❑

 Debugging and Testing

 All of the projects from the previous chapters — whether it was a project that accessed files on the

file system, interacted with a database, or served pages on a web server — have one thing in

common: They didn ’ t work the first time.

 It is inevitable as a programmer that you will run into errors in your programs. Fortunately,

Python has built - in features to help you discover those “ bugs ” and take care of them:

 The Python debugger (which is actually just another Python module itself) supports

setting decision markers called breakpoints and allows you to “ step ” through code one line

at a time. It supports very sophisticated debugging if needed, including providing a stack

viewer.

 There are several Python automated test frameworks that enable you to build automated

tests to test your code. Having automated tests enables you to add functionality and run

your tests to verify that you haven ’ t broken anything.

 The Python Debugger
 The basic purpose of a debugger is to enable a developer to “ walk ” through a program as it

executes, noticing specific areas where the program breaks, and where it could be modified or

optimized to work better.

❑

❑

Part II: Advanced Topics

222

 Running the Debugger
 The Python debugger can be utilized in several different ways:

 Importing the pdb Module Directly

 The pdb module is the Python debugger. You can access it by importing it directly either in a script or

in the Python console:

Import pdb

 With the debugger module imported, you then have access to many different functions for debugging.

This is especially useful if you import the module from Python ’ s interactive interpreter, so let ’ s look at an

example of doing that now.

 Download the supplemental code from the website for Chapter 10. From that directory, launch the

Python interpreter. You ’ ll see a screen like the following:

ActivePython 2.5.1.1 (ActiveState Software Inc.) based on

Python 2.5.1 (r251:54863, May 1 2007, 17:47:05) [MSC v.1310 32 bit (Intel)] on

win32

Type “help”, “copyright”, “credits” or “license” for more information.

 > > >

 The first thing to do is to import the Python debugger. Type import pdb and press Enter. You ’ ll get the

 > > > Python prompt back.

 At this point, import the test module created for this example, called pdbtest . Do this by typing import

pdbtest and pressing Enter. The screen should now look like the following:

ActivePython 2.5.1.1 (ActiveState Software Inc.) based on

Python 2.5.1 (r251:54863, May 1 2007, 17:47:05) [MSC v.1310 32 bit (Intel)] on

win32

Type “help”, “copyright”, “credits” or “license” for more information.

 > > > import pdb

 > > > import pdbtest

 > > >

Chapter 10: Debugging and Testing

223

 Now the Python debugger does its work. Run the Debugger ’ s run() method by typing the following

and pressing Enter:

pdb.run(‘pdbtest.testfunction()’)

 This will start the debugger and give you the following prompt:

 > < string > (1) < module > ()

(Pdb)

 At this point, the debugger is waiting for you to tell it what to do. The most common commands are as

follows:

 Step – – Tells the debugger to execute only the next line of code, and then stop

 Next – – Continues execution until the next line in the current function is reached; otherwise, it

returns

 Return – – Continues execution until the current function returns

 Continue – – Tells the debugger to run the program normally from that point, without pausing

 This is just a sampling of the Python debugger commands available – – for the complete list of commands,
see the official Python documentation at www.python.org .

❑

❑

❑

❑

What Is pdbtest?

The pdbtest module is simply a test program we are using to demonstrate the pdb
 debugger. Here is the code for it:

def testfunction():

 name = raw_input(“Enter your name: “)

 if name == “Jim“:

 print “Hello Jim!”

 else:

 print “You’re not Jim - good bye.”

Part II: Advanced Topics

224

 As shown in Figure 10 - 1 , there are several options:

 Go to File/Line – – Looks around the insertion point for a filename and line number, opens the

file, and shows the line

 Debugger – – Opens a Debugger UI (discussed below) and runs commands in the shell under

the debugger

 Stack Viewer – – Shows the stack viewer for the most recent exception/traceback

 Auto - open Stack Viewer – – Opens the stack viewer automatically every time there is an

exception/traceback

 The Debug menu is only available in IDLE from the Python Shell window, not from a window in which
you are editing a Python file.

 The Debug Control window

 The Debug Control window is shown in Figure 10 - 2 .

❑

❑

❑

❑

Figure 10-1

 Accessing the Python Debugger through IDLE

 If you are running IDLE, there is a menu for debugging features, as shown in Figure 10 - 1 .

Chapter 10: Debugging and Testing

225

 As shown in the figure, this window has several main areas:

 Five buttons that enable you to interact with the debugger:

❑ Go — Runs the program without pause

❑ Step — Executes only the next line

❑ Over — Skips the next line

❑ Out — Jumps out of a loop

❑ Quit — Quits the running program (but keeps the debugger running)

 Four checkboxes that enable you to select what to monitor:

❑ Stack

❑ Source

❑ Locals

❑ Globals

 A message window displaying debugger messages

 A Variables area at the bottom (depending on what you chose to monitor)

 Example

 Let ’ s explore a brief example to show how the debugger works:

 1. From the Python Shell in IDLE, select Debug Debugger.

 2. In the debugger, select Stack and Globals, and ensure that Source and Locals are deselected.

 3. In the Python Shell, type the following command: name = “ jim ” .

❑

❑

❑

❑

Figure 10-2

Part II: Advanced Topics

226

 You can use your own name if you like. After doing that, the debugger window should look something

like what is shown in Figure 10 - 3 .

Figure 10-3

 Notice that you don ’ t have your prompt back yet in the Python Shell. That ’ s because the command has

not actually been executed yet. Click the Step button. The command is executed and the prompt is back

in the Python Shell.

 Python Test Frameworks
 After a program is written, there is a tendency to feel a sense of great accomplishment, to feel like the

work is done. This is, however, not true. A program must be tested.

 Why We Test
 A program is only “ done ” when it can be verified that it accomplishes two things:

 “ It does the thing right ” – – The program must be implemented in the way intended by the

program design.

 “ It does the right thing ” – – The program, as implemented, must actually solve the problem it

was intended to solve.

 This may seem redundant, so perhaps it can be illustrated best with an example. Let ’ s say the goal is to

have a program that enables users to log in to a website and view information about their local machine,

such as user accounts and groups. However, suppose that in designing the program, the information is

sent across the network in plain text. The program was implemented in exactly the way intended, but

the problem was the intention itself – – sending local account information across the Internet in plain text

is a bad idea, as it is extremely insecure.

❑

❑

Chapter 10: Debugging and Testing

227

 Therefore, by testing, we are verifying not only the implementation , but also the intention .

 Unit Testing
 Unit testing is simply testing a unit of code, rather than testing the entire program. The

 snapshothelper.py module from Chapter 2 is a good example to look at. Since I am going to refer to it

several times in this section, let ’ s look at it now:

import os, pickle, difflib, sys, pprint

def createSnapshot(directory, filename):

 cumulative_directories = []

 cumulative_files = []

 for root, dirs, files in os.walk(directory):

 cumulative_directories = cumulative_directories + dirs

 cumulative_files = cumulative_files + files

 try:

 output = open(filename, ‘wb’)

 pickle.dump(cumulative_directories, output, -1)

 pickle.dump(cumulative_files, output, -1)

 output.close()

 except:

 print “Problems encounted trying to save snapshot file!”

 raw_input(“Press [Enter] to continue...”)

 return

def listSnapshots(extension):

 snaplist = []

 filelist = os.listdir(os.curdir)

 for item in filelist:

 if item.find(extension)!= -1:

 snaplist.append(item)

 print ‘’’

 Snapshot list:

 ========================

 ‘’’

 printList(snaplist)

 raw_input(“Press [Enter] to continue...”)

def compareSnapshots(snapfile1, snapfile2):

 try:

 pkl_file = open(snapfile1, ‘rb’)

 dirs1 = pickle.load(pkl_file)

(continued)

Part II: Advanced Topics

228

 files1 = pickle.load(pkl_file)

 pkl_file.close()

 pk2_file = open(snapfile2, ‘rb’)

 dirs2 = pickle.load(pk2_file)

 files2 = pickle.load(pk2_file)

 pk2_file.close()

 except:

 print “Problems encountered accessing snapshot files!”

 raw_input(“\n\nPress [Enter] to continue...”)

 return

 result_dirs = list(difflib.unified_diff(dirs1, dirs2))

 result_files = list(difflib.unified_diff(files1, files2))

 added_dirs = []

 removed_dirs = []

 added_files = []

 removed_files = []

 for result in result_files:

 if result.find(“\n”) == -1:

 if result[0] == “+”:

 resultadd = result.strip(‘+’)

 added_files.append(resultadd)

 elif result[0] == “-”:

 resultsubtract = result.strip(‘-’)

 removed_files.append(resultsubtract)

 for result in result_dirs:

 if result.find(“\n”) == -1:

 if result[0] == “+”:

 resultadd = result.strip(‘+’)

 added_dirs.append(resultadd)

 elif result[0] == “-”:

 resultsubtract = result.strip(‘-’)

 removed_dirs.append(resultsubtract)

 print “\n\nAdded Directories:\n”

 printList(added_dirs)

 print “\n\nAdded Files:\n”

 printList(added_files)

 print “\n\nRemoved Directories:\n”

 printList(removed_dirs)

 print “\n\nRemoved Files:\n”

 printList(removed_files)

 raw_input(“\n\nPress [Enter] to continue...”)

def showHelp():

 os.system(‘cls’)

 print ‘’’

 DIRECTORY/FILE COMPARISON TOOL

 ====================================

(continued)

Chapter 10: Debugging and Testing

229

 Welcome to the directory/file snapshot tool. This tool

 allows you to create snapshots of a directory/file tree,

 list the snapshots you have created in the current directory,

 and compare two snapshots, listing any directories and files

 added or deleted between the first snapshot and the second.

 To run the program follow the following procedure:

 1. Create a snapshot

 2. List snapshot files

 3. Compare snapshots

 4. Help (this screen)

 5. Exit

 ‘’’

 raw_input(“Press [Enter] to continue...”)

def invalidChoice():

 print “INVALID CHOICE, TRY AGAIN!”

 raw_input(“\n\nPress [Enter] to continue...”)

 return

def printList(list):

 fulllist = “”

 indexnum = 1

 if len(list) > 20:

 for item in list:

 print “\t\t” + item,

 if (indexnum)%3 == 0:

 print “\n”

 indexnum = indexnum + 1

 else:

 for item in list:

 print “\t” + item

 This program could simply be run and verified, but if, for example, you wanted to test just the

createSnapshot() function, you would only need to test that portion, or “ unit. ” This is done with a

unit test. It involves passing to that unit its needed parameters, and then using some mechanism (such

as assertions) to verify that the expected behavior is occurring.

 Manual Unit Testing with the Python Interactive Interpreter

 A unique feature of Python is its ability to test specific functions using the interactive interpreter. Using

the Python interpreter, you can import a module and run a specific function, passing it values and then

using the unittest module to assert that particular conditions are true.

Part II: Advanced Topics

230

 To begin, start the Python interpreter, and then import the snapshothelper.py module with the

following command (assuming you are running Python from the directory where you downloaded this

chapter ’ s files):

import snaphothelper

 Now the function can be run, with parameters you choose. In this case, the createSnapshot() function

will be run, passing the directory to create a snapshot of, along with the filename to create:

snapshothelper.createSnapshot(‘c:\\python25’, ‘python25snap.snp’)

 The function is then run with the parameters specified.

 To verify that the file was created, you could use a DOS prompt or Unix terminal, but as long as the

Python interpreter is up, let ’ s do it through that.

 Import the os module and then type the following in the interpreter window (yes, there ’ s a typo here —

 type it exactly as shown):

assert ‘python25snap.snp1’ in os.listdir(os.curdir), “File did not get created”

 Why Testers Should Befriend the Python Interactive Interpreter

 The great thing for testers about the Python interactive interpreter is that you can
 modify your testing on - the - fly as you test. It gives you the framework and libraries of
automated testing but with the spontaneity of exploratory testing.

 About the assert Statement

The format of the assert statement is assert statement1, statement2 . Basically,
it works as follows: If statement 1 is true, then statement 2 is not executed.

 Did you get an error? Good! Your screen should look like this:

 > > > assert ‘pythonsnap.snp1’ in os.listdir(os.curdir), “File did not get created”

Traceback (most recent call last):

 File “ < stdin > ”, line 1, in < module >

AssertionError: File did not get created

Chapter 10: Debugging and Testing

231

 As you can see, the assertion returns a traceback, and prints the error message defined in the assert

statement.

 Let ’ s try the statement again, this time using the correct filename:

assert ‘python25snap.snp’ in os.listdir(os.curdir), “File did not get created”

 Nothing happened? That ’ s exactly right. If an assertion is true, it simply continues, which in this case

means returning the interpreter prompt.

 unittest — Python ’ s Default Unit Test Framework

 Python comes with a unit testing module out of the box, called unittest , also referred to as PyUnit . It is

a Python - language version of the popular JUnit test framework for Java, written by Kent Beck and Erich

Gamma.

 unittest supports the following:

 Automation of tests

 Setup and shutdown functions, which enable sharing of functionality among all tests

 Aggregating tests into suites

 Separating tests from the reporting framework

 To accomplish these features, unittest implements several concepts:

 Test fixture – – This is the “ housekeeping ” needed to perform associated tests, and any necessary

cleanup actions, such as deleting temporary files.

 Test case – – A test case is the smallest unit of testing. At the most basic level, it consists of

executing some code and testing the behavior of the code against a predetermined standard.

 Test suite – – A test suite is simply a collection. Test suites can be nested, so a suite can contain

other suites.

 Test runner – – A test runner, quite simply, runs tests. It is a component that facilitates the

execution of a set of tests and the displaying of results to the user.

 Example

 As an example, let ’ s build a test for the createSnapshot() method in the snapshothelper.py

module. The following paths assume a Windows system, so adjust the directory paths as appropriate if

❑

❑

❑

❑

❑

❑

❑

❑

Part II: Advanced Topics

232

you are on Unix or Linux. Here is what the file (testsnapshothelper.py in the Chapter 10 directory)

looks like:

import snapshothelper

import unittest

import os

class TestCreateSnapshot(unittest.TestCase):

 def setUp(self):

 import os

 os.chdir (‘c:\\snapshots’)

 def tearDown(self):

 os.system(‘del *.snp’)

 def testpython25snap(self):

 # make a snapshot of the Python25 directory

 snapshothelper.createSnapshot(‘c:\\python25’, ‘python25snap.snp’)

 assert ‘python25snap.snp’ in os.listdir(os.curdir), ‘Snapshot not created!’

 def testprogramfilesdir(self):

 # make a snapshot of the Python25 directory

 snapshothelper.createSnapshot(‘c:\\program files’, ‘programfilessnap.snp’)

 assert ‘programfilessnap.snp’ in os.listdir(os.curdir), ‘Snapshot not

 created!’

if __name__ == ‘__main__’:

 unittest.main()

 The first thing the program does is import the modules it is going to need:

import snapshothelper

import unittest

import os

 Next, it initializes a class that is inherited from unittest.TestCase :

class TestCreateSnapshot(unittest.TestCase):

 Two special methods are the first methods in the class. The setUp method is run at the beginning of each

test method in the class, and the tearDown method is run at the end of each test method:

 def setUp(self):

 import os

 os.chdir (‘c:\\snapshots’)

 def tearDown(self):

 os.system(‘del *.snp’)

Chapter 10: Debugging and Testing

233

 Next are the test methods. Notice that each test methods begins with the word test . That ’ s not just a

naming convention – – it tells the TestCase class that the method is a test method, to be run by the

test runner.

 Consider the first test method:

 def testpython25snap(self):

 # make a snapshot of the Python25 directory

 snapshothelper.createSnapshot(‘c:\\python25’, ‘python25snap.snp’)

 assert ‘python25snap.snp’ in os.listdir(os.curdir), ‘Snapshot not created!’

 Notice it simply contains code to exercise the function under test, and then an assert statement

verifying that the function executed correctly.

 The next test method is structured much the same – – it is to test that you can create a snapshot for the

program files directory, which has a space in the directory name:

def testprogramfilesdir(self):

 # make a snapshot of the Python25 directory

 snapshothelper.createSnapshot(‘c:\\program files’, ‘programfilessnap.snp’)

 assert ‘programfilessnap.snp’ in os.listdir(os.curdir), ‘Snapshot not created!’

 Finally, the following lines of code, placed at the bottom of a test module, enable the tests to be run by

simply executing the module:

if __name__ == ‘__main__’:

 unittest.main()

 Running the Tests

 Go ahead and run the example by typing the following from a command prompt at the directory where

you downloaded the files for Chapter 10: python testsnapshothelper.py.

 You should see errors similar to the following:

EE

==

ERROR: testprogramfilesdir (__main__.TestCreateSnapshot)

--

Traceback (most recent call last):

 File “testsnapshothelper.py”, line 9, in setUp

 os.chdir (‘c:\\snapshots’)

WindowsError: [Error 2] The system cannot find the file specified: ‘c:\\snapshots’

==

(continued)

Part II: Advanced Topics

234

ERROR: testpython25snap (__main__.TestCreateSnapshot)

--

Traceback (most recent call last):

 File “testsnapshothelper.py”, line 9, in setUp

 os.chdir (‘c:\\snapshots’)

WindowsError: [Error 2] The system cannot find the file specified: ‘c:\\snapshots’

--

Ran 2 tests in 0.009s

FAILED (errors=2)

 Ah, we forgot to create the snapshots directory. You can see how the output of errors or failing tests is

formatted, to help you troubleshoot the results of the test run.

 Create the c:\snapshots directory and run the test module again. You ’ ll see the following:

Press [Enter] to continue...

.Press [Enter] to continue...

.

--

Ran 2 tests in 18.081s

OK

 Note that after each function you were prompted to press Enter. That ’ s not a behavior of the test

framework; the function itself does that. The output indicates that all the tests passed, and how long it

took to run the tests.

 doctest — a Compelling Alternative

 Another option when building a framework for testing Python applications is doctest , a Python

module that enables tests to be defined within docstrings as interactive sessions, and then run.

 The best way to understand how it works is to look at a simple example, so let ’ s do that now.

Example 1

 This first example shows the simplest way of running a doctest , by embedding docstrings inside a

function itself:

def printname(firstname, lastname):

 “””Print firstname and lastname

 > > > printname(“Jim”, “Knowlton”)

 Jim Knowlton

(continued)

Chapter 10: Debugging and Testing

235

 > > > printname(“John”, “Doe”)

 John Doe

 “””

 print “%s %s” % (firstname, lastname)

def _test():

 import doctest

 doctest.testmod()

if __name__ == “__main__”:

 _test()

 This program defines a function printname , which takes a first name and a last name as parameters:

def printname(firstname, lastname):

 This is followed by a comment (docstring) that shows the expected output of a test, written in the form

of an interactive shell session:

 “””Print firstname and lastname

 > > > printname(“Jim”, “Knowlton”)

 Jim Knowlton

 > > > printname(“John”, “Doe”)

 John Doe

 “””

 The next line is the actual functionality of the function, which prints the first name and last name, with a

space in between:

 print “%s %s” % (firstname, lastname)

 The final block of code imports the doctest module and allows the doctests to be run when the

module is executed:

def _test():

 import doctest

 doctest.testmod()

if __name__ == “__main__”:

 _test()

 Example 2

 This example shows how tests can be defined in a simple text file, separate from the module itself,

and run.

Part II: Advanced Topics

236

 The snapshottests . txt text file (simply copied and pasted from an interactive session) is as follows:

 > > > def printname(firstname, lastname):

... print firstname + “ “ + lastname

...

 > > > printname(“Jim”, “Knowlton”)

Jim Knowlton

 > > > printname(“Bob”)

Traceback (most recent call last):

 File “ < stdin > ”, line 1, in < module >

TypeError: printname() takes exactly 2 arguments (1 given)

 > > > printname(“William”, “Jennings”, “Bryan”)

Traceback (most recent call last):

 File “ < stdin > ”, line 1, in < module >

TypeError: printname() takes exactly 2 arguments (3 given)

 > > >

 Now let ’ s look at the doctestexample2 module. It ’ s very simple:

import doctest

doctest.testfile(“snapshottests.txt”)

 As you can see, it is simply a matter of creating a text file from a Python interactive session and then

creating a script that loads that text file (with the help of the testfile() function).

 If the module is run from the command line with a - v option (for verbose), it generates the following

output:

Trying:

 def printname(firstname, lastname):

 print firstname + “ “ + lastname

Expecting nothing

ok

Trying:

 printname(“Jim”, “Knowlton”)

Expecting:

 Jim Knowlton

ok

Trying:

 printname(“Bob”)

Expecting:

 Traceback (most recent call last):

 File “ < stdin > ”, line 1, in < module >

 TypeError: printname() takes exactly 2 arguments (1 given)

ok

Trying:

 printname(“William”, “Jennings”, “Bryan”)

Chapter 10: Debugging and Testing

237

Expecting:

 Traceback (most recent call last):

 File “ < stdin > ”, line 1, in < module >

 TypeError: printname() takes exactly 2 arguments (3 given)

ok

1 items passed all tests:

 4 tests in snapshottests.txt

4 tests in 1 items.

4 passed and 0 failed.

Test passed.

 Summary
 This chapter wasn ’ t about writing code – – it was about making code right . This can often be the most

critical phase of software development, where “ thinking like the customer ” enables robust tests to be

developed, and troubleshooting skills can facilitate solving thorny problems. Python provides some

great tools to enable developers to effectively perfect their code.

 This chapter covered the following main topics:

 The Python debugger, including the following:

❑ Importing the pdb module directly through the Python interactive interpreter

❑ Accessing the debugger through the IDLE

 Python test frameworks, including the following:

❑ unittest (PyTest)

❑ doctest

 Final Remarks
 If you ’ ve made it all the way through this book, congratulations. You now know how to access files,

work with databases, communicate via Internet protocols, access operating system resources, and more —

all from a popular, free, open - source, mature, fun programming language. Your work life – – and your

life in general – – may never be the same.

❑

❑

 Where to Go From
Here — Resources

That Can Help

 As indicated throughout the preceding chapters, the purpose of this book has been to provide you

with the tools you need to be productive with Python, and to avoid areas that might have less

universal appeal. However, as you develop your knowledge and use of Python, you will no doubt

want to delve into deeper waters.

 This appendix suggests some resources I have found to be immensely useful.

 Books
 Learning Python, Third Edition, by Mark Lutz (O ’ Reilly, 2007) — This is a great introductory

overview of the Python language itself. It doesn ’ t delve deeply into all the different

Python modules, but rather focuses on the language. As such, it ’ s a good companion

volume to this book.

 Python Cookbook, by Alex Martelli, Anna Ravenscroft, and David Ascher (O ’ Reilly, 2005) —

 This is an excellent collection of “ recipes ” for accomplishing different tasks in Python.

Each chapter is accompanied by an introductory section.

 Core Python, Second Edition, by Wesley Chun (Prentice Hall, 2006) — This is another great

book that both provides introductory material and delves more deeply into areas such as

object - oriented development with Python.

❑

❑

❑

Appendix A: Where to Go From Here — Resources That Can Help

240

 Beginning Python (Programmer to Programmer), by Peter C. Norton, Alex Samuel, Dave Aitel, and

Eric Foster - Johnson (Wrox, 2005) — This volume strikes just the right balance between deep

coverage of the Python language and offering real - world scenarios demonstrating how you can

apply the concepts. If you don ’ t opt for Core Python, this is a good addition for your bookshelf.

 Beginning Python: From Novice to Professional, by Magnus Lie Hetland (Apress, 2005) — This book

provides a solid introduction to the language. Originally titled Practical Python , this book has

been around for awhile and has undergone some good revisions.

 Dive into Python, by Mark Pilgrim (Apress, 2004) — This is a unique introduction to Python that

teaches Python by beginning with the code itself, rather than using text to introduce a concept

and then illustrate it with code.

 Professional Python Frameworks: Web 2.0 Programming with Django and Turbogears (Programmer

to Programmer) by Dana Moore, Raymond Budd, and William Wright (Wrox, 2007) — This is

a great book that introduces the popular Django and Turbogears frameworks, which are based

on Python code. This book is a must if you want to use these frameworks to do Python - based

web development.

 Websites and Blogs
 You are likely to find the following sites useful: www.python.org — The official Python

website.

 wiki.python.org/moin — The Python wiki. This is a Great place to learn about Python from

the source.

 planet.python.org — The official Python blog, it has references to dozens of other Python

blogs, and contributions from many experts.

 about.python.com — About.com ’ s Python portal. It contains a lot of great information,

reference material, and a blog.

 These are the blogs I read regularly:

 www.artima.com/weblogs/index.jsp?blogger=guido — Guido Van Rossum ’ s blog. Guido,

as the creator of Python and “ Benevolent Dictator for Life, ” is obviously a must - read for all

Pythonistas.

 agiletesting.blogspot.com –– Grig Gheorghiu ’ s blog, which is especially focused on agile

testing with Python.

 blog.ianbicking.org — Ian Bicking ’ s blog on agile development with Python.

 ivory.idyll.org/blog — “ Daily Life in an Ivory Basement, ” the blog of Titus Brown.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

 Installing Supplemental
Programs

 This appendix contains the instructions for installing MySQL, to support the database application

in Chapter 5 , and Win32All, to support some of the Python Windows integration described in

Chapter 9 .

 Installing MySQL
 MySQL is an open - source database server very popular in open - source software development.

The following instructions will guide you through the install. However, for the most current

information, go to the MySQL website at http://www.mysql.org .

 Downloading the MySQL Community Server
 In a web browser, navigate to http://dev.mysql.com/downloads . You will see a screen like

the one shown in Figure B - 1 .

Appendix B: Installing Supplemental Programs

242

 Click the MySQL Community Server link on the sidebar on the left. After you are taken to the next page,

you can scroll down to see a list of operating systems, as shown in Figure B - 2 .

Figure B-1

Figure B-2

 Click the operating system on which you want to install (these instructions assume you are installing on

Windows).

 After doing that, you will be taken to a downloads screen, as shown in Figure B - 3 .

Figure B-3

Appendix B: Installing Supplemental Programs

243

 Scroll down to the bottom of the next page, and click the link “ No thanks, just take me to the

downloads! ”

 You will be taken to a page with a list of locations from which you can download. After clicking the ftp

link next to a location close to you, you ’ ll see the Security Warning dialog shown in Figure B - 4 .

Figure B-4

 Click Run.

 Running the Install
 After the download completes, the Welcome screen of the Setup Wizard will appear, as shown in

Figure B - 5 .

Figure B-5

Appendix B: Installing Supplemental Programs

244

 Click Next. Figure B - 6 shows the Setup Type dialog that will appear, from which you can select the

appropriate install type.

Figure B-6

 For the purposes of this book, it ’ s perfectly adequate to perform a “ typical ” install, so click Next.

 You ’ ll be presented with the install confirmation screen, shown in Figure B - 7 .

Figure B-7

Appendix B: Installing Supplemental Programs

245

 Click Install to begin the install. When the install is completed, you ’ ll see the Wizard Completed dialog

shown in Figure B - 8 .

Figure B-8

 Click Finish to configure the MySQL server.

 Configuring the MySQL Server
 Figure B - 9 shows the first page of the Configuration Wizard that appears after the install is completed.

Figure B-9

Appendix B: Installing Supplemental Programs

246

 Click Next. Figure B - 10 shows the dialog that appears, from which you can pick a configuration type.

Figure B-10

 For the purposes of this book, a standard configuration is sufficient, so click the Standard Configuration

radio button and click Next.

 In the dialog that appears next, shown in Figure B - 11 , you can install MySQL as a Windows service and

include the MySQL bin directory in the Windows path. Make sure both are checked and click Next.

Figure B-11

Appendix B: Installing Supplemental Programs

247

 You ’ ll then see the dialog shown in Figure B - 12 , which contains some security options.

Figure B-12

 As shown in Figure B - 12 , enter a root password and click Next. The dialog shown in Figure B - 13 will

appear.

Figure B-13

 Click Execute to run the configuration.

 When the configuration is finished, click Exit to close the Configuration Wizard. MySQL is now installed

and configured.

Appendix B: Installing Supplemental Programs

248

 Installing Win32All
 Win32All is a collection of add - ons and APIs that enable a Python developer to interact with Windows.

 Downloading the Win32All Package

Win32All requires that Python (minimum version: 2.2) already be installed on a
Windows system.

 In a web browser, navigate to http://sourceforge.net/projects/pywin32/ . You will see

the Python for Windows Extensions window shown in Figure B - 14 .

Figure B-14

 Click the Download the Python for Windows Extensions link. Scroll down the page to the section that is

shown in Figure B - 15 .

Appendix B: Installing Supplemental Programs

249

 Notice that downloads are available for versions of Python from 2.2 through 2.6. Click the appropriate

link for the version of Python you have installed and you ’ ll get a prompt to download the file (assuming

the security set for your browser allows you to download files), as shown in Figure B - 16 .

Figure B-15

 Click Run.

 Running the Install
 After the file downloads, the install will start and the dialog shown in Figure B - 17 will appear.

Figure B-16

Appendix B: Installing Supplemental Programs

250

 Click Next. As shown in Figure B - 18 , you ’ ll be prompted with the location of your version of Python,

which the install will locate in the Windows Registry.

Figure B-17

 Click Next. Figure B - 19 shows the confirmation dialog that will appear.

Figure B-18

Appendix B: Installing Supplemental Programs

251

 Click Next to begin the install. When the install is finished, the dialog shown in Figure B - 20 will appear,

indicating the log of the successful install.

Figure B-19

 Click Finish to exit the install.

 Win32All is now installed.

Figure B-20

Index

In
d
e
x

A
about.python.com, 240

abstraction, 25

ActiveState, 3

AddDVD (), 57

code, 62

raw_input, 62

SQLAddDVD (), 61, 62, 63

add_dvd.py, 56–57

code, 61–62

add_dvds, 55

added directories, 23

added files, 23

Addition, 6

admin user, Plone, 182–183

adminPassword.txt, 182

agiletesting.blogspot.com, 240

Aitel, Dave, 240

Apache, 103

install, 104–109

mod_python, 109

operating systems, 104

‹apache dir›confhttpd.conf, 109

APIs, Windows, 211

‹applications›, 159

artima.com/weblogs/index.jsp?blogger=guido, 240

as, 13

Ascher, David, 239

assert, 230

Assignment, 6

auto-open stack viewer, 224

B
batch mode, version management system, 161

Beck, Kent, 231

Beginning Python (Programmer to Programmer)

(Norton, Samuel, Aitel, and Foster-Johnson), 240

Beginning Python: From Novice to Professional

(Hetland), 240

Bicking, Ian, 240

binaryfile.exe, 88, 101

blog.ianbicking.org, 240

‹BODY›, 117

boundary, 79

break, 10

breakpoints, 221

Brown, Titus, 240

browsers, Web Performance Tester, 85

Budd, Raymond, 240

C
case, 30

CGI. See Common Gateway Interface

check_arguments (), 162

code, 165–166

command-line arguments, 165

CheckExternalSites (), 90

code, 97–99

logfile, 98, 99

for loop, 98

try/except, 98

webperf.Main (), 97

CheckInternalWebServers (), 90

code, 99–101

HTTP, 100

logfile, 100–101

for loop, 100

webperf.Main (), 99

check_java(), 163, 167

code, 170–171

Telnet, 170–171

check_perl(), 163, 168

code, 172–173

Telnet, 173

check_python (), 163, 167

code, 171–172

Telnet, 171–172

check_versions.py, 162–163

code, 168–173

remote computers, 168

choice, 29–30, 34

main (), 60

Menu (), 94–95

menu (), 60–61

modifyDVD (), 71

test_manager.py, 138

Chun, Wesley, 239

classes, 14, 25

cls, 28

CMS. See content management system

code

AddDVD (), 62

add_dvd.py, 61–62

check_arguments (), 165–166

CheckExternalSites (), 97–99

254

code (continued)

CheckInternalWebServers (), 99–101

check_java(), 170–171

check_perl(), 172–173

check_python (), 171–172

check_versions.py, 168–173

compareSnapshots (), 37–40

createSnapshot (), 34–36

csvreport_dvd.py, 77–78

csv_report.py, 173–174

DeleteDVD (), 75–76

delete_dvd.py, 74–75

Directory/File Snapshot program, 27–41

DVD inventory system, 58–79

email (req, name, phone, email, comment), 120–122

form.html, 117–118

form.py, 118–120

get_versions (), 166–168

interpreter, 2

listSnapshot (), 36–37

list_tests (), 147–148

LookupDVD (), 66–67

lookup_dvds.py, 63–65

main (), 60, 91, 94

Menu (), 94–95

menu (), 60–61, 139

modifyDVD (), 71–74

modify_dvd.py, 68–71

RunServer (), 91–92

run_tests (), 143–146

show_test_results (), 150–151

snapshothelper.py, 34–41

snapshot.py, 27–34

SQLAddDVD (), 63

SQLDeleteDVD (), 74–75, 77

SQLLookupDVD (), 68

testcount (), 146–147

test_firstname (fname), 142

test_html.py, 151–155

test_html_report (), 153–154

test_lastname (lname), 142

test_list.py, 147–148

test_manager.py, 135–139

test_prime_number (), 143

test_results.py, 148–151

test_run.py, 140–147

version management system, 163–174

version_checker.py, 164–168

Web Performance Tester, 90–101

webclient.py, 95–97

webperf.py, 92–93

webserver.py, 90–91

WriteCSV (), 78–79

write_csv_log(), 173

writeCSVLog (name, phone, email, comment), 122–123

code headers, 117, 135, 163

command-line argument, 82, 165

check_arguments (), 165

test management and reporting system, 155

version management system, 157

version_checker.py, 164

commands, 217–218

comma-separated value (CSV), export, 54–55

Common Gateway Interface (CGI), 109

compareSnapshots (), 27, 32

code, 37–40

connect (), 63

content management system (CMS), 177–196.

See also Plone

collection creation, 191–195

operating systems, 177

page creation, 189–191

users, 195

continue, 10

debugging, 223

contributor, 195

Core Python, Second Edition (Chun), 239

costar name, 47–48

modify, 52

createSnapshot (), 27, 32

code, 34–36

tests, 229

CSV file

csv_report.py, 162, 163, 173

Customer Follow-up system, 109

DVD inventory system, 44, 79

try/except, 173

version management system, 157, 159–160

version_checker.py, 162

write_csv_log(host, application, version), 167–168

csv files, Customer Follow-up system, 103

csvreport_dvd, 55

csvreport_dvd.py, 58

code, 77–78

WriteCSV (), 77–78

csv_report.py

code, 173–174

CSV file, 162, 163, 173

—cumulative_directories (), 35

cumulative_files (), 35

curses, 205

Customer Follow-up system, 103–124

CSV files, 109

csv files, 103

design, 115–117

form.html, 116

form.py, 116

log files, 115, 123

logfile, 116

modify, 123

modules, 116

running, 112–115

SMTP, 114, 116

tests, 123

XML, 123

D
data types, 4–5

date-time stamp, 155

debugging, 221–237

code (continued)

255

In
d
e
x

continue, 223

next, 223

return, 223

running, 222–226

step, 223

decision-making, 8, 10

delete, DVD inventory system, 53–54

delete_dvd, 55

DeleteDVD (), 58

code, 75–76

SQLDeleteDVD (), 75–76

try/except, 76

delete_dvd.py, 58

code, 74–75

dictionaries, 4

difference calculation, 42

difflib, 39

Directory/File Snapshot program, 19–42, 23

code, 27–41

modules, 25

discovermagazine.com, 187–188

Dive into Python (Pilgrim), 240

Division, 6

Django, 196

docstrings, 234

doctest, 234–237

downloading, 1

DVD inventory system, 43–80

adding, 44–45

code, 58–79

CSV files, 44, 79

delete, 53–54

design, 55

export, 54–55, 79

modify, 50–53, 79

modules, 56–58

searching, 46–50

tests, 79

dvd.py, 55, 56

code, 59

Menu (), 56

dvdToDelete, 75

SQLDeleteDVD (), 77

dynamically typed language, 5

E
EasyEclipse, 3

Eclipse, 3

editor, 195

elif, 10

else, 10, 30

email (req, name, phone, email, comment), 116

code, 120–122

HTML, 120–121

log file, 120

e-mail server, Plone, 184–185

encryption, Windows, 211

end-of-statement character, 4

Equal to, 6

errno, 205

error-checking, 41

escape characters, 34

exit codes, 166

exiting, 23

explicit handlers, 104

Exponent (Power), 6

export

CSV, 54–55

DVD inventory system, 54–55, 79

expressions, 7

extensions

filenames, 21

snapshots, 42

external websites, Web Performance Tester, 84–85

F
file I/O, tests, 42

filelist, 37, 148

filenames, extensions, 21

Float, 5

fname, 142

for loop, 37

CheckExternalSites (), 98

CheckInternalWebServers (), 100

list_tests (), 148

testcount (), 147

form.html, 109

code, 117–118

Customer Follow-up system, 116

HTML, 118

form.py, 109

code, 118–120

Customer Follow-up system, 116

IP address, 120

SMTP, 120

Foster-Johnson, Eric, 240

Free Software Foundation, 187–188

from, 97

from ‹module› import ‹name›, 13

fsf.org, 187–188

FTP, 81, 88

functions, 11–12

parameters, 11

G
Gamma, Erich, 231

genre, 49–50

modify, 52

getoutpout (), 217–218

getpass, 204–205

getrusage (), 213, 214

getstatus (), 217–218

getstatusoutput (), 217–218

get_versions (), 162

code, 166–168

if, 167–168

get_versions ()

256

Gheorghiu, Grig, 240

glob, 148

GMT. See Greenwich Mean Time

gmtime (), 202

go to file/line, 224

Greater than, 6

Greater than or equal to, 6

Greenwich Mean Time (GMT), 203

grp, 219

GTK, 196

GUI, 196

H
Hammond, Mark, 3, 207, 209

handlers, mod_python, 104

help, viewing, 23

Hetland, Magnus Lie, 240

home directory, 13

HOST, 165

hostname, 120

version management system, 175

HTML, 81. See also form.html; test_html.py;

test_html_report ()

email (req, name, phone, email, comment),

120–121

mod_python, 103

test management and reporting system, 125

test_html_report (), 154

HTML test report, 130–131

test_html.py, 151

HTTP. See Hypertext Transfer Protocol

httphandler, 92

Hypertext Transfer Protocol (HTTP), 81, 85, 88

CheckInternalWebServers (), 100

I
IDE. See integrated development environment

identifiers, 4–5

IDLE, 2

debugging, 224–226

Idle, Eric, 2

if, 10, 62

get_versions (), 167–168

win32serviceutil, 208

if-elif, 138

implicit handlers, 104

import

modules, 12–13

snapshot.py, 28–29

urllib2, 97

import ‹module› as ‹identifier›, 13

import this, 82

indentation, 4

INSERT, 56

install

Apache, 104–109

mod_python, 109–112

MySQL, 241–247

Plone, 178–186

snapshots, 23

win32all, 248–251

Zope, 181

Integer, 5

integrated development environment (IDE), 2

internal web performance, Web Performance

Tester, 85–86

interpreter, 2

code, 2

Macintosh, 2

unit tests, 229–231

Unix, 2

Windows, 2

invalidChoice (), 27, 41

return statement, 41

IP address, 85–86

form.py, 120

version management system,

157, 175

‹ip address›, 159

iteration (looping), 8–10

ivory.idyll.org/blog, 240

J
Java. See also check_java()

tests, 231

version management system, 157, 159

java_version, 167, 170

JUnit, 231

K
keywords, 3–4

L
LAN. See Local Area Network

Learning Python, Third Edition (Lutz), 239

Less than, 6

Less than or equal to, 6

lines, 4

Linux, 199, 212–218

List, 5

listSnapshot (), 27, 32

code, 36–37

return statement, 36

list_tests (), 134

code, 147–148

for loop, 148

lname, 142

loalhost/test/form.html, 109

Local Area Network (LAN), 158

localhost, 120

localhost:8080/Plone, 186

localtime (), 202

Gheorghiu, Grig

257

In
d
e
x

log file. See also CSV file

Customer Follow-up system, 115, 123

email (req, name, phone, email, comment), 120

Notepad, 86

TextMate, 86

vi, 86

Web Performance Tester, 86–88

writeCSVLog (name, phone, email, comment), 122–123

logfile, 81

CheckExternalSites (), 98, 99

CheckInternalWebServers (), 100–101

Customer Follow-up system, 116

logging, 205

Long Integer, 5

LookupDVD (), 57

code, 66–67

lookup_dvds, 55

lookup_dvds.py, 57

code, 63–65

looping. See iteration

Lutz, Mark, 239

M
Macintosh, interpreter, 2

main ()

choice, 60

code, 60, 91, 94

while loop, 60, 94

manager, 195

Martelli, Alex, 239

MB_ICONASTERISK, 207

MB_ICONEXCLAMATION, 207

MB_ICONHAND, 207

MB_ICONQUESTION, 207

MB_OK, 207

member, 195

Menu (), 89

choice, 94–95

code, 94–95

dvd.py, 56

menu (), 26, 133

choice, 60–61

code, 60–61, 139

snapshot.py, 33–34

MessageBeep (), 207

minidom, 150, 153

mm-dd-yyyy.html, 131

mm-dd-yyyy.xml, 127

modify

costar name, 52

Customer Follow-up system, 123

DVD inventory system, 50–53, 79

genre, 52

star name, 51–52

test management and reporting system, 155

title, 51, 71

version management system, 175

Web Performance Tester, 102

year released, 52

modify_dvd, 55

modifyDVD (), 57

choice, 71

code, 71–74

try/except, 71

modify_dvd.py, 57

code, 68–71

modifying, user interface, 42

mod_python

Apache, 109

handlers, 104

HTML, 103

install, 109–112

XML, 109

module search path, 13

modules, 12–13

Customer Follow-up system, 116

Directory/File Snapshot program, 25

DVD inventory system, 56–58

import, 12–13

test management and reporting system,

133–135

version management system, 162–163

Web Performance Tester, 89–90

Modulo, 6

Monty Python, 2

Moore, Dana, 240

multi-line statements, 8

Multiplication, 6

MySQL, 43, 55

install, 44, 241–247

MySQLdb, 44

SQLAddDVD (), 63

N
navigation, Plone, 189

nesting, 145

networks, Windows, 208–211

next, debugging, 223

nis, 219

non-root user, Plone, 181

non-zero exit codes, 166

Norton, Peter C., 240

not, 6

Not equal to, 6

Notepad, 2

log files, 86

notepad.exe, 94

O
‹object›, 9
OpenOffice.org Calc, 103

operating systems, 1, 28, 199–220. See also

Linux; Unix; Windows

Apache, 104

generic, 199–205

Macintosh, 2

operating systems

258

operator precedence, 7

operators, 6, 7

optparse, 203–204

or, 6

os module, 13, 200

os.curdir, 37

os.listdir, 37

os.py, 29

os.system (), 33, 94

P
parameters

functions, 11

Web Performance Tester, 82

“PASSED,” 142

passwords, 165

getpass, 204–205

Plone, 182

pdb, 222–223

pdbtest, 222–223

performance profiler client, Web Performance

Tester, 83–88

Perl, 26. See also check_perl()

version management system, 157, 159

perl -version, 172

Peters, Tim, 83

pickle, 21, 35–36

Pilgrim, Mark, 240

pipes, 219

planet.python.org, 240

platform, 204

PlaySound (), 207

Plone, 177–196

admin user, 182–183

design, 187–188

downloading, 179–180

e-mail server, 184–185

extracting, 180–181

install, 178–186

navigation, 189

non-root user, 181

password, 182

root user, 181

running, 181–182

set-up user, 186

SMTP, 185

starting, 182

users, 185–186

pointers, 4

posix, 219

posix.stat, 200

prime numbers. See test_prime_number ()

print, raw_input (), 93

printList (), 27, 37, 41

production server, security, 181

Professional Python Frameworks: Web 2.0 Programming

with Django and Turbogears (Programmer to

 Programmer) (Moore, Budd, and Wright), 240

program blocks, 4

program header, snapshot.py, 28

pwd, 219

Python Cookbook (Martelli, Ravenscroft, and Ascher), 239

python dvd.py, 44

Python interactive interpreter. See interpreter

Python Standard Library, 19

python test_manager.py, 126

python version_checker.py ‹ip address›
‹applications›, 158

python webperf.py, 83

python webserver.py 8006, 82

python.org, 240

python.org/download, 1

PYTHONPATH, 13

python_version, 167

PythonWin, 3

PyUnit. See unittest

R
Ravenscroft, Anna, 239

raw_input (), 32, 34

print, 93

raw_input, AddDVD (), 62

RDMS. See relational database management system

reader, 195

relational database management system (RDMS), 43

reload, 12–13

remote computers

check_versions.py, 168

version management system, 158

removed directories, 23

removed files, 23

resource, 212–215

result_dirs, 39

result_files, 39

return, debugging, 223

return statement, 11

invalidChoice (), 41

listSnapshot (), 36

reviewer, 195

root user, Plone, 181

ru_idrss, 213

ru_inblock, 213

ru_isrss, 213

ru_majflt, 213

ru_maxrss, 213

ru_minflt, 213

ru_msgrcv, 213

ru_nivcsw, 213

RunServer (), 89

code, 91–92

ru_nsignals, 213

ru_nswap, 213

run_tests (), 134

code, 143–146

testcount (), 145

XML, 146

ru_nvcsw, 213

ru-oublock, 213

operator precedence

259

In
d
e
x

ru_stime, 213

ru_utime, 213

S
Samuel, Alex, 240

searchby = “ ,” 66

searchtext = “ ,” 66

security

production server, 181

Telnet, 175

version management system, 158, 175

service_info, 208

setUp, 232

set-up user, Plone, 186

showHelp (), 27, 40

show_test_results (), 134

code, 150–151

try/except, 150

XML, 150–151

SMTP, 81, 88

Customer Follow-up system, 114, 116

form.py, 120

Plone, 185

smtplib, 103

smtplib, SMTP, 103

snaplist, 37

snapshot(s), 19–42

comparing, 22–23

creating, 20–21

extensions, 42

filenames, 21

installs, 23

listing, 21

standard configuration, 23

uninstall, 23

snapshothelper, 25, 27, 32

snapshothelper.py, 34–41

code, 34–41

snapshot.py, 27–33

code, 27–34

import, 28–29

menu (), 33–34

program header, 28

SND_ASYNC, 207

SND_LOOP, 207

SND_MEMORY, 207

SND_NODEFAULT, 207

SND_NOSTOP, 207

SND_NOWAIT, 207

SND_PURGE, 207

SNMP, 81

socket connection, 97

sounds, 207

SQLAddDVD (), 57

AddDVD (), 61, 62, 63

code, 63

MySQLdb, 63

try/except, 63

SQLDeleteDVD (), 58

code, 74–75, 77

DeleteDVD (), 75–76

dvdToDelete, 77

try/except, 77

SQL_LOOKUP, 72

SQLLookupDVD (), 57

code, 68

try/except, 68

SSH, 175

stack viewer, 224

standard configuration, snapshots, 23

standard library directories, 13

star name

modify, 51–52

searching, 47

statements, 7–8, 200

multi-line, 8

step, debugging, 223

string, 5

strip, 148

strptime (), 202

Subtraction, 6

switch, 30

syslog, 199, 215–217

sys.path, 14

sys.stdin, 212

sys.stdin.fileno (), 212

SystemDefault sound, 207

SystemExclamation sound, 207

SystemHand sound, 207

SystemQuestion sound, 207

T
tabs, 34

tearDown, 232

Telnet, 81, 88

check_java(), 170–171

check_perl(), 173

check_python(), 171–172

LAN, 158

security, 175

version management system, 157

telnetlib, 158

termios, 212

test(s), 42, 221–237. See also Web Performance Tester

createSnapshot (), 229

Customer Follow-up system, 123

DVD inventory system, 79

failures, 128–129

file I/O, 42

Java, 231

results, 129–130

run lists, 129

storing, 127–128

test management and reporting system, 155

unit, 227–237

user interface, 42, 123

version management system, 173

Web Performance Tester, 102

test(s)

260

test case, 231

test fixture, 231

test frameworks, 226–237

test history, 155

test management and reporting system, 125–156

code, 135–154

command-line argument, 155

design, 133–135

HTML, 125

modify, 155

modules, 133–135

tests, 155

XML, 125, 135, 155

test runner, 231

test suite, 231

testcount ()

code, 146–147

for loop, 147

run_tests (), 145

test_firstname (fname), 134

code, 142

test_html.py, 135

code, 151–155

HTML test report, 151

test_html_report (), 135

code, 153–154

HTML, 154

XML, 153–154

test_lastname (lname), 134

code, 142

test_list.py, 134

code, 147–148

test_manager, 133

test_manager.py, 133

choice, 138

code, 135–139

while loop, 138

testpage.html, 88, 101

test_prime_number (), 134

code, 143

test_report_html, 131

test_results.py, 134

code, 148–151

XML, 148

test_run, 150

test_run.py, 133–134

code, 140–147

XML, 140

test_runs, 127

TextEdit, 2

textfile.txt, 88, 101

TextMate, log files, 86

time, 201–203

title, 46

modify, 51, 71

Tk, 196

Tkinter, 42

tm_hour, 202

tm_isdst, 202

tm_mday, 202

tm_min, 202

tm_mon, 202

tm_sec, 202

tm_wday, 202

tm_yday, 202

tm_year, 202

try, 39

try/except, 35

CheckExternalSites (), 98

CSV file, 173

DeleteDVD (), 76

modifyDVD (), 71

show_test_results (), 150

SQLAddDVD (), 63

SQLDeleteDVD (), 77

SQLLookupDVD (), 68

WriteCSV (), 78

write_csv_log(), 173

Tuple, 5

tuples, 4, 78, 203

TurboGears, 196

U
unified_diff (), 39

uninstall, snapshots, 23

unit tests, 227–237

interpreter, 229–231

unittest, 155, 231–234

Unix, 199, 212–218

interpreter, 2

urllib2, 81, 85

import, 97

user interface

modifying, 42

tests, 42, 123

user scenarios, 79

users, 165

CMS, 195

Plone, 185–186

V
-V, 171

-v, 236

Van Rossum, Guido, 240

‹variable›, 9
version management system, 157–175

batch mode, 161

code, 163–174

command-line argument, 157, 158–161

CSV files, 157, 159–160

design, 162–163

hostname, 175

IP address, 157, 175

Java, 157, 159

modify, 175

modules, 162–163

Perl, 157, 159

remote computers, 158

test case

261

In
d
e
x

running, 158–161

security, 158, 175

Telnet, 157

tests, 173

version number, 1

version_checker.py

code, 164–168

command-line argument, 164

CSV file, 162

versionchecklog.csv, 173

vi, log files, 86

Vim, 2

W
WAV files, 206

Web Performance Tester, 81–102

browsers, 85

code, 90–101

design, 88

external websites, 84–85

internal web performance, 85–86

log files, 86–88

modify, 102

modules, 89–90

parameters, 82

performance profiler client, 83–88

tests, 102

‹web server root›confighttpd.conf, 104

webclient.py, 88, 89–90

code, 95–97

webperf.Main ()

CheckExternalSites (), 97

CheckInternalWebServers (), 99

webperf.py, 88, 89

code, 92–93

webserver.py, 86, 88, 89

code, 90–91

while loop, 9, 29–30

main (), 60, 94

test_manager.py, 138

wiki.python.org/moin, 240

win32all, 207, 209

install, 248–251

win32crypt, 211

win32file, 211

win32inet, 211

win32net, 208–211

win32serviceutil, 207–209

if, 208

wincerapi, 211

Windows, 199

APIs, 211

encryption, 211

interpreter, 2

networks, 208–211

Windows CE, 211

Windows Event Viewer, 199

Windows Registry, 199, 205–206

Windows services, 199, 205–211

winreg, 205–206

winsound, 206–207

Wright, William, 240

WriteCSV (), 58

code, 78–79

csvreport_dvd.py, 77–78

try/except, 78

write_csv_log(), 163

code, 173

CSV file, 167–168

try/except, 173

writeCSVLog (name, phone, email, comment), 116

code, 122–123

log file, 122–123

X
XML

Customer Follow-up system, 123

mod_python, 109

run_tests (), 146

show_test_results (), 150–151

test management and reporting system, 125,

135, 155

test_html_report (), 153–154

test_results.py, 148

test_run.py, 140

Y
year released, 48

modify, 52

Z
The Zen of Python, 82–83

Zope, 178

install, 181

Zope

Now you can access more than 200 complete Wrox books

online, wherever you happen to be! Every diagram, description,

screen capture, and code sample is available with your

subscription to the Wrox Reference Library. For answers when

and where you need them, go to wrox.books24x7.com and

subscribe today!

	Python ® Create-Modify-Reuse
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: A Python Primer
	Getting Started
	Lexical Structure
	Operators
	Expressions and Statements
	Iteration and Decision-Making
	Functions
	Modules
	Classes
	Summary

	Part I: The Projects
	Chapter 2: Directory/File Snapshot Program
	Using the Program
	Design
	Code and Code Explanation
	Testing
	Modifying the Program
	Summary

	Chapter 3: DVD Inventory System
	Using the Program
	Design
	Code and Code Explanation
	Testing
	Modifying the Program
	Summary

	Chapter 4: Web Performance Tester
	Using the Program
	Design
	Code and Code Explanation
	Testing
	Modifying the Program
	Summary

	Chapter 5: Customer Follow-Up System
	Using the Program
	Design
	Code and Code Explanation
	Testing
	Modifying the Program
	Summary

	Chapter 6: Test Management/Reporting System
	Using the Program
	Design
	Code and Code Explanation
	Testing
	Modifying the Program
	Summary

	Chapter 7: Version Management System
	Using the Program
	Design
	Code and Code Explanation
	Testing
	Modifying the Program
	Summary

	Chapter 8: Content Management System
	Plone Overview
	Installing and Configuring Plone
	Design
	Navigation
	Content Management
	User Permissions
	Summary

	Part II: Advanced Topics
	Chapter 9: Interacting with the Operating System
	Generic Operating System Services
	Accessing Windows Services
	Accessing Unix/Linux Services
	Summary

	Chapter 10: Debugging and Testing
	The Python Debugger
	Python Test Frameworks
	Summary
	Final Remarks

	Appendix A: Where to Go From Here — Resources That Can Help
	Books
	Websites and Blogs

	Appendix B: Installing Supplemental Programs
	Installing MySQL
	Installing Win32All

	Index

