

 2

SQL Queries Succinctly

By

Nick Harrison

Foreword by Daniel Jebaraj

 3

Copyright © 2017 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, online marketing manager, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

About the Author ..10

Chapter 1 Introduction ...11

The role of SQL ..11

What will be covered ..11

What won’t be covered ...12

Summary ..12

Chapter 2 Basic CRUD ...13

Insert statements ..14

Default values ..15

Identity columns ...16

Constraints ..17

Triggers ...18

Select statements ...22

Single table ..23

Inner join ..24

Outer join ...25

Update statements ...28

Identity column ..29

Triggers ...30

Delete statements ..31

Referential constraints ...32

Cascading deletes ...32

The importance of transactions ..34

Summary ..34

 5

Chapter 3 More Advanced CRUD ..36

Fancy inserts ..36

Select-based inserts ..36

Practical uses of Cartesian products ..40

Fancy updates ..42

Correlated updates ..42

Common table expressions ...43

Merge statement ..45

Fancy deletes ...46

Select feeding a delete ..47

Merge statement ..48

Summary ..49

Chapter 4 Slicing and Dicing Data ..50

Aggregate functions ...50

Group By ...50

Sum and Count ..51

Min and Max ..54

Having ...56

Sorting ..57

Changing directions ...57

Multiple sorts ...59

Offset and Fetch ..60

Summary ..61

Chapter 5 Selecting From Yourself ...62

Joining the same table multiple times ...62

Selecting various phone numbers ..62

 6

General selecting trees and graphs ..68

Classic organization chart ..69

Who’s the boss? ..70

Summary ..78

Chapter 6 It’s About Time ..79

Understanding the Date and Time data types ...79

DateTime ...79

DateTime2 ...79

Date ...80

Time ..80

DateTimeOffset..80

Common functions ...80

Date-based business logic ...84

Evaluating right of rescission ...89

Determining turn time...90

Summary ..93

Chapter 7 Importance of the Data Dictionary ...94

Learning the data model ...94

Information_Schema.Tables ..95

Information_Schema.Columns ...95

Information_Schema.Views ...95

Information_Schema.View_Table_Usage ..96

Information_Schema.View_Column_Usage ...96

Information_Schema.Routines ...96

Information_Schema.Parameters ..96

Common queries ..96

 7

Find out who the owners are ..97

Which tables are owned by a specific owner? ..97

Which tables include a specific column? ..97

Search for common patterns that might point to a problem ..99

Are we using any obsolete data types? .. 100

What data types are being used? .. 100

Summary .. 101

 8

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

 9

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 10

About the Author

Nick Harrison has more than 20 years of development experience and has worked with .NET
since the first Community Technical Preview (CTP) went golden. He believes that .NET is a
wonderful development environment that gets better with each update.

Nick also stays active in the local development community as a frequent speaker at local user
groups and code camps. He is an author for the technical journal Simple-Talk and an occasional
blogger on the blog community Geeks with Blogs.

In 2007, he met the true love of his life and was fortunate enough to start a family with Tracy
along with Morgan Faye. To this day, they remain a profound source of joy and a strong
counterbalance to the chaos of daily life.

 11

Chapter 1 Introduction

The role of SQL

SQL is the language of data. Data is the language of business because every business runs off
data. We can say that SQL is the language of business, or at least it is the intermediary
language for those of us who straddle the line between technology and business.

It’s hard to imagine a business application without a database. Whether you are dealing with
Online Transaction Processing (OLTP), Online Analytical Processing (OLAP), or ad hoc
queries, SQL is the key to getting data into and out of the database. To the uninitiated or even
the casual user, SQL can seem like magic. SQL is a fourth-generation language (4GL). This
means that, unlike most programming languages, we don’t tell the database how to do what
needs to be done. We describe what needs to be done and leave the database to decide how
best to do what we requested.

SQL allows us to describe the data we need. The database determines which indexes to use,
how to join the data in the various tables involved, how to read from the disks, how to isolate
dirty data, and so on.

What will be covered

Properly initiated, we can work this magic ourselves.

We will cover how to get data into the database, update records that are already there, and
delete data that is no longer needed. We will slice and dice the data any way you can imagine.
We will see how to follow relationships across tables and how to apply filters to find the relevant
data. We will use built-in aggregate functions to summarize data and look at solving common
problems with date and time values, as well as various ways to navigate hierarchical data, such
as org charts, sales hierarchies, etc.

Often the hardest part of crafting a query is understanding the data model being used, so we will
finish by exploring the data dictionary. This holds all the data that the database tracks about the
data being stored. We will use these views to get details about every column in every table in
any database. This can substantially shorten the learning curve for learning a new data model.

The focus for this book will be ANSI SQL, but many vendors have varying levels of support for
the ANSI standards. All of the samples given in this book have been tested against SQL Server
2012. Most of the examples will work with SQL Server 2008R2. The few cases that will require a
new version are noted as the sample is explained.

You can download a free version of SQL Server 2016 Express here.

https://www.microsoft.com/en-us/download/details.aspx?id=52679

 12

What won’t be covered

SQL in general is a big topic. Here we will focus on using the language itself. Several topics on
the edge will, out of necessity, not be covered, even though each of these topics is very
important on its own.

We will ignore most issues of database administration. We will skip over hardware and
infrastructure concerns, and ignore the critical issues of redundancy and fault tolerance. We will
mention performance only briefly, to showcase how a query could be rearranged to improve
performance and discuss some common problems that can cause the database to work harder
than it should in order to get the data we are interested in.

Security is everyone’s concern, but in this book, we will leave this concern on the wayside. Just
know that it’s everyone’s responsibility to protect the data. Defense in depth requires validations
and appropriate constraints in the prompts on the user interface for business applications,
validations in the business logic that cannot be bypassed in the user interface, and appropriate
constraints in the database. These are important, but will not be directly addressed here.

Database constraints and checks are the domain of data modeling, which we will also be
skipping. In each of our discussions, we will be working with a data model, but we won’t delve
deeply into how the data model was created or which alternative structures could have been
used. In many cases, we will work with a less-than-optimal data model, acknowledging that we
often don’t get to work with an ideal data model. The reality is that we are often stuck with the
database that we have, which has often grown and mutated beyond its original design.

 Note: We will stress the importance of constraints and checks as appropriate, but
still accept the reality that we mostly have to live with the database we have, and that
we rarely get to design a new database from scratch.

Summary

In this introductory chapter we have looked at the nature of SQL and its importance in modern
business applications. We have seen an overview of what we will cover in this book, as well as
a partial list of some of the topics we will be skipping. Even though we are skipping these topics,
they are still important. I urge you to consider this your first step in learning SQL and follow up
on some of these side topics that we’re skipping.

Now let’s start with some of the simplest forms the standard SQL operations can take.

 13

Chapter 2 Basic CRUD

CRUD is a common acronym that refers to the basic data manipulation language statements
CREATE, READ, UPDATE, and DELETE; or INSERT, SELECT, UPDATE, and DELETE (but ISUD does

not sound nearly as cool).

We will look at each of these types of statements in turn. In this chapter we will go over the
basics for working with each of these statements. Chapter 3 will cover some more advanced
scenarios with these basic statements. The rest of this book will focus on all the variations and
complexities associated with reading or selecting data. After all, it’s with SELECT statements that

we slice and dice our data.

For our discussion of basic CRUD statements, we will often use the simple data model shown in
Figure 2-1 relating employees and departments:

Figure 2-1: Our simple data model

The SQL to generate these tables is shown in Code Listing 2-1.

Department

DepartmentId

DepartmentName

CostCenter

LocationId

Employee

EmployeeId

FirstName

LastName

ReportsTo

DepartmentId

BirthDate

HireDate

TerminationDate

 14

Code Listing 2-1: Creating the Employee and Department tables

CREATE TABLE [dbo].[Employee](
 [EmployeeId] [int] IDENTITY(1,1) NOT NULL,
 [FirstName] [varchar](50) NOT NULL,
 [LastName] [varchar](50) NOT NULL,
 [ReportsTo] [int] NULL,
 [DepartmentId] [int] NULL,
 [BirthDate] [datetime] NULL,
 [HireDate] [datetime] NOT NULL,
 [TerminationDate] [datetime] NULL,
 CONSTRAINT [PK_Employee] PRIMARY KEY CLUSTERED ([EmployeeId] ASC)
)

CREATE TABLE [dbo].[Department](
 [DepartmentId] [int] IDENTITY(1,1) NOT NULL,
 [DepartmentName] [varchar](50) NULL,
 [CostCenter] [varchar](50) NULL,
 [LocationId] [int] NULL,
 CONSTRAINT [PK_Department] PRIMARY KEY CLUSTERED ([DepartmentId] ASC)
)
ALTER TABLE [dbo].[Employee] WITH CHECK ADD CONSTRAINT
[FK_Employee_Department] FOREIGN KEY([DepartmentId])
REFERENCES [dbo].[Department] ([DepartmentId])

Insert statements

We get data into the database with INSERT statements. In general, these will be handled with

business logic in your application code. We generally don’t do a lot of ad hoc inserting into the
database. Business logic in your application may handle referential integrity and other
constraints that may not be fully defined in the database. You may also have auditing and
tracking mechanisms in your application that should not be bypassed.

Business applications are really SQL-level firewalls controlling access to the database.
Business logic can implement rules that cannot easily be defined with database constraints, and
can define process flows that may change over time or with different business areas, making
them impractical to embed in the database structures. Regardless of the reasons, you probably
will have rules that need to be followed, but are implemented only in the application logic.

 Tip: Ideally, all of these constraints would be baked into the database. In reality,
there will be many constraints that the database will know nothing about and can do
nothing to help ensure that they are adhered to.

If you find an INSERT statement that you need to run regularly, it will be in your best interests to

get it properly integrated into your application code, and not rely on getting it right every time
someone needs to run it manually.

 15

With all the warnings out of the way, let’s look at the basic INSERT statement; we will use the

Employee table.

The general form for the INSERT statement is:

Code Listing 2-2: The basic INSERT statement

INSERT INTO dbo.Employee
 (FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate)
VALUES ('' , -- FirstName - varchar(50)
 '' , -- LastName - varchar(50)
 0 , -- ReportsTo - int
 1 , -- DepartmentId - int
 GETDATE() , -- BirthDate - datetime
 GETDATE() , -- HireDate - datetime
 GETDATE() -- TerminationDate - datetime
)

The key thing to get right here is making sure the column order in the INSERT clause matches

the column order in the VALUES clause. If you skip a column in the INSERT clause, you must skip

it in the VALUES clause as well. If a column is skipped, you will not be inserting a value into that

column.

 Note: Because we have defined a foreign key from the Employee table to the
Department table, we need to give a valid Department value. We can leave the
DepartmentId blank (with a NULL value), and it will still pass the referential
constraints, but if we assign it a value, it must match a value in the Department table.
If we want to ensure that we always get a valid value for the Department, and it is not
left blank, we would need to mark the column as Not Null, as well as set the foreign
key relationship.

Default values

If we don’t specify the value for a column, it will get the default value for that column. If you don’t
specify a default value for a column and don’t specify a value during the insert, the column will
get a value of NULL.

 Note: NULL is different from being left blank. For text fields like First and Last
Name, you could specify the value as ‘’ to leave it blank, but it still has a value. But if
you don’t specify a value and there are no default values associated with the column,
the value will default to NULL.

 16

Now let’s look at some of the details for the Employee table definition. We might have a default

department that new employees get added to. If this is the case, and we don’t specify the
department, the newly inserted record will be associated with that department. If you do specify
a value for a column with a default value, the value you specify will take precedence.

To set the default value for the DepartmentId column to 1, we can define that column like this:

Code Listing 2-3: Specifying the default department

ALTER TABLE dbo.Employee ADD DEFAULT (1) FOR DepartmentId,

You may also want to default the HireDate to today’s date:

Code Listing 2-4: Specifying the default hire date

ALTER TABLE dbo.Employee ADD DEFAULT (GETDATE()) FOR HireDate

 Tip: The important thing to remember here is that even if you don’t specify a value
during the INSERT statement, the new record may have a value if there is a default
value associated with the column.

Identity columns

You may have noticed that in our standard syntax, we did not mention the EmployeeId column.

This is a special case for the default value. It’s a common best practice to associate the primary
key for a table with an identity column. This is how SQL Server handles keeping track of valid
values, the next value, etc. We have a few important rules to bear in mind when dealing with
identity columns:

 You can assign the identity property to columns when they are created either as part
of the initial table creation, or when the column is altered by adding a new column.

 Once a column has been added, you cannot alter it to add the identity property to it; it
needs to be added when the table is created or the column is added.

 You can only have one identity column per table.
 You cannot explicitly set the value for an identity column. We will see the exception to

this in a moment.
 You also cannot update the value for an identity column.

This helps ensure data integrity for this table and any table that depends on it, but it can make it
harder to import data from an alternate source, such as copying data from one environment to
another.

 Note: DBAs have developed intricate strategies for dealing with the identity
columns on tables in a replication environment. For the most part, you will not be

 17

affected by these issues unless you are the DBA. We just need to be aware that many
of these strategies will result in gaps in the identity values.

For various reasons, you may find that you have a legitimate need to insert a specific value into
an identity column. Despite what we have said so far, it turns out that you can directly change
this value, but you have to jump through some hoops to do so, and you need to be careful
because you could easily compromise data integrity or create future primary key violations.

Code Listing 2-5: Overriding the identity column during insert

SET IDENTITY_INSERT dbo.Employee ON;

INSERT INTO dbo.Employee
 (EmployeeId, FirstName, LastName)
VALUES (200, 'Nick', 'Harrison');

SET IDENTITY_INSERT dbo.Employee OFF;

 Tip: Always make sure to explicitly turn the identity insert as soon as you have
finished. Otherwise you could put your data integrity at risk.

Constraints

Constraints can be defined to limit the values that can go in a column. This helps ensure data
integrity, but it can also cause confusion during inserts if you are not following the rules defined
in the constraints.

Let’s revisit the Employee table and add a constraint that says that the TerminationDate must

be after the HireDate.

Code Listing 2-6: Constraining when we can terminate an employee

ALTER TABLE dbo.Employee ADD CONSTRAINT ck_termination_date
CHECK (TerminationDate > HireDate);

Now if we try the original INSERT statement that we saw earlier with the standard syntax, we will

get an error, because an employee cannot be hired and terminated at the same time.

Code Listing 2-7: INSERT statement violating constraints

INSERT INTO dbo.Employee
 (FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,

 18

 HireDate ,
 TerminationDate)
VALUES ('New' , -- FirstName - varchar(50)
 'Employee' , -- LastName - varchar(50)
 0 , -- ReportsTo - int
 0 , -- DepartmentId - int
 GETDATE() , -- BirthDate - datetime
 GETDATE() , -- HireDate - datetime
 GETDATE() -- TerminationDate - datetime
)

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK constraint
"ck_termination_date". The conflict occurred in database "Playground",
table "dbo.Employee".
The statement has been terminated.

 Tip: If you are designing a database, define all reasonable constraints you can.
This will ensure that validation rules cannot easily be violated. If you are using a pre-
existing data model, be aware that many constraints will be missing, so you may have
to work harder with application-based business logic to ensure data integrity.

Triggers

Triggers are bits of logic that will fire in the database without any direct intervention from you.
They are like events for the database. For example, we can have a trigger for insert that will be
called whenever a record is inserted into that table. This can be used to further support
referential integrity, to set up auditing of changes to key tables, or to enforce business rules in
the database.

 Tip: Enforcing business rules through triggers in the database means that the
business rule cannot be bypassed, but it is easy to overlook. When the rule changes,
you may have trouble remembering that the rule was implemented in a trigger
because they easily go unnoticed. Also, if multiple applications are using the same
database, they may not all agree on these business rules, so their implementation
would be best met in the application code.

Looking back at the Employee table we have been using, we may want to define an

EmployeeAudit table that would track whenever anyone modifies data in this table. Triggers

could be used to easily handle such tracking.

Start by creating a new table called EmployeeAudit with the same columns as the Employee

table. For this new table, the EmployeeId will not be the primary key. It will also not be an

identity column. Instead, we will add a new column called EmployeeAuditId, which will be the

 19

primary key as well as the identity column. Let’s also add a couple of new columns for
AuditAction and AuditDate.

Figure 2-2: A simple audit table

 Tip: Even though we want to define as many constraints as is practical in the
Employee table, we will want to disable most of the constraints on the Audit table.
This way we can log everything that happens to the Employee table, even if a
constraint is temporarily disabled.

Code Listing 2-8: Creating the EmployeeAudit table

CREATE TABLE [dbo].[EmployeeAudit](
 [EmployeeAuditId] [int] IDENTITY(1,1) NOT NULL,
 [EmployeeId] [int] NOT NULL,
 [FirstName] [varchar](50) NOT NULL,
 [LastName] [varchar](50) NOT NULL,
 [ReportsTo] [int] NULL,
 [DepartmentId] [int] NULL,
 [BirthDate] [datetime] NULL,
 [HireDate] [datetime] NOT NULL,
 [TerminationDate] [datetime] NULL,
 [AuditAction] [char](1) NOT NULL,
 [AuditDateTime] [datetime] NOT NULL,
 CONSTRAINT [PK_EmployeeAudit_1] PRIMARY KEY CLUSTERED
([EmployeeAuditId] ASC)
)

Now that we have our Audit table in place, let’s look at what the insert trigger for the Employee

table might look like.

EmployeeAudit

EmployeeAuditId

EmployeeId

FirstName

LastName

ReportsTo

DepartmentId

BirthDate

HireDate

TerminationDate

AuditAction

AuditDateTime

 20

Code Listing 2-9: Trigger to audit inserts into the Employee table

CREATE TRIGGER trEmployeeInsert ON dbo.Employee
 FOR INSERT
AS
 INSERT INTO dbo.EmployeeAudit
 (EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate ,
 AuditAction ,
 AuditDateTime)
 SELECT Inserted.EmployeeId ,
 Inserted.FirstName ,
 Inserted.LastName ,
 Inserted.ReportsTo ,
 Inserted.DepartmentId ,
 Inserted.BirthDate ,
 Inserted.HireDate ,
 Inserted.TerminationDate,
 'I' , -- I is for insert
 GETDATE()
 FROM Inserted;

 Note: We will explore the syntax for this insert statement more fully in the next
chapter. The SQL INSERT statement combined with a SELECT statement is one
technique you can use to support logging when the insert operation adds multiple
records into a table.

The Inserted table mentioned in the Trigger definition is a memory-only table that SQL

Server maintains for us. We cannot modify this table by adding an index or manipulating any of
the data, but it can be very helpful in tracking what was inserted and taking appropriate action.

Now when we insert a record into the Employee table, we will get a copy of what was inserted in

the EmployeeAudit table.

Code Listing 2-10: Insert triggers may change the number of rows affected by the INSERT statement

INSERT INTO dbo.Employee
 (FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,

 21

 BirthDate ,
 HireDate ,
 TerminationDate)
VALUES ('New' , -- FirstName - varchar(50)
 'Employee' , -- LastName - varchar(50)
 0 , -- ReportsTo - int
 1 , -- DepartmentId - int
 GETDATE() , -- BirthDate - datetime
 GETDATE() , -- HireDate - datetime
 GETDATE() + 60 -- TerminationDate - datetime
)

(1 row(s) affected)

(1 row(s) affected)

If you run this command in Management Studio, you will see that two rows were affected: the
new record in the Employee table, and a new record in the EmployeeAudit table.

 Note: With triggers, you may have a single INSERT statement affect more than
one record, potentially records in different but related tables.

Let’s now look at how to enforce business rules in a trigger. Suppose your company has a rule
that all employees must be at least 18 years old. You could potentially implement this rule with a
trigger like this:

Code Listing 2-11: Defining a trigger to enforce business logic

CREATE TRIGGER trEmployeeInsertVerifyAge ON dbo.Employee
 AFTER INSERT
AS
 IF EXISTS (SELECT *
 FROM Inserted
 WHERE DATEDIFF(YEAR, Inserted.BirthDate, GETDATE()) <
18)
 BEGIN
 RAISERROR ('New hires must be at least 18 years old', 16,
10);
 ROLLBACK TRANSACTION;
 RETURN;
 END;

Now if we run the INSERT statement, we will get an error complaining about the age of the new

employee.

 22

Code Listing 2-12: Insert trigger defines business rules that cannot be bypassed

INSERT INTO dbo.Employee
 (FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate)
VALUES ('New' , -- FirstName - varchar(50)
 'Employee' , -- LastName - varchar(50)
 0 , -- ReportsTo - int
 1 , -- DepartmentId - int
 GETDATE() , -- BirthDate - datetime
 GETDATE() , -- HireDate - datetime
 GETDATE() + 60 -- TerminationDate - datetime
)

Msg 50000, Level 16, State 10, Procedure trEmployeeInsertVerifyAge, Line
8
New hires must be at least 18 years old
Msg 3609, Level 16, State 1, Line 1
The transaction ended in the trigger. The batch has been aborted.

Because we rolled back the transaction, there will not be a record in either the Employee or

EmployeeAudit tables.

 Note: This is not a good way to verify the age of the employee. There are many
scenarios where this simple test would incorrectly fail, as well as incorrectly pass.
Determining the age is a little bit more complex, but for the purpose of showcasing a
trigger, let’s keep it simple.

Select statements

We read data from the database the SELECT statement. In its simplest form, we have:

Code Listing 2-13: The basic SELECT statement

SELECT fields
FROM table
WHERE conditions ARE true

We will see a few variations on this pattern here, and then spend the rest of the book exploring
all the variations you could ever want to see.

 23

Single table

As long as we are only considering a single table, the query stays relatively simple.

Code Listing 2-14: Querying from a single table

SELECT EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate
FROM dbo.Employee
WHERE EmployeeId < 100;

This will give us a list of all employee records with an EmployeeId value that is less than 100.

This is not necessarily the same as the first 100 employees. Had any been deleted, there would
be gaps in the EmployeeId sequence, and you would not get 100 records.

To get the first 100 employee records, we can run a slightly different query.

Code Listing 2-15: Getting the first 100 employee records

SELECT TOP 100 EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate
FROM dbo.Employee
ORDER BY EmployeeId

Any column from the Employee table can be used to filter the records returned in the WHERE

clause.

Code Listing 2-16: Filtering records in the WHERE clause

SELECT EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,

 24

 TerminationDate
FROM dbo.Employee
WHERE ReportsTo = 51486
 AND (HireDate < '01/01/2000'
 OR BirthDate < '01/01/1980')
 AND (TerminationDate IS NULL
 OR TerminationDate > GETDATE())
ORDER BY EmployeeId;

We can combine these various filters any way we want to. Here we will get a list of employees
who report to a specific employee and were either hired before the year 2000, or were born
before 1980, and are either not terminated or scheduled to be terminated in the future.

Inner join

It is common to need to combine multiple tables to get the data that you need. The simplest way
to combine data from two tables is with an inner join. With an inner join, the corresponding data
used to define the join must be in both tables.

We could join the Employee and Department tables to a list of employees who have been

terminated this year, and their departments:

Code Listing 2-17: Joining two tables using the foreign key

SELECT FirstName ,
 LastName ,
 TerminationDate, DepartmentName ,
 CostCenter ,
 LocationId
FROM dbo.Employee
 INNER JOIN dbo.Department ON Department.DepartmentId =
Employee.DepartmentId
WHERE TerminationDate > DATEADD(yy, DATEDIFF(yy, 0, GETDATE()), 0);

If the employee did not have a DepartmentId set, or the DepartmentId was not in the

Department table, that employee record would not be returned. Any department that does not

have a record matching the filters in the WHERE clause will also be omitted.

 Note: Because we added referential constraints through the foreign key definition
between Employee and Department, any DepartmentId listed in the Employee table
will be in the Department table, but not all Departments may be listed in the Employee
table. Hopefully every department has not fired someone this year.

 Note: Don’t worry about the date functions in the WHERE clause. We will explore
all things date-related in Chapter 6. The end result of these functions is to get the first
day of the current year.

 25

Outer join

Outer joins can be a little bit more complicated. To appreciate the differences associated with
the various forms that an outer join can take, let’s add a couple of new tables to consider.

Let’s call them Left and Right:

Figure 2-3: Contrived sample tables to showcase the different types of outer joins

We will join these two tables on the EmployeeId. Since we are explicitly showcasing what

happens when both tables don’t have all of the same records, we left off the foreign key
constraints, and neither of these primary keys are set up as an identity column.

 Note: In actual practice you would never set up a couple of tables like this, but
this makes it easy to showcase data scenarios that legitimately may crop up, but
under more arcane business scenarios than we want to deal with here.

Let’s load these tables with some sample fictitious data. For the table Left:

EmployeeId FirstName

1 Fred

2 Barney

3 Buzz

4 Han

5 Wedge

Result Set 2-1: Data in table Left

And for table Right:

EmployeeId LastName

1 Flintstone

2 Rubble

6 Organo

Left
EmployeeId

FirstName

Right
EmployeeId

LastName

 26

EmployeeId LastName

7 Jetson

8 Parker

Result Set 2-2: Data in table Right

With this data loaded, we can see that we will have some matching records and some records
that will not match.

A simple inner join will return the following records:

Code Listing 2-18: An inner join between Left and Right

SELECT *
FROM dbo.[Left]
 JOIN [Right] ON [Right].[EmployeeId] = [Left].[EmployeeId];

 Note: If the join is not explicitly specified, the join type is an inner join.

EmployeeId FirstName EmployeeId LastName

1 Fred 1 Flintstone

2 Barney 2 Rubble

Result Set 2-3: Only records with matches in both tables are shown

We get all of the matching records. A left outer join will return the following records:

Code Listing 2-19: Left outer join between left and right

SELECT *

FROM dbo.[Left]

 LEFT OUTER JOIN [Right] ON [Right].[EmployeeId] =

[Left].[EmployeeId];

This is all the records from the first table in the join plus the matching records from the second
table. For the records without a matching record in the second table, we fill in the blanks with
NULL.

EmployeeId FirstName EmployeeId LastName

1 Fred 1 Flintstone

2 Barney 2 Rubble

 27

EmployeeId FirstName EmployeeId LastName

3 Buzz NULL NULL

4 Han NULL NULL

5 Wedge NULL NULL

Result Set 2-2: All records from the Left table plus any matching records from the Right table

A right outer join will return the following records:

Code Listing 2-20: Right outer join between Left and Right

SELECT *

FROM dbo.[Left]

 RIGHT OUTER JOIN [Right] ON [Right].[EmployeeId] =

[Left].[EmployeeId]

This is all the records from the second table plus the matching records from the first table in the
join.

EmployeeId FirstName EmployeeId LastName

1 Fred 1 Flintstone

2 Barney 2 Rubble

NULL NULL 6 Organo

NULL NULL 7 Jetson

NULL NULL 8 Parker

Result Set 2-1: All of the records from Right, and any matches from Left

A full outer join will return the following records.

Code Listing 2-21: A full outer join between Left and Right

SELECT *

FROM dbo.[Left]

 FULL OUTER JOIN [Right] ON [Right].[EmployeeId] =

[Left].[EmployeeId];

This is all the records from both tables matching the ones that have matches, filling in the blanks
from either table with NULL values.

 28

EmployeeId FirstName EmployeeId LastName

1 Fred 1 Flintstone

2 Barney 2 Rubble

3 Buzz NULL NULL

4 Han NULL NULL

5 Wedge NULL NULL

NULL NULL 6 Organo

NULL NULL 7 Jetson

NULL NULL 8 Parker

Result Set 2-2: Records from either table matching where possible

A cross join will return every combination from both tables. In this case, it will return 25 records.

Code Listing 2-22: A cross join between the Left and Right tables

SELECT *

FROM dbo.[Left]

 CROSS JOIN [Right]

 Tip: Very rarely will you want to use a cross join because of the number of records
that it can return; plus, it can often return meaningless data. We will see a couple of
practical examples a little later on.

Update statements

UPDATE statements allow us to change data in the database. Unlike the INSERT statement that

we saw earlier, UPDATE statements do not result in a new record; they operate on an existing

record. The data in the original record is replaced with the new values you specify.

An example of a simple UPDATE statement is:

Code Listing 2-23: The general UPDATE statement

UPDATE dbo.Employee
SET FirstName = 'New Value' ,
 LastName = 'New Last Name' ,
 ReportsTo = 1 ,

 29

 DepartmentId = 0 ,
 BirthDate = '7/4/1776' ,
 HireDate = '1/20/2017' ,
 TerminationDate = NULL
WHERE EmployeeId = 404;

We can update any number of columns in the set clause. The updated values can be based on
other column values, can be the result of calculations, or maybe the result of manipulating their
original values.

In the WHERE clause, we can filter down to the specific records that we want to update. Updating

by the primary key is very common. You know that you will only update a single record.

 Tip: The WHERE clause from an UPDATE statement can be used in a SELECT
clause to know ahead of time how many records will be affected.

Let’s look at a few examples.

Suppose you want to change the Employee table so that all employees who report to the person

with ID 34149, now report to the person with ID 35624:

Code Listing 2-24: A basic UPDATE statement moving employees from one manager to another

UPDATE dbo.Employee
SET ReportsTo = 35624
WHERE ReportsTo = 34149;

We may want to delay firing by 30 days for anyone who hasn’t already been terminated:

Code Listing 2-25: Adjusting the termination date based on the WHERE condition

UPDATE dbo.Employee
SET TerminationDate = DATEADD(DAY, 30, TerminationDate)
WHERE TerminationDate > GETDATE();

Identity column

You may find that you need to change the existing values for existing identity columns.
Unfortunately, we cannot update the value of an identity column. Even though we can use Set
IdentityInsert to insert a specific value, there is no Set Identity_Update.

We may still need to be able to change the value for the identity column, but we have a few
extra steps to go through.

1. Create a new staging table based on the table that we want to update, but don’t make
the primary key an identity column.

 30

2. Insert the values that need to be updated into this new table, specifying whatever value
you need for the primary key.

3. Delete the records that you wanted to update from the original table.
4. Turn Identity INSERT on.
5. Insert the records from the staging table back into the original table.
6. Turn Identity INSERT off.

 Note: These are a lot of steps, but they’re not difficult to do. In the next chapter, we
will see an easy way to move a set of records from one table to another.

Triggers

Triggers for updating a table are similar to insert triggers with just a couple of differences.
Conceptually, we can think of an update as a DELETE followed by an INSERT. The values for the

record being updated are inserted into the table after the original record is deleted. As we have
already seen, an UPDATE statement can and often does affect many records.

In the body of the trigger, we get two tables that SQL Server maintains for us: the Inserted

table that we saw in the INSERT trigger, and a Deleted table. In the case of updates, the

Inserted table will track the new values for the records after they have been updated, and the

Deleted table will track the original values as they were before the update.

We can join these two tables to track how the values change over time.

Code Listing 2-26: Tracking changes with an update trigger

CREATE TRIGGER trEmployeeUpdate ON dbo.Employee
 FOR UPDATE
AS
 SELECT CONVERT(VARCHAR(10), Deleted.EmployeeId) + ' becomes '
 + CONVERT(VARCHAR(10), Inserted.EmployeeId) AS EmployeeId ,
 Deleted.FirstName + ' becomes ' + Inserted.FirstName AS
FirstName ,
 Deleted.LastName + ' becomes ' + Inserted.LastName AS
LastName ,
 CONVERT(VARCHAR(10), Deleted.ReportsTo) + ' becomes '
 + CONVERT(VARCHAR(10), Inserted.ReportsTo) AS ReportsTo ,
 CONVERT(VARCHAR(10), Deleted.DepartmentId) + ' becomes '
 + CONVERT(VARCHAR(10), Inserted.DepartmentId) AS DepartmentId
,
 CONVERT(VARCHAR(23), Deleted.BirthDate, 126) + ' becomes '
 + CONVERT(VARCHAR(23), Inserted.BirthDate, 126) AS BirthDate
,
 CONVERT(VARCHAR(23), Deleted.HireDate, 126) + ' becomes '
 + CONVERT(VARCHAR(23), Inserted.HireDate, 126) AS HireDate ,
 CONVERT(VARCHAR(23), Deleted.TerminationDate, 126) + '
becomes '

 31

 + CONVERT(VARCHAR(23), Inserted.TerminationDate, 126) AS
TerminationDate
 FROM deleted
 JOIN inserted ON Inserted.EmployeeId = Deleted.EmployeeId;

The only thing complicated here is the data manipulation to concatenate all the original and new
values as strings.

 Tip: In actual usage, you would probably want to take the output of this join and
store into a logging table. You probably would never want a trigger to directly return a
Result Set; this is for illustration purposes only.

Any business rules that you implement as an INSERT trigger should also be implemented as an

UPDATE trigger. SQL Server makes this is easy. In the CREATE TRIGGER statement, specify that

it is for both INSERT and UPDATE.

Code Listing 2-27: Implementing business logic with update triggers

CREATE TRIGGER trEmployeeInsertVerifyAge ON dbo.Employee
 AFTER INSERT, UPDATE
AS
 IF EXISTS (SELECT *
 FROM Inserted
 WHERE DATEDIFF(YEAR, Inserted.BirthDate, GETDATE()) <
18)
 BEGIN
 RAISERROR ('New hires must be at least 18 years old', 16,
10);
 ROLLBACK TRANSACTION;
 RETURN;
 END;

There are also some domain-specific business rules that are relevant for updates and not
inserts that you may want to consider, for example:

 Prevent updates after an employee has been terminated.
 Prevent changes to a loan after closing.
 Prevent updates to an order after it has been shipped.

Delete statements

Sometimes we have to remove data from the database. We do this with the DELETE statement,

which deletes the identified records from the database.

A sample DELETE statement in its simplest form is:

 32

Code Listing 2-28: The basic DELETE statement

DELETE FROM dbo.Employee
WHERE EmployeeId = 44068

Just like with UPDATE statements, the WHERE clause for a DELETE statement can be used in a

SELECT statement to verify the records that will be affected. Anything that you can do in the

WHERE clause for a SELECT or UPDATE statement, you can also do in a DELETE statement.

 Tip: Always run a Select with the same Where clause before deleting records to
verify how many records will be removed by the Delete.

In some environments you may not use DELETE statements. For some businesses, data may

never be deleted but simply marked as no longer active. In such cases, the DELETE statement

will take the form of a soft delete, implemented as an UPDATE statement. Generally, this will

involve updating the record that you want to delete and setting a value for a column indicating
that the record has been deleted, such as DeletedDate and maybe DeletedBy.

Referential constraints

One of the problems that can arise from deleting records is the havoc that it can play with
referential integrity. For example, you delete a record from the Department table while there are

still employee records associated with the deleted department. As long as the foreign key
relationships are properly defined, the database will not allow the delete.

Code Listing 2-29: Referential constraints blocking a delete

DELETE FROM dbo.Department WHERE DepartmentId = 1

The DELETE statement conflicted with the REFERENCE constraint
"FK_Employee_Department". The conflict occurred in database "SQL", table
"dbo.Employee", column 'DepartmentId'.

If the foreign key relationships are not properly defined, you are at risk for data integrity
problems.

 Tip: If you cannot properly define a foreign key in the database and allow the
database to guarantee referential integrity, run reports periodically to ensure that
your data is still clean.

Cascading deletes

A foreign key can be defined with an option to On Delete Cascade. This means that when a

record is deleted, every record in related tables will be deleted as well. Obviously this can be
dangerous, but can also simplify some data management tasks.

 33

Naturally, we would not want to enable cascade delete between Department and Employee. It

would not make sense to delete an employee record when a department is deleted.

 Tip: If the foreign key column can be NULL, it is not a good candidate for cascade
delete. If a record can exist without the foreign table, it should not be deleted when
the foreign table is deleted.

In an order-tracking database, we may want to add cascading deletes to automatically delete
OrderDetail records when the Order record is deleted. Without cascading deletes, you would

have to delete the OrderDetail records before you could delete the Order record.

Code Listing 2-30: Constraints preventing deletes

DELETE FROM dbo.[Order]
WHERE OrderId = 1;

The DELETE statement conflicted with the REFERENCE constraint
"FK_LoanCode_LoanCodeType". The conflict occurred in database "SQL",
table "dbo.OrderDetail", column 'OrderId'.

If we delete an Order record without first deleting the associated OrderDetail record, we get

the reference constraint violation shown in Code Listing 2-30.

If we define the constraint enabling cascade deletes:

Code Listing 2-31: Alter table to cascade delete

ALTER TABLE dbo.OrderDetail WITH CHECK ADD CONSTRAINT
[FK_OrderDetail_Order] FOREIGN KEY([OrderId])
REFERENCES dbo.[Order] ([OrderId])
ON UPDATE CASCADE
ON DELETE CASCADE;

Now if we execute the same DELETE statement, we won’t get an error even if there are multiple

records in the OrderDetail table.

Code Listing 2-32: Cascade delete bypasses constraint violations

DELETE FROM dbo.[Order]
WHERE OrderId = 1;

The message that we get back simply states that one record was affected, even though all of
the related OrderDetail records were also deleted.

 Tip: Be careful when cascade deletes are enabled—more records than reported
may be deleted.

 34

The importance of transactions

Deletes are permanent under normal circumstances. Once you issue a DELETE statement, the

record is gone unless it was deleted as part of a transaction.

A database transaction represents a logical unit of work. Logical units of work have four
properties, collectively known as ACID:

 Atomicity means that the transaction cannot be split into parts. Either all statements of
the transaction succeed, or none of it succeeds.

 Consistency means that at the end of the transaction, all of the data is in a consistent
state with all of the constraints and data integrity rules adhered to. If not, the transaction
would have been rolled back to the state it was in before the transaction started.

 Isolation means that modifications made inside the transaction are kept isolated from
the transaction until the transaction is complete. Also, changes made outside of the
transaction are kept separate from the transaction until the transaction is complete.

 Durability means that once the transaction is complete, all of the changes made as part
of the transaction are permanent. These changes have been made and stored on disk
so that they would survive even a system failure.

Transactions help ensure data integrity and that business logic can be evaluated in a known
state. They also provide a safety net for UPDATE and DELETE statements. If you start a

transaction before executing a DELETE or UPDATE statement and these statements do not affect

the number of records expected, you can roll back the transaction and undo any SQL
statements executed.

Code Listing 2-33: DELETE as part of a transaction

-- Show the contents of the Order table before the Transaction

Begins.

SELECT * FROM dbo.[Order]

BEGIN TRANSACTION

-- Delete the contents of a single order.

DELETE FROM dbo.[Order]

WHERE OrderId != 1;

-- Show the contents of the Order table after deleting an Order.

SELECT * FROM dbo.[Order]

-- Rollback will discard all changes made since the transaction.

started

ROLLBACK

-- Show and confirm that the Order table is back to where we

started from.

SELECT * FROM dbo.[Order]

Summary

In this chapter we have seen the basics of the essential CRUD operations. We saw how to
create data with an INSERT statement, how to read data with a SELECT statement, and how to

use the UPDATE and DELETE statements to round out these operations.

 35

We covered a lot of material, but if you have looked at the SQL in a typical application, you
know that we have barely scratched the surface. In the next chapter we will pull the covers back
a bit and explore versions of the basic operations that are just a bit more complex.

 36

Chapter 3 More Advanced CRUD

If we knew all of the requirements upfront and could design the database to take them into
account, our lives would be much simpler. In the real world, we don’t know all of the
requirements upfront. Even the requirements that we are given upfront will change over time,
and eventually, many of the initial requirements may no longer be valid or may be
unrecognizable given enough time.

The database is designed in the beginning, using the best information and best practices that
we have at the time. Over time, this well-designed database will deteriorate into violating any
number of best practices, usually as a result of the changing requirements. No one sets out to
create a badly designed database, but anyone who has worked with the same data model for a
decent length of time will tell you all sorts of things that they wished were different or that they
would do differently if they could start from scratch.

 Note: A lot of time can be spent complaining about a bad design or wondering
why anyone would come up with the design that you currently have. Such efforts are
rarely productive.

Fancy inserts

Select-based inserts

We saw this syntax briefly when we looked at auditing with insert triggers. Instead of explicitly
giving the input values for an INSERT statement, we can provide a SELECT statement that will

provide this data. This will insert one record for every record in the specified SELECT statement.

An example of a SELECT-driven insert is:

Code Listing 3-1: Select-driven insert

INSERT INTO dbo.Department
 (DepartmentName ,
 CostCenter ,
 LocationId)
 (SELECT 'Accounting' ,
 ' 6MRTG99RAR3N6BI443CRY0M3' ,
 0);

This query will insert a single record because the associated select returns only a single record.
Because we did not specify a table name, only the values explicitly given in the SELECT clause

will be returned. Our SELECT statement can be as complex as any SELECT statement we will

see, meaning that we can do some amazing things here.

 37

This is a very powerful technique. With it you can easily move data from one table to another, as
we did with the insert trigger. We can also use it to fill in missing records where constraint was
missing so that you can add it back.

We have a couple of rules to follow for the SELECT statement:

 The columns in the SELECT must match the columns and data types from the INSERT
statement.

 The SELECT statement cannot include an Order By statement. The database will
complain because there is no need to sort the records being inserted.

Now let’s revisit the auditing insert trigger from the last chapter.

Code Listing 3-2: Insert trigger revisited

CREATE TRIGGER trEmployeeInsert ON dbo.Employee
 FOR INSERT
AS
 INSERT INTO dbo.EmployeeAudit
 (EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate ,
 AuditAction ,
 AuditDateTime)
 SELECT Inserted.EmployeeId ,
 Inserted.FirstName ,
 Inserted.LastName ,
 Inserted.ReportsTo ,
 Inserted.DepartmentId ,
 Inserted.BirthDate ,
 Inserted.HireDate ,
 Inserted.TerminationDate,
 'I' , -- I is for insert
 GETDATE()
 FROM Inserted;

This query builds on the fact that the Inserted table has the same structure as the table

associated with the trigger. Additionally, the Inserted table has a record for each record that

was inserted. Most of the time, this will be a single record, but if it happened to have two
records, or even a thousand records, this query will handle keeping the audit table up-to-date.

As another example, we can look at what might happen if the foreign key constraints between
the Employee and Department tables was accidently dropped. By the time we discovered this

problem, we may have Employee records referring to DepartmentIds that do not exist. We

 38

would like to correct this problem by adding the missing records to the Department table so that

we can enable the constraint and keep our data clean.

We can run a query like this to find the missing Department records:

Code Listing 3-3: Select to identify missing records to insert

SELECT DISTINCT DepartmentId
FROM dbo.Employee
WHERE DepartmentId NOT IN
 (SELECT DepartmentId
 FROM dbo.Department);

Don’t worry about this SELECT syntax yet—we will cover it shortly. For now, just know that it will

produce a list of the DepartmentIds that are not in the Department table.

Before we can insert these records, we will need to update the database to allow us to insert a
value into the Identity column. After we insert these records, we want to disable explicitly

inserting values into the identity columns. The full code to handle inserting the missing records
will be:

Code Listing 3-4: Enabling identity insert to give specific DepartmentId for the insert

SET IDENTITY_INSERT dbo.Department ON;

INSERT INTO dbo.Department
 (DepartmentId ,
 DepartmentName)
 (SELECT DISTINCT
 DepartmentId ,
 'Missing Department Added by Data Cleanup'
DepartmentName
 FROM dbo.Employee
 WHERE DepartmentId NOT IN (SELECT DepartmentId
 FROM dbo.Department));

SET IDENTITY_INSERT dbo.Department OFF;

 Note: We can infer the missing DepartmentId values based on the usage in the
Employee table, but this does not give us any guidance on what the DepartmentName
should be. We want to supply a standard name that will obviously not be the real
name, and that we can easily track and go back to correct as a second step in the
data cleanup.

Since we can explicitly set the value of an identity column during the insert, you may wonder
about explicitly updating its value. After all, this is also a common scenario. Suppose that after
an operational reorganization, you need to update the identity column for every employee hired

 39

after a particular date. Turns out this not as simple as issuing an UPDATE statement; there are

many steps to go through for what conceptually should be a relatively straightforward task.

 Note: In actual practice, never do this. The primary key to a table should never
have any meaning outside of uniquely identifying a record. If you need a number that
has a business meaning, this should be a separate column with no database
meaning. In this case, you probably needed an EmployeeId column and an
EmployeeNumber column. The Id column is used to maintain the data in the
database, while the Number column may have whatever business meaning is
appropriate.

The steps to update the value of an identity column are:

1. Create a new table with the same structure as the one we want to update, without
specifying an identity column. We will call this the Staging table.

2. Insert the records that need to be updated into this new table setting the identity column
as you want it updated.

3. Delete the records from the original table that were just copied.
4. Allow inserts into the identity column on the original table.
5. Insert the records from the Staging table back into the original table.
6. Disable inserts into the identity column.
7. Drop the Staging table.

The full code to handle this type of change looks like this:

Code Listing 3-5: Complete process for updating existing identity column values

SELECT EmployeeId + 1000 AS EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate
INTO EmployeeStaging
FROM dbo.Employee
WHERE HireDate > DATEADD(MONTH, -3, GETDATE());

DELETE FROM dbo.Employee
WHERE HireDate > DATEADD(MONTH, -3, GETDATE());

SET IDENTITY_INSERT dbo.Employee ON;
INSERT INTO dbo.Employee
 (EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,

 40

 HireDate ,
 TerminationDate)
 (SELECT EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate
 FROM dbo.EmployeeStaging);
SET IDENTITY_INSERT dbo.Employee OFF;

Practical uses of Cartesian products

We touched on this briefly in the last chapter when we talked the various ways to join tables. A
cross join will return every possible combination from the tables being joined. If you have two
records in one table and four records in another table, the result of the cross join will include
eight records.

To see how this could be useful, let’s add a new table. The Ordinal table will look like this:

Figure 3-1: Ordinal table

With this table, we can easily produce a query that will return any number of records,
incorporating details from whatever table we want to cross join with it. For example, we could
simulate eight employee records for each department using the following query:

Code Listing 3-6: Forcing an eight-way Cartesian product on the Employee table

SELECT 'Employee' FirstName ,
 Name LastName ,
 DepartmentId
FROM dbo.Department
 CROSS JOIN dbo.Ordinal
WHERE OrdinalNumber <= 8;

Which will give us the following results:

Ordinal

OrdinalId

OrdinalNumber

Name

Rank

 41

FirstName LastName DepartmentId

Employee One 1

Employee Two 1

Employee Three 1

Employee Four 1

Employee Five 1

Employee Six 1

Employee Seven 1

Employee Eight 1

Employee One 2

Employee Two 2

Employee Three 2

Employee Four 2

Employee Five 2

Employee Six 2

Employee Seven 2

Employee Eight 2

 Result Set 3-1: Results of the Cartesian query

Wrap this in an INSERT statement, and we will insert eight new employee records for each

department. This could be useful for loading dummy data into a database to perform load
testing or anytime substantial data needs to be staged.

 Tip: Red Gate has a great tool for generating data: the SQL Data Generator. You
can use it to easily generate hundreds of thousands of records for any table.

You could also use this technique to create 12 budget records for each department. This would
be one for each month of the year, making it easier to verify that every possible record is
created from the beginning and subsequent processing can focus on updating existing records.

 Tip: This technique can be useful anytime you want to ensure that you have
accounted for inserting all possible records.

 42

Fancy updates

The updates we saw in the previous chapter all focused on a single table. As a record was
updated, the new values were either explicitly given or determined by manipulating other values
from the record being updated. This is often all that is needed, but not always—sometimes you
need something fancier.

Correlated updates

A correlated update allows you to define an UPDATE statement in terms of a SELECT statement

and use any of the columns from any of the tables joined in the SELECT statement to determine

the update values.

To show how this works, let’s revisit the order-tracking tables from the last chapter.

Figure 3-2: A classic order-tracking data model

We have an Order table and an OrderDetail table. These are staples for any e-commerce

system. The Order table includes a roll up from the OrderDetail table.

 Tip: Summarizing the detail data in the Order record is a common performance
trick, even though it violates several rules for good database design. Sometimes
good design takes a back seat to performance.

Order

OrderId

CustomerId

OrderDate

OrderTotal

NumberOfItems

OrderDetail

OrderDetailId

OrderId

ItemId

Quantity

Item

ItemId

Description

Price

 43

We can update these values with a query like this:

Code Listing 3-7: Correlated update

DECLARE @OrderID INT;

SET @OrderID = 41867

UPDATE dbo.[Order]
SET NumberOfItems = Summary.NumberOfItems ,
 OrderTotal = Summary.OrderTotal
FROM dbo.[Order]
 JOIN (SELECT SUM(Quantity) NumberOfItems ,
 SUM(Quantity * Price) OrderTotal ,
 OrderId
 FROM dbo.OrderDetail
 JOIN dbo.Item ON Item.ItemId = OrderDetail.ItemId
 GROUP BY OrderId) Summary ON Summary.OrderId =
[Order].OrderId
WHERE [Order].OrderId = @OrderID;

This query is a little bit more complicated than is typical in a correlated query because the query
being used cannot directly include a GROUP BY, so we had to move the GROUP BY to a subquery.

In this example, we define the variable @OrderId to constrain the UPDATE to a single Order

record. Without the WHERE clause on the UPDATE statement, every Order record would be

updated. This may often be what you want, but for the first pass it’s a good idea to update a
single record and ensure that you get the expected results before forcing an update on every
record. Adding a variable is another good practice because it keeps the query free of literal
values, and makes it easier to spot where to change the literal value if you need to change the
query to update a different Order record.

 Note: Don’t worry about the GROUP BY syntax in the query. We will cover this
syntax in detail in the next chapter, along with aggregate functions like SUM.

A subquery is a little bit of SQL magic where we can define a SELECT statement and treat the

result set as a temporary table that exists only as long as the containing query is running. This
can be very useful, but can lead to queries that are difficult to read, depending on how complex
the derived table’s definition is.

Common table expressions

Common table expressions (CTEs) are similar to subqueries, but much more powerful. Like
subqueries, a CTE is a named query that exists only for the duration of the single statement that
comes right after its definition. What makes CTEs more powerful is that they can be referenced
multiple times in the same query. A CTE can also reference itself. Such recursive queries open
up some very interesting possibilities, which we will explore in Chapter 5.

The basic syntax for a CTE is:

 44

Code Listing 3-8: The basic structure of a CTE

WITH CTE AS (SELECT statement)

For the SELECT statement, we can do anything that we can do in any SELECT statement. So we

can rework Code Listing 3-7 with a CTE like this:

Code Listing 3-9: Basic syntax for common table expressions (CTE)

WITH Summary (NumberOfItems, OrderTotal, OrderID)
 AS (SELECT SUM(Quantity) NumberOfItems ,
 SUM(Quantity * Price) OrderTotal ,
 OrderId
 FROM dbo.OrderDetail
 JOIN dbo.Item ON Item.ItemId = OrderDetail.ItemId
 GROUP BY OrderId)
 UPDATE dbo.[Order]
 SET NumberOfItems = Summary.NumberOfItems ,
 OrderTotal = Summary.OrderTotal
 FROM dbo.[Order]
 JOIN Summary ON Summary.OrderId = [Order].OrderId
 WHERE [Order].OrderId = @OrderId;

The WITH clause names the CTE and specifies the names for the columns that will be included

in the result set. You don’t have to include the list of columns as long as all of the columns are
explicitly named in the query.

 Tip: If you specify the list of columns in the WITH clause, the number of columns
must match the number of columns in the SELECT statement, but the names do not
need to match. The names in the WITH clause will be the ones used outside of the
CTE, not the names in the SELECT statement.

We can include multiple CTEs in a query. Each CTE is separated by commas. We could rewrite
the UPDATE statement using two CTEs:

Code Listing 3-10: Multiple CTEs in a single query

WITH Units (NumberOfItems, OrderID)
 AS (SELECT SUM(Quantity) NumberOfItems ,
 OrderId
 FROM dbo.OrderDetail
 GROUP BY OrderId),
 Volume (OrderTotal, OrderID)
 AS (SELECT SUM(Quantity * Price) OrderTotal ,
 OrderId
 FROM dbo.OrderDetail
 JOIN dbo.Item ON Item.ItemId = OrderDetail.ItemId
 GROUP BY OrderId)

 45

 UPDATE dbo.[Order]
 SET NumberOfItems = Units.NumberOfItems ,
 OrderTotal = Volume.OrderTotal
 FROM dbo.[Order]
 JOIN Units ON Units.OrderID = [Order].OrderId
 JOIN Volume ON Volume.OrderID = [Order].OrderId
 WHERE [Order].OrderId = @OrderID;

Here we have two CTEs, Units and Volume. In actual practice you would not want to separate

these into two CTEs, but this showcases how to include multiple CTEs in a query.

We have only scratched the surface of what is possible with CTEs, and we will explore them
more fully in Chapter 5.

Merge statement

With the MERGE statement, you can replace a lot of messy code with something much more

maintainable. Unfortunately, the syntax takes some getting used to because it supports several
different clauses to support multiple types of data modifications.

The general syntax for the MERGE statement is:

Code Listing 3-11: Basic MERGE statement with an update

MERGE TargetTable
USING SourceTable
ON TargetTable.TargetId = SourceTable.TargetId
WHEN MATCHED THEN
 UPDATE SET ColumnName = value;

We can also include a common table expression. The syntax also includes clauses for not
matching the source and not matching the target.

We can rewrite the UPDATE statement using the MERGE statement along with a helpful CTE:

Code Listing 3-12: MERGE statement using a CTE

WITH OrderSummary
 AS (SELECT OrderId ,
 SUM(Quantity) AS NumberOfItems ,
 SUM(Price) AS OrderTotal
 FROM dbo.OrderDetail
 JOIN dbo.Item ON Item.ItemId = OrderDetail.ItemId
 GROUP BY OrderId)
 MERGE dbo.[Order]
 USING OrderSummary
 ON [Order].OrderId = OrderSummary.OrderId

 46

 WHEN MATCHED THEN
 UPDATE SET
 NumberOfItems = OrderSummary.NumberOfItems ,
 OrderTotal = OrderSummary.OrderTotal ;

Here the Target table is the Order table. The Source table is the CTE. This may look overly

complicated for a single UPDATE statement, but we aren’t limited to a single one. We can

incorporate any number of WHEN clauses:

Code Listing 3-13: MERGE statement handling multiple business rules

WITH OrderSummary
 AS (SELECT OrderId ,
 SUM(Quantity) AS NumberOfItems ,
 SUM(Price) AS OrderTotal
 FROM dbo.OrderDetail
 JOIN dbo.Item ON Item.ItemId = OrderDetail.ItemId
 GROUP BY OrderId)
 MERGE dbo.[Order]
 USING OrderSummary
 ON [Order].OrderId = OrderSummary.OrderId
 WHEN MATCHED THEN
 UPDATE SET
 NumberOfItems = OrderSummary.NumberOfItems ,
 OrderTotal = OrderSummary.OrderTotal
 WHEN MATCHED AND CustomerId = 340419 THEN
 UPDATE SET
 NumberOfItems = 0 ,
 OrderTotal = 0
 WHEN NOT MATCHED BY SOURCE THEN
 UPDATE SET
 NumberOfItems = 0 ,
 OrderTotal = 0 ;

Once you are comfortable with the syntax for the MERGE statement, you see that this gives us a

very concise format to express multiple business rules in a single readable statement.

Fancy deletes

Deletes are rarely fancy, and we don’t want them to be fancy, since they are destructive to
existing data. Even though we like boring, simple DELETE statements, we occasionally need to

get a bit fancier than the delete by primary key that we saw in the last chapter.

 47

Select feeding a delete

Let’s start by revisiting the problems we had deleting a Department record with associated

Employee records because we didn’t want to enable cascade deletes for these two tables.

Without cascade deletes, we get the following the following error.

Code Listing 3-14: A reference constraint raised by a DELETE statement

DELETE FROM dbo.Department
WHERE DepartmentId = 1

The DELETE statement conflicted with the REFERENCE constraint
"FK_Employee_Department". The conflict occurred in database "SQL", table
"dbo.Employee", column 'DepartmentId'.

So how do we solve this problem without cascading deletes?

 Tip: If a record could exist without the foreign key value (such as an employee
without a department), it is not a good candidate for cascade deletes.

We need to first delete all the records in the related table before deleting the target records in
the main table. This is relatively straightforward if we want to delete a single record; it just
requires two DELETE statements in the right order.

Code Listing 3-15: Explicitly delete related records before deleting the foreign record

DELETE FROM dbo.Employee
WHERE DepartmentId = 1;

DELETE FROM dbo.Department
WHERE DepartmentId = 1;

But what if you have a group of Department records to delete?

Code Listing 3-16: Deleting more than one department at a time

DELETE FROM dbo.Department
WHERE LocationId = 95

Clearly we don’t want to handle these deletes one at a time. We have no idea how many
Department records are in our target location. Fortunately, we can write a query to get the list of

Department records that we want to delete and feed that to the DELETE statement.

Code Listing 3-17: Identifying the departments to be deleted based on the location

SELECT DepartmentId
FROM dbo.Department

 48

WHERE LocationId = 95;

This will give us a list of the departments to be deleted. Now we can feed this list to the DELETE

statement.

Code Listing 3-18: Deleting related records and primary records together

DELETE FROM dbo.Employee
WHERE DepartmentId IN (SELECT DepartmentId
 FROM dbo.Department
 WHERE LocationId = 95);

DELETE FROM dbo.Department
WHERE LocationId = 95;

Regardless of how many Department records are going to be deleted, these two queries will

handle the deletes.

 Note: This is a great example of thinking in terms of sets instead of thinking
procedurally.

A classic procedural approach to solving this problem would tackle the departments one at a
time iteratively, perhaps even looping through a cursor. This is substantially more work than is
necessary.

It is much simpler and more efficient to think in terms of sets. The inner SELECT statement

creates a set of the departments that we want to delete. We then delete the contents of the set
as a whole (conceptually) instead of one at a time.

 Merge statement

We already talked about the MERGE statement as a fancy update; we can also use it to handle

inserts and deletes. We can handle these deletes with the following query:

Code Listing 3-19: Deleting the related records as a MERGE statement

MERGE dbo.Employee
USING dbo.Department
ON Employee.DepartmentId = Department.DepartmentId
WHEN MATCHED AND LocationId = 95 THEN
 DELETE;

This is much easier than the previous queries to handle the delete.

 49

Summary

We have taken the complexity for each of the basic statements up a notch. A common theme
that we have seen in each of these scenarios is how a query can be used to drive and control
more complex data manipulation scenarios.

We have also introduced a couple of new concepts: the common table expression and the
MERGE statement. Both of these are powerful tools to add to our tool belt.

Now we will turn our attention to more complex SELECT statements and explore various ways to

slice and dice data.

 50

Chapter 4 Slicing and Dicing Data

Aggregate functions

After we have applied the appropriate joins to get related data and filters to filter out the data
that we are not interested in, we may want to run some calculations to summarize the relevant
data. Aggregate functions perform their calculations against a set of values, returning a single
value.

The most common aggregate functions you are likely to use include:

Table 4-1: List of aggregate functions

AVG Returns the average value for the column specified.

COUNT Returns the count of the number of records in the identified set.

MAX Returns the largest value for the column specified.

MIN Returns the smallest value for the column specified.

SUM Returns the sum of the values for the column specified.

StdDev Returns the statistical standard deviation for the column specified.

VAR Returns the statistical variance for the column specified.

Unless you are a statistician, you will probably mainly use the top five from the list, but these
functions can combine to provide some interesting insights into your data. Here we will focus on
the nonstatistical functions.

 Note: Null values are ignored when evaluating any aggregate function.

Group By

The GROUP BY statement is used with the aggregate functions to group the result set by one or

more columns. Any column from the SELECT clause that is not used in an aggregate function

must be included in the GROUP BY clause. You can include any additional columns that you

might need, but it rarely makes sense to group by a column that will not be displayed: the
results would not make sense.

A simple example of a SQL statement using aggregate functions and a GROUP BY statement is:

 51

Code Listing 4-1: General syntax for an aggregate function

SELECT DepartmentId ,
 MIN(HireDate) ,
 MAX(HireDate)
FROM dbo.Employee
GROUP BY DepartmentId;

This query will give a list of DepartmentIds with the first and last HireDate for each

department.

Sum and Count

The SUM aggregate function only makes sense for numeric data types. It doesn’t make sense to

add up dates or strings, but any numeric data type can be summed.

COUNT is applicable regardless of the data type, except for text, image, or ntext, because

columns of these types are not stored with the rest of the record. In general, we don’t care about
which column is specified for the COUNT function; we just count the number of records.

Both of these functions can also take a distinct modifier, which means that instead of operating
on every record in the result set, they will operate on the unique values in the result set. If you
do not specify a modifier, then ALL will be assumed.

Code Listing 4-2: Query showing the difference between COUNT and COUNT DISTINCT

SELECT COUNT(1) NumberOfEmployees ,
 COUNT(DISTINCT DepartmentId) NumberOfDepartments
FROM dbo.Employee;

Even though SUM requires numeric input, we can get useful information against nonnumeric

data. We can use SQL Server’s CASE statement to give us some numeric values to add up.

Code Listing 4-3: Using the CASE statement to provide a numeric value to add up

SELECT SUM(CASE WHEN HireDate < '1/1/1970' THEN 1
 ELSE 0
 END) HiredBeforeThe70s ,
 SUM(CASE WHEN HireDate BETWEEN '1/1/1970' AND '12/31/1979' THEN 1
 ELSE 0
 END) HiredDuringThe70s ,
 SUM(CASE WHEN HireDate BETWEEN '1/1/1980' AND '12/31/1989' THEN 1
 ELSE 0
 END) HiredBeforeThe80s ,
 SUM(CASE WHEN HireDate BETWEEN '1/1/1990' AND '12/31/1999' THEN 1
 ELSE 0
 END) HiredBeforeThe80s

 52

FROM dbo.Employee;

We use the multiple case statements to compare the HireDate and return either a 0 or a 1.

When we add 0 it will have no effect, but when we add a 1 we will increase the count for that
date range.

This will return a single record with four counts:

Hired Before the
70s

Hired in the 70s Hired in the 80s Hired in the 90sT

312 185 169 185

Result Set 4-1: Breaking hiring data into bands based on hire date

This is a handy way to break the data up into intervals.

To get a better feel for how this works, let’s drop the aggregate functions and look at some
sample rows.

Code Listing 4-4: Using the CASE statement without SUM

SELECT (CASE WHEN HireDate < '1/1/1970' THEN 1
 ELSE 0
 END) HiredBeforeThe70s ,
 (CASE WHEN HireDate BETWEEN '1/1/1970' AND '12/31/1979' THEN 1
 ELSE 0
 END) HiredDuringThe70s ,
 (CASE WHEN HireDate BETWEEN '1/1/1980' AND '12/31/1989' THEN 1
 ELSE 0
 END) HiredBeforeThe80s ,
 (CASE WHEN HireDate BETWEEN '1/1/1990' AND '12/31/1999' THEN 1
 ELSE 0
 END) HiredBeforeThe80s
FROM dbo.Employee;

Hired Before the
70s

Hired in the 70s Hired in the 80s Hired in the 90sT

0 0 0 1

1 0 0 0

0 0 0 1

0 1 0 0

 53

Hired Before the
70s

Hired in the 70s Hired in the 80s Hired in the 90sT

1 0 0 0

0 0 0 1

0 1 0 0

1 0 0 0

Result Set 4-2: Only one column in each record will have a value

Each row returned will have at most one column with a value of 1. The other columns will be 0.
If all of the columns are 0, then that particular employee was hired after the 90s. This provides a
powerful way to summarize data quickly.

We can also combine a Group By to get this summarized by department:

Code Listing 4-5: Summarizing the metrics by department

SELECT DepartmentName ,
 SUM(CASE WHEN HireDate < '1/1/1970' THEN 1
 ELSE 0
 END) HiredBeforeThe70s ,
 SUM(CASE WHEN HireDate BETWEEN '1/1/1970' AND '12/31/1979' THEN 1
 ELSE 0
 END) HiredDuringThe70s ,
 SUM(CASE WHEN HireDate BETWEEN '1/1/1980' AND '12/31/1989' THEN 1
 ELSE 0
 END) HiredBeforeThe80s ,
 SUM(CASE WHEN HireDate BETWEEN '1/1/1990' AND '12/31/1999' THEN 1
 ELSE 0
 END) HiredBeforeThe80s
FROM dbo.Employee
 INNER JOIN dbo.Department ON Department.DepartmentId =
Employee.DepartmentId
GROUP BY DepartmentName;

Department

Name

Hired Before
the 70s

Hired in the
70s

Hired in the
80s

Hired in the
90sT

Accounting 50 36 29 31

BusinessSales 7 3 4 3

ConsumerSales 5 2 1 2

Corporate Care 44 25 24 25

 54

Department

Name

Hired Before
the 70s

Hired in the
70s

Hired in the
80s

Hired in the
90sT

CorporateSales 6 4 2 2

Customer 23 7 13 18

InternationalSales 6 8 2 3

Marketing 29 19 20 16

NationalSales 5 2 5 4

Prepaid
Customer

46 17 21 26

Sales 6 6 3 4

Service 15 17 10 8

Technical 27 18 14 13

TechnicalSales 13 6 6 7

Web 27 11 13 22

Result Set 4-3: Summarizing the hiring statistics by department

Min and Max

The MIN and MAX aggregate functions work on a wide range of data types. You can find the MIN

and MAX for varchars, DateTime, and any numeric types. MIN and MAX do not make sense

against a bit field or image. These functions can be used to find the oldest and youngest
employees in each department. When applied to Varchars or NVarchar, these functions will do

an alphabetic comparison, which can also provide useful insight into your data.

We can also combine MIN and MAX with the other aggregate functions to get more insight into

your data, provided that the other aggregate functions are in a nested query or a common table
expression.

 Note: You cannot perform an aggregate function on an expression containing an
aggregate or a subquery.

We can use this technique to pivot data in the result set. This allows us to convert the rows in
the result set to columns in a new result set. Let’s see how we might construct a summary for a
monthly sales report.

Going back to the Order tables that we have been working with, let’s step through what a sales

report might look like.

Code Listing 4-6: Building a sales report

SELECT MAX(CASE OrderSummary.OrderDate
 WHEN 1 THEN (OrderSummary.OrderTotal)
 ELSE 0

 55

 END) AS JanuaryOrders ,
 MAX(CASE OrderSummary.OrderDate
 WHEN 2 THEN (OrderSummary.OrderTotal)
 ELSE 0
 END) AS FeburaryOrders ,
 MAX(CASE OrderSummary.OrderDate
 WHEN 3 THEN (OrderSummary.OrderTotal)
 ELSE 0
 END) AS MarchOrders
FROM (SELECT DATEPART(MONTH, OrderDate) AS OrderDate ,
 SUM(OrderTotal) AS OrderTotal
 FROM dbo.[Order]
 GROUP BY DATEPART(MONTH, OrderDate)) OrderSummary;

 Note: Don’t worry about the DatePart function yet. We will cover all of the date
and time functions in Chapter 7.

The results from this query may look like this, depending on how the company did that quarter:

January Orders February Orders March Orders

18206 5212 14586

Result Set 4-4: Sales report rollup and pivoted

To see the impact of the MAX aggregate functions, let’s review the results of the query without

them. Without the MAX aggregate functions, we get a result set with 12 records.

January Orders February Orders March Orders

18206 0 0

0 5212 0

0 0 14586

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 56

0 0 0

0 0 0

0 0 0

0 0 0

Result Set 4-5: Sales report before the rollup

Each record will have a valid value in one column at most. The MAX aggregates will collapse all

of these records into a single record, showing the valid record for each column.

 Tip: We could add a Group By clause to get a summary breakdown for any level in
the Sales hierarchy (such as Group, Region, Territory, etc.) that we are interested in.

Having

The HAVING clause comes after any GROUP BY statements your query may include. The HAVING

clause allows you to provide filters based on the results on the aggregate function calls.

A simple example of a SQL statement including a HAVING clause is:

Code Listing 4-7: General syntax for a HAVING clause

SELECT CustomerId ,
 COUNT(1)
FROM dbo.[Order]
GROUP BY CustomerId
HAVING COUNT(1) > 20;

With this query we can easily identify frequent customers.

The HAVING clause is not often used and is often overlooked, partly because we generally need

to report on the results of the aggregate functions, and not filter based on their output. We can
also get the same results without the HAVING clause.

Code Listing 4-8: Simulating the effects of a HAVING clause

SELECT OrderCounts.CustomerId ,
 OrderCounts.NumberOfOrders
FROM (SELECT CustomerId ,
 COUNT(1) NumberOfOrders
 FROM dbo.[Order]
 GROUP BY CustomerId) OrderCounts
WHERE OrderCounts.NumberOfOrders > 20;

 57

 Tip: Even though it’s easily overlooked, keep the HAVING clause in mind. When
needed, this clause will simplify the query syntax.

Sorting

Once we have identified the records we are interested in, we often need to sort the data to put it
into context and help ensure that we do not overlook relevant data by keeping the related
records near each other in the result set. If you are looking at a detail sales records for a
division, you want all of the detail records to be together.

There are just a few rules for when and how you can sort. Columns of type ntext, text, image,
geography, geometry, and xml cannot be used in an ORDER BY clause. This is primarily because

there is no clear sequence strategy for these data types.

The ORDER BY clause cannot be included in views, inline functions, derived tables, subqueries,

etc., because these structures are used in larger queries that would generally handle sorting
that would contradict the sorting defined elsewhere.

 Note: The exception to this restriction is if a TOP, OFFSET, or FETCH clause is
specified. We will discuss OFFSET and FETCH shortly. The TOP clause is
straightforward—you simply specify the number of records to return. With any of
these clauses included, the sort order will influence which records will be returned.

Changing directions

If you do not specify the sort direction, the direction will default to ascending.

Code Listing 4-9: Sorting by the number of orders ascending

SELECT CustomerId ,
 COUNT(1) NumberOfOrders
FROM dbo.[Order]
GROUP BY CustomerId
HAVING COUNT(1) > 20
ORDER BY NumberOfOrders;

This query will show the customer with the highest number of orders last, while the query in
Code Listing 4-10 will show the customer with the most number of orders first:

Code Listing 4-10: Sorting by the number of orders descending

SELECT CustomerId ,
 COUNT(1) NumberOfOrders

 58

FROM dbo.[Order]
GROUP BY CustomerId
HAVING COUNT(1) > 20
ORDER BY NumberOfOrders DESC;

Based on your needs, you will generally know the direction that you want to sort, but sometimes
it may not be so clear cut. We can make the details of the ORDER BY more dynamic. We can

specify the conditional case statement evaluated for each record returned to determine how that
record should be sorted.

Let’s look at a slightly contrived scenario. Revisiting the Department table, we may want to sort

by the DepartmentName unless the LocationId is less than 5, in which case we want to sort by

the CostCenter.

Code Listing 4-11: Deciding how to sort record by record

SELECT DepartmentId ,
 DepartmentName ,
 CostCenter ,
 LocationId
FROM dbo.Department
ORDER BY CASE WHEN LocationId < 5 THEN DepartmentName
 ELSE CostCenter
 END;

DepartmentId Department Number Cost Center LocationId

8 ConsumerSales 1R8JASDAFAD 5

3 Prepaid Customer 3SXY6JLYJM1 5

7 Database 80O3SAS8SP6 2

12 Prepaid Customer DNM1OUVCS 5

14 Express Marketing 1SNXK5DFDSF 1

5 Inside Accounting VVCELPQURP 3

2 InternationalSales IDAP8Q32CB 4

6 Outside Accounting NI04JEDVP8RE 1

10 Phone Marketing I8J5XNIYOE9KF 2

15 Service K4DFDFSGGH 1

4 Service Hardware FWR9NEF5X 1

 59

DepartmentId Department Number Cost Center LocationId

13 Service Software WGFB3HWMD 4

9 TechnicalSales SU476Y3GFGF 2

11 Web DZYFWH4JXIJJ 3

1 Web Marketing E5Z3BSG80R1 2

Result Set 4-6: Sorting differently based on the location

 Note: If you want to specify the direction for a conditional sort, you specify it after
the end in the case statement. A conditional order by cannot change the direction of
the order by, only which column to use.

Multiple sorts

You can sort by multiple columns; each column can have a different direction, and each column
could potentially be a conditional ORDER BY. The individual columns specified must be unique. It

does not make sense to order by the same column twice. The sequence of the columns
specified matter. The result set retrieved is sorted by the first column specified, and then this
result is sorted by the second column specified, etc.

Code Listing 4-12: Sorting by multiple columns

 SELECT DepartmentId ,
 DepartmentName ,
 CostCenter ,
 LocationId
 FROM dbo.Department
 ORDER BY LocationId ,
 DepartmentName ,
 CostCenter DESC;

In this query, we sort by the LocationId, then the DepartmentName, and then the CostCenter.

The impact of the last column specified in the order by can be seen in the last two records in the
following result set.

DepartmentId Department Name Cost Center LocationId

14 Express Marketing 1SNXK5DFDSF 1

6 Outside Accounting NI04JEDVP8RE 1

15 Service K4DFDFSGGH 1

4 Service Hardware FWR9NEF5X 1

 60

DepartmentId Department Name Cost Center LocationId

7 Database 80O3SAS8SP6 2

10 Phone Marketing I8J5XNIYOE9KF 2

9 TechnicalSales SU476Y3GFGF 2

1 Web Marketing E5Z3BSG80R1 2

5 Inside Accounting VVCELPQURP 3

11 Web DZYFWH4JXIJJ 3

2 InternationalSales IDAP8Q32CB 4

13 Service Software WGFB3HWMD 4

8 ConsumerSales 1R8JASDAFAD 5

12 Prepaid Customer DNM1OUVCS 5

3 Prepaid Customer 3SXY6JLYJM1 5

Result Set 4-7: Sorting by multiple columns

Offset and Fetch

OFFSET and FETCH clauses can be used to implement a paging strategy. This provides a filter on

the data based on the sorting sequence. An example SQL SELECT including OFFSET and FETCH

in your ORDER BY follows:

Code Listing 4-13: A simple example using OFFSET and FETCH

SELECT EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId
FROM dbo.Employee
ORDER BY DepartmentId ,
 LastName ,
 FirstName
 OFFSET 20 ROWS FETCH NEXT 10 ROWS ONLY;

 Note: OFFSET and FETCH were not added until SQL Server 2012.

 61

The values for the OFFSET and FETCH can be numeric constants like you see in Code Listing 4-

13, or could be locally declared variables, or even subqueries. You can query the number of
records to be returned from a configuration table for configuration settings.

Code Listing 4-14: Pulling the parameters for FETCH from a configuration table

SELECT EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId
FROM dbo.Employee
ORDER BY DepartmentId ,
 LastName ,
 FirstName
 OFFSET 20 ROWS FETCH NEXT (SELECT PageSize
 FROM dbo.AppSettings
 WHERE AppSettingID = 1) ROWS ONLY;

Summary

In this chapter we have seen various ways to slice and summarize data. The aggregate
functions open up a lot of possibilities to get fresh insights into your data. We have also seen
various ways that sorting can be used to draw the focus to relevant data.

Now we will turn our attention to a new type of table join from what we saw in Chapter 2. Next
we will explore the implications of tables selecting from themselves.

 62

Chapter 5 Selecting From Yourself

In Chapter 2 we stepped through the various options for joining different tables. We looked at
how inner joins, outer joins, and cross joins differ. In this chapter we will look at joining tables to
themselves.

Joining the same table multiple times

Sometimes with a normalized data model, you will find that you need to join a table multiple
times to get full details. Let’s extend the Employee model to track multiple phone numbers. It

doesn’t make sense to add a new column for each type of phone number you want to track.
Instead, we will add a new table that will have a separate record for each phone number that we
want to track. This simplifies adding new types of phone numbers, but querying to get all of the
phone numbers can be a bit more involved.

Figure 5-1: Data model for employees and their phone numbers

Selecting various phone numbers

This data model is a good design, and is commonly implemented, but is not without its
problems. Our initial attempt to retrieve the home phone number for all employees might look
like this:

Code Listing 5-1: Initial join between Employee and PhoneNumber

SELECT Employee.EmployeeId ,

Employee

EmployeeId

FirstName

LastName

ReportsTo

DepartmentId

BirthDate

HireDate

TerminationDate

PhoneNumber

PhoneId

EmployeeId

PhoneType

PhoneNumber

 63

 FirstName ,
 LastName ,
 PhoneType ,
 PhoneNumber
FROM dbo.Employee
 JOIN dbo.PhoneNumber ON PhoneNumber.EmployeeId =
Employee.EmployeeId
WHERE PhoneType = 4
ORDER BY LastName ,
 FirstName

Looking through the result set, we can quickly see the problems with this query. As an inner
join, employees without a home phone are missing. The other problem is that this data model
allows multiple home phone numbers.

 Tip: To ensure that an employee does not have duplicate PhoneTypes, you could
add a unique constraint on the EmployeeId, PhoneType combination. However, if you
already have many duplicates, this may not be an option.

Resolving the first issue is straightforward: convert the inner join to an outer join.

Code Listing 5-2: Outer join between the Employee and PhoneNumber Tables

SELECT Employee.EmployeeId ,
 FirstName ,
 LastName ,
 PhoneType ,
 PhoneNumber
FROM dbo.Employee
 LEFT OUTER JOIN dbo.PhoneNumber
 ON PhoneNumber.EmployeeId = Employee.EmployeeId
 AND PhoneType = 4
ORDER BY LastName ,
 FirstName

 Note: We have to also move the PhoneType check from the WHERE clause to the
JOIN clause for it to be included as an outer join condition.

Eliminating the redundant phone numbers is a bit more challenging. We want to get a single
record for each EmployeeId. This is where a TOP expression can be useful. With this

expression, we can explicitly specify how many records should be returned in the result set. We
want to ensure that there is only a single matching record pulled from the PhoneNumber table.

For this to work, we need a correlated subquery. This means that the subquery will reference
data contained in the outer query. This also means that the subquery will be executed once for
every record from the containing query. Otherwise the TOP expression would not make sense,

 64

and would always return only a single row. This also means that we’ll need a new type of JOIN

logic to join to this subquery.

Code Listing 5-3: Joining Employee and PhoneNumber tables with a CROSS APPLY

SELECT Employee.EmployeeId ,
 FirstName ,
 LastName ,
 PhoneType ,
 PhoneNumber
FROM dbo.Employee
 CROSS APPLY (SELECT TOP 1
 PhoneNumber ,
 PhoneType ,
 EmployeeId
 FROM dbo.PhoneNumber
 WHERE PhoneType = 4
 AND EmployeeId = Employee.EmployeeId) p
ORDER BY EmployeeId;

 Note: Anytime you have a subquery like the one in Code Listing 5-3, you must
give it an alias so that you can refer to it at other places in the query. In this case, you
won’t have to refer to it later, but you still must provide an alias; in this case, p.

CROSS APPLY is similar to the CROSS JOIN that we used earlier to create a Cartesian product,

except we know that we will have only a single record in the second table. This is not exactly
what we want either, because any Employee records that have no PhoneNumber would be

excluded from the list. Fortunately, the CROSS APPLY has a partner operation called the OUTER
APPLY, which will allow us to show every record exept the ones missing data from the correlated

subquery. Just like outer joins, the missing data will be replaced with NULL values or whatever
value is specified as a default for that column.

So our final query to get the Employee records along with an associated home phumber, if they

have one, is:

Code Listing 5-4: Joining the Employee and PhoneNumber tables with an OUTER APPLY

SELECT Employee.EmployeeId ,
 FirstName ,
 LastName ,
 PhoneType ,
 PhoneNumber
FROM dbo.Employee
 OUTER APPLY (SELECT TOP 1
 PhoneNumber ,
 PhoneType ,
 EmployeeId
 FROM dbo.PhoneNumber

 65

 WHERE PhoneType = 4
 AND EmployeeId = Employee.EmployeeId) p
ORDER BY EmployeeId;

Not too bad, but a query that needs to show an Employee record along with any home phone

number information may also want to include other phone numbers, such as the cell phone,
office phone, fax number, etc. Adding a correlated subquery for each of these types will add a
lot of complexity to the final query and make it harder to follow.

This is where a table-valued function can be used. A table-valued function allows us to create a
parameterized view or common table expression and returns a Result Set, or in this case, a
single record. This means that it can be used anywhere that a table could be used, included as
a correlated subquery.

 Note: Even though our table-valued function will return a single record, it is still
returning a Result Set.

Our table-valued function is easy to define because it looks a lot like our correlated subquery:

Code Listing 5-5: Defining the table-valued function

CREATE FUNCTION EmployeePhoneNumberByType
 (
 @EmployeeId INT ,
 @PhoneType INT
)
RETURNS TABLE
AS
RETURN
 SELECT TOP 1
 PhoneId ,
 EmployeeId ,
 PhoneType ,
 PhoneNumber
 FROM dbo.PhoneNumber
 WHERE EmployeeId = @EmployeeId
 AND PhoneType = @PhoneType;

It’s also easy to use:

Code Listing 5-6: Using the table-valued function

SELECT Employee.EmployeeId ,
 FirstName ,
 LastName ,

 66

 Home.PhoneNumber AS Home,
 Office.PhoneNumber AS Office,
 cell.PhoneNumber AS Cell,
 fax.PhoneNumber AS Fax
FROM dbo.Employee
 OUTER APPLY dbo.EmployeePhoneNumberByType(Employee.EmployeeId, 4)
AS Home
 OUTER APPLY dbo.EmployeePhoneNumberByType(Employee.EmployeeId, 1)
AS Office
 OUTER APPLY dbo.EmployeePhoneNumberByType(Employee.EmployeeId, 2)
AS Cell
 OUTER APPLY dbo.EmployeePhoneNumberByType(Employee.EmployeeId, 3)
AS Fax
ORDER BY EmployeeId;

Depending on the amount of data in your database, you might start seeing a problem with this
approach at this point.

 Note: Because we are calling this table-valued function in four separate OUTER
APPLY statements, we are calling it four times for each record that is returned. As the
number of records grows, this can be become very expensive.

If you do not have the volume of data that causes such a performance problem, this query may
be all that you need, but if you do encounter performance issues, then we may need to get more
creative to optimize this query for performance.

 Tip: Don’t optimize away clarity unless you are having a performance problem. A
clever solution that is difficult to follow will be difficult to maintain, and could have
errors that are hard to detect or resolve.

To optimize away the need to call a correlated subquery (or worse, four correlated subqueries)
for each record, we will need a better way to limit ourselves to a single record without having to
use the TOP clause. We may have to add a couple of additional subqueries to the mix, but as

long as they are not correlated, we will see a nice performance improvement.

Code Listing 5-7: Optimized query eliminating the correlated subquery

SELECT Employee.EmployeeId ,
 FirstName ,
 LastName ,
 PhoneNumber AS HomePhone
FROM dbo.Employee
 LEFT OUTER JOIN ((SELECT EmployeeId ,
 MAX(PhoneId) AS PhoneId
 FROM dbo.PhoneNumber
 WHERE PhoneType = 4
 GROUP BY EmployeeId) HomePhoneId

 67

 INNER JOIN dbo.PhoneNumber
 ON HomePhoneId.PhoneId =
PhoneNumber.PhoneId)
 ON PhoneNumber.EmployeeId = Employee.EmployeeId;

In performance testing on my local database loaded with 10,000 Employee records and 6,000

PhoneNumber records, the original query to return a home phone number took an average of

3,421 ms. The optimized version took an average of 48 ms.

This is a substantial improvement. Three seconds to run a query is rarely going to be
acceptable, especially when it could be brought back down to a fraction of a second.

Now that we have seen that this optimization does actually produce performance gains, let’s
look at the details for how we work such magic.

Let’s start with the nested join in the middle of the query.

 Tip: When breaking a query apart, the middle is often the best place to start.

The first part, which we will call HomePhoneId, will give us the PhoneId for the last record with a

PhoneType entered for each employee. This will allow us to filter down to a single record for

each employee, but it does not give us the PhoneNumber, but rather the primary key to get the

full record for that phone number.

Code Listing 5-8: Finding the primary key for the home PhoneNumber for each employee

SELECT EmployeeId ,
 MAX(PhoneId) AS PhoneId
FROM dbo.PhoneNumber
WHERE PhoneType = 4
GROUP BY EmployeeId

Viewed by itself, we can see that this is a simple query using the MAX aggregate function and a

single GROUP BY. Let’s look at a few of the records returned.

EmployeeId PhoneId

1 334071

2 315909

3 393938

4 393715

5 352673

 68

EmployeeId PhoneId

6 327152

7 385227

8 342555

9 383116

10 342805

Result Set 5-1: Finding the PhoneId for the home phone for each employee

When looking at this result set, we need to remember that there is no guarantee that the result
will include a record for each EmployeeId. The MAX aggregate function will reduce multiple

records to a single record, but it does not help with employee records with no home phone
records.

If there is no record for an EmployeeId in the HomePhoneId subquery, we will not have anything

to match against in the PhoneNumber table either. By nesting this join, we are able to deal with

the result of the join as a whole outside of the scoping. In this case, we take the result of joining
the subquery HomePhoneId with the PhoneNumber table, and then do an outer join to the

Employee table. Without the nested join, we would have to do a two-level outer join, which isn’t

really possible because the first outer join will fill in the blanks with NULL values, leaving nothing
to match against for the second-level join.

The nested join allows us to avoid this problem by treating both joins as one.

General selecting trees and graphs

Trees and graphs are the general names we give to any hierarchical table structures. This is a
table that has a foreign key back to itself. As long as there are no cycles in the relationships, we
call it a tree. If there are cycles in the relationships, it is a graph.

Both types of data structures have many uses and show up in various scenarios. We have
already seen one in the Employee table. It includes a reference back to itself to show who each

employee reports to.

 Note: A hierarchical table may be used to track all manner of hierarchical data
from org charts to sales hierarchies, to operational hierarchies, to nested questions
on a questionnaire, or to a bill of materials. Many of these techniques are useful
regardless of the purpose of the data stored.

 69

Classic organization chart

Let’s revisit the Employee table, this time paying attention to the ReportsTo column that we

have ignored so far.

Figure 5-2: Revisiting the Employee table with the ReportsTo reference

The ReportsTo column forms a foreign key back to the EmployeeId for another record. If it’s

properly structured, only one record should be missing a value for the ReportsTo column. In

most organizations, everyone has a boss except for the one at the top of the chart.

We can easily track any records that have been orphaned by earlier DELETE statements, leaving

them with no one to report to.

Code Listing 5-9: Finding orphaned records

SELECT EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo ,
 DepartmentId ,
 BirthDate ,
 HireDate ,
 TerminationDate
FROM dbo.Employee
WHERE ReportsTo IS NULL
 AND (TerminationDate > GETDATE()
 OR TerminationDate IS NULL);

If an employee has been terminated, you may or may not care about who they once reported to.

Employee

EmployeeId

FirstName

LastName

ReportsTo

DepartmentId

BirthDate

HireDate

TerminationDate

 70

 Tip: Run a query like this periodically to track potential data integrity issues as
soon as possible. If an Employee is missing its ReportsTo value, we need to supply a
placeholder for tracking purposes.

Who’s the boss?

To get the immediate supervisor for any given employee is relatively simple. Join the Employee

table back to itself, aliasing one of them as Manager, and one of them as Employee.

Code Listing 5-10: Joining Manager to Employee

SELECT Employee.EmployeeId ,
 Employee.FirstName EmployeeFirstName,
 Employee.LastName EmployeeLastName,
 Manager.EmployeeId ManagerId,
 Manager.FirstName ManagerFirstName,
 Manager.LastName ManagerLastName
FROM dbo.Employee
 INNER JOIN dbo.Employee Manager ON Manager.EmployeeId =
Employee.ReportsTo
WHERE Employee.TerminationDate IS NULL
ORDER BY ManagerLastName ,
 ManagerFirstName ,
 EmployeeLastName ,
 EmployeeFirstName;

 Note: Anytime you reference the same table more than once, you will need to give
each reference a unique name through an alias.

Sometimes you need more details than just the immediate supervisor. You may need to track
the level a particular employee is in the hierarchy, see how many levels separate two
employees, or report on more than two levels at a time.

In each of these cases, we need to take advantage of the recursive nature of hierarchical tables.
Recursive common table expressions (CTEs) will allow us to exploit this power.

A recursive common table expression will have three components:

 Anchor: This will be the initial call to the query composing the CTE. The anchor will
generally invoke the recursive call through a UNION statement.

 Recursive call: This will be a subsequent query that references the CTE being defined.
 Termination check: This check is often implied. The recursive calls end when no

records are returned from the previous call, which requires that there not be any loops in
the data. For example, we will have problems if an employee reports to themselves or to
one of their subordinates. We will see shortly how to detect this problem and avoid it.

 71

Now let’s put these pieces together to show the direct reports and their level in the hierarchy.

Code Listing 5-11: Recursive CTE showing direct reports

WITH DirectReports
 AS (
-- Anchor member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,
 CAST (' ' AS VARCHAR(50)) ManagerFirstName ,
 CAST (' ' AS VARCHAR(50)) ManagerLastName ,
 0 AS Level
 FROM dbo.Employee AS e
 WHERE e.ReportsTo IS NULL
 UNION ALL
-- Recursive member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,
 m.FirstName ,
 m.LastName ,
 d.Level + 1
 FROM dbo.Employee AS e
 INNER JOIN dbo.Employee AS m ON e.ReportsTo =
m.EmployeeId
 INNER JOIN DirectReports AS d ON e.ReportsTo =
d.EmployeeId)
 SELECT DirectReports.ReportsTo ,
 DirectReports.EmployeeId ,
 DirectReports.FirstName ,
 DirectReports.LastName ,
 DirectReports.ManagerFirstName ,
 DirectReports.ManagerLastName ,
 DirectReports.Level
 FROM DirectReports
 ORDER BY LEVEL, managerlastname, lastname

ReportsTo EmployeeId First
Name

Last Name Manager
First

Name

Manager
Last

Name

Level

NULL 1 Nicole Bartlett 0

1 13 Katina Archer Nicole Bartlett 1

 72

ReportsTo EmployeeId First
Name

Last Name Manager
First

Name

Manager
Last

Name

Level

1 2051 Gilberto Arroyo Nicole Bartlett 1

1 4 Darnell Calderon Nicole Bartlett 1

1 12 Lindsay Conner Nicole Bartlett 1

1 7276 Elijah Cruz Nicole Bartlett 1

1 4151 Blake Duarte Nicole Bartlett 1

1 9 Daphne Dudley Nicole Bartlett 1

1 5 Desiree Farmer Nicole Bartlett 1

1 6 Holly Fernandez Nicole Bartlett 1

Result Set 5-2: Who's the boss?

We can also incorporate the virtual Level column into the filters:

Code Listing 5-12: Filtering on the level

 SELECT DirectReports.ReportsTo ,
 DirectReports.EmployeeId ,
 DirectReports.FirstName ,
 DirectReports.LastName ,
 DirectReports.ManagerFirstName ,
 DirectReports.ManagerLastName ,
 DirectReports.Level
 FROM DirectReports
 WHERE DirectReports.Level BETWEEN 7 AND 9
 ORDER BY LEVEL, managerlastname, lastname

In addition to tracking the level, we may often want to get the full path to an individual employee.
This is useful information to display and use, but more importantly, we can use it to detect
cycles in our data:

Code Listing 5-13: Hierarchy showing the full path through the hierarchy

WITH EmployeeReportingPath
 AS (
-- Anchor member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,

 73

 '.' + CAST(e.EmployeeId AS VARCHAR(99)) + '.' AS
[Path] ,
 0 AS Level
 FROM dbo.Employee AS e
 WHERE e.ReportsTo IS NULL
 UNION ALL
-- Recursive member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,
 CAST(d.Path + '.'
 + CAST(e.EmployeeId AS VARCHAR(100)) AS
VARCHAR(100))
 + '.' AS [Path] ,
 d.Level + 1
 FROM dbo.Employee AS e
 INNER JOIN EmployeeReportingPath AS d
 ON e.ReportsTo = d.EmployeeId)
 SELECT EmployeeReportingPath.ReportsTo ,
 EmployeeReportingPath.EmployeeId ,
 EmployeeReportingPath.FirstName ,
 EmployeeReportingPath.LastName ,
 EmployeeReportingPath.Level ,
 EmployeeReportingPath.Path
 FROM EmployeeReportingPath
 ORDER BY EmployeeReportingPath.Level ,
 EmployeeReportingPath.LastName;

This will produce output like the following:

Reports
To

Employee
Id

First
Name

Last
Name

Level Path

114 549 Donnie Calderon 3 .1.12.114.549.

114 550 Louis Collier 3 .1.12.114.550.

114 548 Nathaniel Dickson 3 .1.12.114.548.

114 543 Jeannie Franklin 3 .1.12.114.543.

114 552 Frankie Glenn 3 .1.12.114.552.

114 551 Robert Pacheco 3 .1.12.114.551.

114 544 Dorothy Parrish 3 .1.12.114.544.

 74

Reports
To

Employee
Id

First
Name

Last
Name

Level Path

114 541 Micheal Potts 3 .1.12.114.541.

114 547 Spencer Rowe 3 .1.12.114.547.

114 545 Lillian Shepherd 3 .1.12.114.545.

Result Set 5-3: Org chart hierarchy showing the full path to an employee

If a number is repeated in the Path column, then there is a cycle, and it will eventually lead to

problems. We can add a CASE statement to the output to make these easier to spot.

Code Listing 5-14: Hierarchy query flagging cycles

DECLARE @root INT;
SET @root = 5095;
WITH EmployeeReportingPath
 AS (
-- Anchor member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,
 '.' + CAST(e.EmployeeId AS VARCHAR(99)) + '.' AS
[Path] ,
 0 AS Level ,
 0 AS Cycle
 FROM dbo.Employee AS e
 WHERE -- e.EmployeeId = @root--
 e.ReportsTo IS NULL
 UNION ALL
-- Recursive member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,
 CAST(d.Path + '.'
 + CAST(e.EmployeeId AS VARCHAR(100)) AS
VARCHAR(100))
 + '.' AS [Path] ,
 d.Level + 1 ,
 CASE WHEN d.Path LIKE '%.'
 + CAST(e.EmployeeId AS VARCHAR(10)) +
'.%'
 THEN 1
 ELSE 0
 END
 FROM dbo.Employee AS e

 75

 INNER JOIN EmployeeReportingPath AS d
 ON e.ReportsTo = d.EmployeeId
 WHERE d.Cycle = 0
)
 SELECT EmployeeReportingPath.ReportsTo ,
 EmployeeReportingPath.EmployeeId ,
 EmployeeReportingPath.FirstName ,
 EmployeeReportingPath.LastName ,
 EmployeeReportingPath.Level ,
 EmployeeReportingPath.Path ,
 EmployeeReportingPath.Cycle
 FROM EmployeeReportingPath
 WHERE EmployeeReportingPath.Cycle = 1
 ORDER BY
 EmployeeReportingPath.Level ,
 EmployeeReportingPath.LastName;

In this latest query, we have added a new column called Cycle that will have a value of 0 if

there is not a cycle detected, or a value of 1 if there was a cycle detected. You can see that we
instructed the recursive call not to continue going down a path when a cycle has been detected.
Finally, in the WHERE clause for the CALLING query, we add a filter to show only the records that

were found with a cycle. We can walk back through the Path for any cycles detected to track

where the cycle forms and reroute the employees as appropriate.

Cleaning up this data can often lead to another common problem with hierarchical data: If there
is not a path from an Employee record back to the root of the hierarchy, then the Employee

record will not be included in these results. Missing data is harder to track down because we
don’t know what we don’t see. Fortunately, we can identify the missing records using some set
concepts:

Code Listing 5-15: Finding the Employee records missing from the hierarchy view

WITH EmployeeReportingPath
 AS (
-- Anchor member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,
 CAST(e.EmployeeId AS VARCHAR(100)) AS [Path] ,
 0 AS Level ,
 0 AS Cycle
 FROM dbo.Employee AS e
 WHERE e.ReportsTo IS NULL
 UNION ALL
-- Recursive member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,

 76

 e.FirstName ,
 e.LastName ,
 CAST(d.Path + '.' + CAST(e.EmployeeId AS
VARCHAR(100))
 + '.' AS VARCHAR(100)) AS [Path] ,
 d.Level + 1 ,
 CASE WHEN d.Path LIKE '%.'
 + CAST(e.EmployeeId AS VARCHAR(10)) +
'.%'
 THEN 1
 ELSE 0
 END
 FROM dbo.Employee AS e
 INNER JOIN EmployeeReportingPath AS d
 ON e.ReportsTo = d.EmployeeId
 WHERE d.Cycle = 0
)
 SELECT EmployeeId ,
 FirstName ,
 LastName ,
 ReportsTo
 FROM dbo.Employee
 WHERE EmployeeId NOT IN (SELECT EmployeeReportingPath.EmployeeId
 FROM EmployeeReportingPath)
 ORDER BY LastName ,
 FirstName;

This will show us employee details for any EmployeeId not included in the recursive query.

Employee Id First Name Last Name Reports To

114 Brendan Ramsey 114

541 Micheal Potts 114

542 Deborah Vincent 114

543 Jeannie Franklin 114

544 Dorothy Parrish 114

545 Lillian Shepherd 114

546 Carla Villanueva 114

547 Spencer Rowe 114

548 Nathaniel Dickson 114

 77

Employee Id First Name Last Name Reports To

549 Donnie Calderon 114

 Result Set 5-4: Employees missing from the hierarchy view

In this case, the problem is that Employee 114 is flagged as reporting to himself, so there is no
path that leads to him. This also means that everyone reporting to this employee is also
unreachable.

There’s one final trick that’s helpful when dealing with hierarchical data. Sometimes it may be
useful to see the hierarchy not from the root, but from a particular node in the resulting tree. For
example, we may want to see the hierarchy details for all the employees who report to this
Employee 114 who was causing such a problem.

Code Listing 5-16: Starting the hierarchy below the root

DECLARE @root INT;
SET @root = 114;
WITH EmployeeReportingPath
 AS (
-- Anchor member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,
 '.' + CAST(e.EmployeeId AS VARCHAR(99)) + '.' AS
[Path] ,
 0 AS Level ,
 0 AS Cycle
 FROM dbo.Employee AS e
 WHERE e.EmployeeId = @root
 UNION ALL
-- Recursive member definition
 SELECT e.ReportsTo ,
 e.EmployeeId ,
 e.FirstName ,
 e.LastName ,
 CAST(d.Path
 + CAST(e.EmployeeId AS VARCHAR(100)) AS
VARCHAR(100))
 + '.' AS [Path] ,
 d.Level + 1 ,
 CASE WHEN d.Path LIKE '%.'
 + CAST(e.EmployeeId AS VARCHAR(10)) +
'.%'
 THEN 1
 ELSE 0
 END
 FROM dbo.Employee AS e

 78

 INNER JOIN EmployeeReportingPath AS d
 ON e.ReportsTo = d.EmployeeId
 WHERE d.Cycle = 0
)
 SELECT EmployeeReportingPath.ReportsTo ,
 EmployeeReportingPath.EmployeeId ,
 EmployeeReportingPath.FirstName ,
 EmployeeReportingPath.LastName ,
 EmployeeReportingPath.Level ,
 EmployeeReportingPath.Path ,
 EmployeeReportingPath.Cycle
 FROM EmployeeReportingPath
 ORDER BY
 EmployeeReportingPath.Level ,
 EmployeeReportingPath.ReportsTo,
 EmployeeReportingPath.LastName

All we have to do is change the anchor in the recursive CTE to start with a specific EmployeeId

rather than starting where the ReportsTo is NULL.

Summary

In this chapter, we have focused on what happens when a table joins against itself. We saw a
practical application of CROSS APPLY and OUTER APPLY. We looked at an advanced optimization

of a SQL query as we explored the problem of showing multiple phone numbers for each
employee.

We also spent some time exploring hierarchical data and how to deal with some of the common
problems that pop up when dealing with hierarchical data, such as orphaned records and cycles
in data. We have seen recursive common table expressions in action and how to derive extra
data from these queries, such as tracking the level and building the full path to a specific record.

Hierarchical data shows up in many places, and it is important to understand how to query and
maintain this data.

 79

Chapter 6 It’s About Time

Much of our world revolves around time, not to mention that so much of our business logic often
depends on dates and times. It seems strange that we have so little support for dates and times
in our database.

Turns out we actually have a bit more support than most people realize, and with a bit of effort
on our part, we can build even more.

Understanding the Date and Time data types

If you look at many databases, it’s clear that most people are only aware of one data type for
representing dates and times, the DateTime data type. In many situations, this is not the best

data type to use.

DateTime

The DateTime data type is still the data type most commonly used to represent date and time

values. It is far from the best, but often may be required for compatibility with other systems or
languages. Columns of this type can represent dates in the range of January 1, 1753, through
December 31, 9999, and can represent time in the range of 00:00:00 through 23:59:59.997. For
most business applications, that’s probably more accurate than you need; we generally don’t
care about three decimal places for the seconds. Often we don’t care about time at all, but we
have to allocate space to store it anyway, and worry about stripping it out when it’s not needed.

Most importantly, this data type is not ANSI- or ISO-compliant.

DateTime2

DateTime2 is an extension to DateTime to bring it up to ANSI standards. It has a larger date

range as well as a larger time range with a larger default precision, and an option for a user-
defined fractional precision. Columns of this type can represent dates in the range of January 1,
0001 through December 31, 9999. They can represent time in the range of 00:00:00 through
23:59:59.9999999. This makes them precise to within 100 nanoseconds.

 Tip: Any new columns added should use DateTime2 over DateTime.

This data type was not introduced in SQL Server until 2008 R2, so if you’re running an older
database, you will still need to use DateTime.

 80

Date

The Date data type was also introduced in SQL 2008 R2. It is equivalent to the Date portion of

a DateTime2 column, so it has a date range of January 1, 0001 through December 31, 9999.

This is useful for cases where you don’t care about the time, but only the date.

Time

The Time data type was also introduced in SQL 2008 R2. It is equivalent to the Time portion of

a DateTime2 column, so it has a time range of 00:00:00.0000000 through 23:59:59.9999999. In

some cases, you may only care about the time outside of the context of an associated date.

DateTimeOffset

The DateTimeOffset data type is similar to the DateTime2 data type, except it is also aware of

time zones. It has all the same ranges as the DateTime2 data type.

Common functions

Getting dates

We have several functions to get the current date and time.

 SYSDATETIME(),
 SYSDATETIMEOFFSET(),
 SYSUTCDATETIME(),
 CURRENT_TIMESTAMP,
 GETDATE(),
 GETUTCDATE();

You can see the subtle differences between these various functions by running the following
SQL statement:

Code Listing 6-1: Date functions to get the current date

SELECT SYSDATETIME() AS SYSDATETIME ,
 SYSDATETIMEOFFSET() AS SYSDATETIMEOFFSET ,
 SYSUTCDATETIME() AS SYSUTCDATETIME ,
 CURRENT_TIMESTAMP AS [CURRENT_TIMESTAMP] ,
 GETDATE() AS GETDATE ,
 GETUTCDATE() AS GETUTCDATE;

Getting parts of a date

We also have several functions that can be used to pull out part of the date:

 81

 DATENAME (datepart, date)
 DATEPART (datepart, date)
 DAY (date)
 MONTH (date)
 YEAR (date)

Code Listing 6-2: Date functions to get parts of a date

DECLARE @TestDate DATETIME2;
SELECT @TestDate = '7/4/2025';

SELECT DATENAME(WEEK, @TestDate) [Week] ,
 DATEPART(DAYOFYEAR, @TestDate) [DayOfYear] ,
 DAY(@TestDate) [Day] ,
 MONTH(@TestDate) [Month] ,
 YEAR(@TestDate) [Year];

The output of this query should look like this:

Week Day of Year Day Month Year

27 185 4 7 2025

Result Set 6-1: The parts of a date

When you see DATEPART, it can have any of these values:

Table 6-1

Day nanosecond

Dayofyear quarter

Hour second

ISO_WEEK TZoffset

Microsecond week

Millisecond weekday

Minute year

Month

 82

Code Listing 6-3: Naming the parts of the date

DECLARE @TestDate DATETIME2;
SELECT @TestDate = '7/4/2025';

SELECT DATENAME(DAY, @TestDate) [Day],
 DATENAME(dayofyear, @TestDate)[DOY],
 DATENAME(hour, @TestDate) [H],
 DATENAME(microsecond, @TestDate) [Micro],
 DATENAME(millisecond, @TestDate) [MS],
 DATENAME(minute, @TestDate) [Min],
 DATENAME(month, @TestDate) [Month],
 DATENAME(nanosecond, @TestDate) [Ns],
 DATENAME(quarter, @TestDate) [Quart],
 DATENAME(second, @TestDate) [Sec],
 DATENAME(TZoffset, @TestDate) [Offset],
 DATENAME(week, @TestDate) [Week],
 DATENAME(weekday, @TestDate) [weekday],
 DATENAME(year, @TestDate) [Year]

Day DOY H Micro Ms Min Month Ns Quart Sec Offset Week Weekday Year

4 185 0 0 0 0 July 0 3 0 +00:00 27 Friday 2025

Result Set 6-2: Naming the parts of a date

Difference between two dates

The DATEDIFF function takes a DATEPART and two dates and will return the difference between

the two dates. So we can find the difference between two dates in any of the units we saw
earlier for the DATEPART.

Code Listing 6-4: Differences between dates

DECLARE @EndDate DATETIME2;
SELECT @EndDate = '7/4/2025';
DECLARE @StartDate DATETIME2;
SELECT @StartDate = '1/1/2025';

SELECT DATEDIFF(DAY, @StartDate, @EndDate) [Day] ,
 DATEDIFF(DAYOFYEAR, @StartDate, @EndDate) [Day of Year] ,
 DATEDIFF(HOUR, @StartDate, @EndDate) [hour] ,
 DATEDIFF(MINUTE, @StartDate, @EndDate) [minute] ,
 DATEDIFF(MONTH, @StartDate, @EndDate) [month] ,
 DATEDIFF(QUARTER, @StartDate, @EndDate) [quarter] ,
 DATEDIFF(SECOND, @StartDate, @EndDate) [second] ,

 83

 DATEDIFF(WEEK, @StartDate, @EndDate) [week] ,
 DATEDIFF(WEEKDAY, @StartDate, @EndDate) [weekday] ,
 DATEDIFF(YEAR, @StartDate, @EndDate) [year];

Day Day of
Year

Hour Minute Month Quarter Second Week

184 184 4416 264960 6 2 15897600 26

Result Set 6-3: Difference between dates

 Note: Depending on how big the difference is, we can easily get an overflow error
for some data parts, especially for the smaller date parts. In general, we probably
won’t care about the number of seconds, let alone nanoseconds between the
OriginationDate and ClosingDate for a 30-year mortgage.

Changing the value of a date

We can also change the value of a date using the DATEADD function. Once again, this function

uses the DATEPART logic to express which part of the date to add. We can combine the

DATEDIFF logic we just looked at with DATEADD function to push the @StartDate to the

@EndDate:

Code Listing 6-5: Effects of the DATEADD

DECLARE @EndDate DATETIME2;
SELECT @EndDate = '7/4/2025';
DECLARE @StartDate DATETIME2;
SELECT @StartDate = '1/1/2025';
SELECT DATEADD(DAY, offset.Day, @StartDate) Day ,
 DATEADD(DAYOFYEAR, offset.[Day of Year], @StartDate) DOY ,
 DATEADD(HOUR, offset.hour, @StartDate) H ,
 DATEADD(MINUTE, offset.minute, @StartDate) M ,
 DATEADD(MONTH, offset.month, @StartDate) Month ,
 DATEADD(QUARTER, offset.quarter, @StartDate) Q ,
 DATEADD(SECOND, offset.second, @StartDate) Sec ,
 DATEADD(WEEK, offset.week, @StartDate) W ,
 DATEADD(WEEKDAY, offset.weekday, @StartDate) WD ,
 DATEADD(YEAR, offset.year, @StartDate) Y
FROM (SELECT DATEDIFF(DAY, @StartDate, @EndDate) [Day] ,
 DATEDIFF(DAYOFYEAR, @StartDate, @EndDate) [Day of
Year] ,
 DATEDIFF(HOUR, @StartDate, @EndDate) [hour] ,
 DATEDIFF(MINUTE, @StartDate, @EndDate) [minute] ,
 DATEDIFF(MONTH, @StartDate, @EndDate) [month] ,
 DATEDIFF(QUARTER, @StartDate, @EndDate) [quarter] ,

 84

 DATEDIFF(SECOND, @StartDate, @EndDate) [second] ,
 DATEDIFF(WEEK, @StartDate, @EndDate) [week] ,
 DATEDIFF(WEEKDAY, @StartDate, @EndDate) [weekday] ,
 DATEDIFF(YEAR, @StartDate, @EndDate) [year]) offset;

The end result from this query displays July 4, 2025, for each column.

Date-based business logic

Business logic is often based on dates. Sometimes it might be based on specific actions taking
place during promotional windows, and sometimes it might revolve around honoring business
logic that was in effect when the process was initiated. You might need to honor rates from
when the loan was originated, for example. You might need to honor shipping costs based on
when the order was placed or processed, or you might need to evaluate the turn time between
key business transactions.

Sometimes date logic is based on calendar days, and sometimes it’s based on business days.
We need to clearly understand the difference. A calendar day is any day listed on a calendar.
For such logic, the standard, built-in functions are all you need. An approval being good for 30
days means 30 calendar days, so you simply add 30 days to the approval date to get the
expiration date. However, requiring that a specific document be generated in three business
days is another matter.

A business day refers to days when business is conducted. Generally speaking, this excludes
weekends and federal holidays. If you’re in a different county, the list of holidays will be
different. For many holidays, the actual date may change from year to year, or at least the dates
the holidays fall on will change. Also, if the holiday falls on a weekend, we sometimes celebrate
it on the following Monday or the preceding Friday, and you don’t even want to think about the
logic to track Easter.

Whenever we have this level of ambiguity, it’s nice to have a lookup table. We need a calendar
reference table that will allow us to easily track some useful attributes for dates. Also, because
the logic for determining holidays is tricky, we want to be able to easily store the holidays in our
Calendar table and know that they are not business days.

Our Calendar table might look like this:

 85

Figure 6-1: Calendar table

To populate this table, we will see some of the date functions in action, as well as some other
tricks that we’ve learned along the way.

For our first trick, we will use a recursive CTE to get a list of every date between January 1,
2000, and December 31, 2050.

Code Listing 6-6: Using a recursive CTE to get a list of dates

WITH Dates (Date)

 AS (SELECT CAST('2000' AS DATETIME) Date

 UNION ALL

 SELECT (Date + 1) AS Date

 FROM Dates

 WHERE Date < CAST('2051' AS DATETIME) - 1

)

 SELECT *

 FROM Dates

OPTION (MAXRECURSION 0);

The MAXRECURSION option at the end tells our CTE not to worry about how many recursive calls

this is. Normally, the database will keep up with this and complain if the recursive calls go past a
set limit as a way of preventing cycles in the recursive calls. Here we know that the recursive
calls will end about just under 19,000, and that’s not a problem. Setting MAXRECURSION to 0 tells

the database not to worry about it.

Next we want a CTE to track the date for the Thursday for each of these dates. We do this
because we will count weeks by counting the Thursdays.

Calendar (Reference)

Date

Year

Quarter

Month

Week

Day

DayOfYear

WeekDay

KindOfDay

Description

CalendarDayOverAll

BusinessDayOverAll

 86

Code Listing 6-7: Finding the Thursday associated with each Date

WITH Dates (Date)

 AS (SELECT CAST('2000' AS DATETIME) Date

 UNION ALL

 SELECT (Date + 1) AS Date

 FROM Dates

 WHERE Date < CAST('2051' AS DATETIME) - 1

),

 DatesAndThursdayInWeek (Date, Thursday)

 -- The weeks can be found by counting the Thursdays

 -- in a year so we find

 -- the Thursday in the week for a particular date.

 AS (SELECT Date ,

 CASE DATEPART(WEEKDAY, Date)

 WHEN 1 THEN Date + 3

 WHEN 2 THEN Date + 2

 WHEN 3 THEN Date + 1

 WHEN 4 THEN Date

 WHEN 5 THEN Date - 1

 WHEN 6 THEN Date - 2

 WHEN 7 THEN Date - 3

 END AS Thursday

 FROM Dates

)

 SELECT *

 FROM DatesAndThursdayInWeek

Next we will partition this data by Year and track how many weeks into the year each Date is:

Code Listing 6-8: Calculate the week number for each Thursday

WITH Dates (Date)

 AS (SELECT CAST('2000' AS DATETIME) Date

 UNION ALL

 SELECT (Date + 1) AS Date

 FROM Dates

 WHERE Date < CAST('2051' AS DATETIME) - 1

),

 DatesAndThursdayInWeek (Date, Thursday)

 -- The weeks can be found by counting the Thursdays

 -- in a year so we find

 -- the Thursday in the week for a particular date.

 AS (SELECT Date ,

 CASE DATEPART(WEEKDAY, Date)

 WHEN 1 THEN Date + 3

 WHEN 2 THEN Date + 2

 WHEN 3 THEN Date + 1

 WHEN 4 THEN Date

 WHEN 5 THEN Date - 1

 87

 WHEN 6 THEN Date - 2

 WHEN 7 THEN Date - 3

 END AS Thursday

 FROM Dates

),

 Weeks (Week, Thursday)

 AS (SELECT ROW_NUMBER() OVER

 (PARTITION BY YEAR(Date) ORDER BY Date) Week ,

 Thursday

 FROM DatesAndThursdayInWeek

 WHERE DATEPART(WEEKDAY, Date) = 4

)

 SELECT *

 FROM Weeks

Now that we have all of our CTEs defined, we are ready to use them to gather all of the data for
each of these dates:

Code Listing 6-9: Building out details for each Date

WITH Dates (Date)

 AS (SELECT CAST('1999' AS DATETIME) Date

 UNION ALL

 SELECT (Date + 1) AS Date

 FROM Dates

 WHERE Date < CAST('2026' AS DATETIME) - 1

),

 DatesAndThursdayInWeek (Date, Thursday)

 -- The weeks can be found by counting the

 -- Thursdays in a year so we find

 -- the Thursday in the week for a particular date.

 AS (SELECT Date ,

 CASE DATEPART(WEEKDAY, Date)

 WHEN 1 THEN Date + 3

 WHEN 2 THEN Date + 2

 WHEN 3 THEN Date + 1

 WHEN 4 THEN Date

 WHEN 5 THEN Date - 1

 WHEN 6 THEN Date - 2

 WHEN 7 THEN Date - 3

 END AS Thursday

 FROM Dates

),

 Weeks (Week, Thursday)

 AS (SELECT ROW_NUMBER() OVER

 (PARTITION BY YEAR(Date) ORDER BY Date) Week ,

 Thursday

 FROM DatesAndThursdayInWeek

 WHERE DATEPART(WEEKDAY, Date) = 4

)

 88

 SELECT d.Date ,

 YEAR(d.Date) AS Year ,

 DATEPART(QUARTER, d.Date) AS Quarter ,

 MONTH(d.Date) AS Month ,

 w.Week as Week,

 DAY(d.Date) AS Day ,

 DATEPART(DAYOFYEAR, d.Date) AS DayOfYear ,

 DATEPART(WEEKDAY, d.Date) AS Weekday ,

 YEAR(d.Date) AS Fiscal_Year ,

 DATEPART(QUARTER, d.Date) AS Fiscal_Quarter ,

 MONTH(d.Date) AS Fiscal_Month ,

 CASE WHEN DATEPART(WEEKDAY, d.Date) = 6 THEN 'Saturday'

 WHEN DATEPART(WEEKDAY, d.Date) = 7 THEN 'Sunday'

 ELSE 'BusinessDay'

 END KindOfDay ,

 ''

 FROM DatesAndThursdayInWeek d

 INNER JOIN Weeks w ON d.Thursday = w.Thursday

OPTION (MAXRECURSION 0);

Wrap the SELECT with an INSERT into the Calendar table and we have it all populated. Once

populated, you can go through and explicitly switch the KindOfDay from BusinessDay to

Holiday for any holidays that you want to track.

Date Quarter Month Week Day DayOfYear Weekday KindOfDay

2019-12-25 4 12 52 25 359 3 BusinessDay

2019-12-26 4 12 52 26 360 4 BusinessDay

2019-12-27 4 12 52 27 361 5 BusinessDay

2019-12-28 4 12 52 28 362 6 Saturday

2019-12-29 4 12 52 29 363 7 Sunday

2019-12-30 4 12 1 30 364 1 BusinessDay

2019-12-31 4 12 1 31 365 2 Holiday

2020-01-01 1 1 1 1 1 3 Holiday

2020-01-02 1 1 1 2 2 4 BusinessDay

2020-01-03 1 1 1 3 3 5 BusinessDay

2020-01-04 1 1 1 4 4 6 Saturday

 89

Date Quarter Month Week Day DayOfYear Weekday KindOfDay

2020-01-05 1 1 1 5 5 7 Sunday

Result Set 6-4: Dates with their details

Once we have entered the holidays that we want to track, we are ready to update the final two
columns, CalendarDayOverall and BusinessDayOverall. Whenever we update a holiday, we

need to update the BusinessDayOverall as well.

We can update the CalendarDayOverall with a query like this:

Code Listing 6-10: Initializing the CalendarDayOverAll

UPDATE c
SET c.CalendarDayOverAll = cdo.cdo
FROM dbo.Calendar c
 INNER JOIN (SELECT Date ,
 ROW_NUMBER() OVER (ORDER BY Date) AS cdo
 FROM dbo.Calendar) cdo ON cdo.Date = c.Date;

Updating the BusinessDayOverall is a bit more complex. For each record, we want to add up

all of the business days that have come before it.

Code Listing 6-11: Initializing the BusinessDayOverAll

UPDATE c
SET c.BusinessDayOverAll = bdo.BusinessDayOverAll
FROM Reference.Calendar c
INNER JOIN (
SELECT Date ,
 BusinessDayOverAll = (SELECT Sum(CASE c2.KindOfDay
 WHEN 'BuninessDay' THEN 1
 ELSE 0
 END)
 FROM reference.Calendar c2
 WHERE c2.Date <= c1.Date)
FROM reference.Calendar c1) bdo ON bdo.Date = c.Date

Now we can use this table to evaluate BusinessDay logic.

Evaluating right of rescission

When you refinance your mortgage, you get a small window to back out of the new mortgage.
This is known as the right of rescission. Your right of rescission ends three business days after
closing, so we often need to determine the date three business days after the closing date. With
the Calendar table, we can now do this with a simple query.

 90

Code Listing 6-12: Finding three business days into the future

SELECT Closing.Date ClosingDate ,
 recission.Date RecissionDate ,
 Closing.BusinessDayOverAll ,
 recission.BusinessDayOverAll
FROM Reference.Calendar Closing
 INNER JOIN (SELECT MIN(Date) Date ,
 BusinessDayOverAll
 FROM Reference.Calendar
 GROUP BY BusinessDayOverAll) recission
 ON recission.BusinessDayOverAll = Closing.BusinessDayOverAll + 3;

ClosingDate RecissionDate BusinessDayOverAll BusinessDayOverAll

2019-09-29 2019-10-02 5411 5414

2019-09-30 2019-10-03 5412 5415

2019-10-01 2019-10-06 5413 5416

2019-10-02 2019-10-07 5414 5417

2019-10-03 2019-10-08 5415 5418

2019-10-04 2019-10-08 5415 5418

2019-10-05 2019-10-08 5415 5418

2019-10-06 2019-10-09 5416 5419

2019-10-07 2019-10-10 5417 5420

2019-10-08 2019-10-13 5418 5421

Result Set 6-5: Three business days into the future

 Tip: This technique can be used to evaluate any cancellation window.

Determining turn time

We often need to track turn time. This is how long it takes to go from one stage in a workflow to
the next. We might need to track this to verify service-level agreements, as a metric for capacity
planning, or as a metric for promotions or performance reviews.

 91

For many processes, you may need a Time table similar to the Calendar table we have been

working on that would track BusinessHours in case you care about turn time in increments

smaller than a business day. For our purposes here, we will assume that we only care about
business days, so TurnTime will be tracking the number of business days between two dates.

Imagine that we have a table called LoanMilestone that tracks when a milestone happens on a

loan.

Figure 6-2: LoanMilestone table

In this system, MilestoneId 25 refers to the InitialProcessor being assigned, and

MilestoneId 30 refers to the FinalUnderwriter being assigned. We have a workflow with

the following steps:

1. Assign initial processor
2. Assign initial underwriter
3. Assign final processor
4. Assign final underwriter

For tracking purposes, we want to track how long it takes to go from initial processing to final
underwriting. To accommodate all business scenarios, we need to accommodate that any of
these steps could potentially be repeated. Events may happen to the loan during processing
that require it to be reassigned to initial processor, or to repeat any step in the pipeline. To track
the turn time, we care about the first time a loan was assigned to initial processing and the last
time it was assigned to final underwriting.

To calculate the turn time, we need to find the number of business days between these two
dates. To find the first time a loan was assigned to an initial processor, we will use the MIN

function. To find the last time it was assigned to a final underwriter, we will use the MAX function.

To find the number of business days between these two dates, we will join to the Calendar

table twice and subtract the two BusinessDayOverall values.

Code Listing 6-13: Tracking business days between assigning processor and assigning underwriter

SELECT InitialProcessor.InitialProcessorAssigned ,
 InitialProcessor.LoanKey ,
 InitialUnderwriter.InitialUnderwriterAssigned ,
 ProcessorCalendar.BusinessDayOverAll ,
 UnderwriterCalendar.BusinessDayOverAll ,
 UnderwriterCalendar.BusinessDayOverAll
 - ProcessorCalendar.BusinessDayOverAll AS TurnTime
FROM (SELECT MIN(MilestoneDate) AS InitialProcessorAssigned ,

LoanMilestone

LoanKey

MilestoneId

MilestoneDate

 92

 LoanKey
 FROM dbo.LoanMilestone
 WHERE MilestoneId = 25
 GROUP BY LoanKey) AS InitialProcessor
 INNER JOIN (SELECT MAX(MilestoneDate) AS
InitialUnderwriterAssigned ,
 LoanKey
 FROM dbo.LoanMilestone
 WHERE MilestoneId = 30
 GROUP BY LoanKey) InitialUnderwriter
 ON InitialUnderwriter.LoanKey = InitialProcessor.LoanKey
 INNER JOIN Reference.Calendar ProcessorCalendar
 ON InitialProcessor.InitialProcessorAssigned =
ProcessorCalendar.Date
 INNER JOIN Reference.Calendar UnderwriterCalendar
 ON InitialUnderwriter.InitialUnderwriterAssigned =
 UnderwriterCalendar.Date
ORDER BY TurnTime;

Loan Key Initial
Underwriter
Assigned

Initial
Processor
Assigned

Business
Day Over All

Business
Day Over All

Turn Time

2602 2018-03-28 2018-01-31 4979 5019 40

2606 2018-03-26 2018-01-29 4977 5017 40

2798 2018-03-26 2018-01-25 4975 5017 42

2958 2018-03-21 2018-01-22 4972 5014 42

2772 2018-03-31 2018-01-30 4978 5020 42

2821 2018-03-31 2018-01-30 4978 5020 42

2498 2018-03-26 2018-01-27 4975 5017 42

2455 2018-03-22 2018-01-23 4973 5015 42

2468 2018-03-30 2018-01-29 4977 5020 43

2960 2018-03-27 2018-01-25 4975 5018 43

Result Set 6-6: Showing the turn time data

 93

Summary

In this chapter, we explored the importance of time and date information and reviewed the
various data types for tracking them. We saw the functions for getting the various date parts
from a date and how to find the difference between two dates in any increment, available as a
DatePart.

Finally, we explored the difference between calendar days and business days, and built out the
Calendar table to track a count of these two types of days so that we could evaluate business

logic based on dates, and used business dates to evaluate the recession dates and produce
turn time reports.

Date and time information is very important, and helps drive much of our business logic.

 94

Chapter 7 Importance of the Data Dictionary

Learning the data dictionary is one of the most important things that you can do to make it
easier to learn a new data model. Learning a new data model is often the hardest part of writing
SQL queries. Quite often there is little to no documentation for the database, and sometimes
there are remnants from old requirements and defunct systems. If the database has been in use
for a while, there is a good chance that many of the relationships have been dropped to
accommodate dirty data or changing data requirements.

All of this makes it harder to learn the data model.

The data dictionary can help. No matter how frequently the database is changed, the data
dictionary is still up-to-date. No matter how out-of-date all other documentation may be, the data
dictionary will be up-to-date because it’s kept current by the database itself.

The data dictionary is a collection of tables and views that can track literally millions of pieces of
information about the database. Internally, the database uses this information for performance
tuning, tracking maintenance, building execution plans, etc. We can use it to learn where the
data is stored and ferret out key information and relationships.

Learning the data model

When I talk about the data dictionary here, I am specifically talking about a set of system views
stored in each database that make up the Information_Schema schema. There are other

views that could be used. Each database vendor has system views that accommodate
proprietary details for their implementation. They may also change from one version to the next
to accommodate new features introduced in each version.

 Tip: While you could get to the information you want by referencing system tables
directly, stick with the Information_Schema views instead. Their structure is an ANSI
standard and will be consistent across most database systems and versions. The
same cannot be said about the raw system tables.

If you need to track vendor and version-specific metadata, you will need to use the system
tables directly, but as you will see, we can get a lot of useful details while limiting ourselves to
the Information_Schema, and this will help future-proof our processes. The queries we are

about to go over will be portable across vendors and across database versions with the same
vendor.

 Note: While these views are an ANSI standard, not all database vendors follow
them. The biggest missing player is Oracle, but there are open source projects
devoted to filling this gap, such as this one.

Our discussion will focus on the following views:

https://sourceforge.net/projects/ora-info-schema/

 95

 Information_Schema.Tables
 Information_Schema.Columns
 Information_Schema.Views
 Information_Schema.View_Table_Usage
 Information_Schema.View_Column_Usage
 Information_Schema.Routines
 Information_Schema.Parameters

Information_Schema.Tables

The Tables view has data for every table in the database. This is where we would go to get a

list of tables in the database or, more often, a list of tables that satisfy a nested question, such
as having a particular column. Once we have explored all of these views, we will explore some
creative ways to use this information.

Tables has the following columns:

 Table_Catalog: The name of the database.
 Table_Schema: The name of the table’s owner.
 Table_Name: The name of the table.
 Table_Type: An indicator for whether it’s a base table of a view.

Information_Schema.Columns

The Columns view has data for every column in the database. There are quite a few columns in

this view. In some circumstances, you may care about each of these columns, but for our
purposes, only a handful of these columns are relevant.

 Table_Catalog: The name of the database.
 Table_Schema: The name of the table’s owner.
 Table_Name: The name of the table.
 Column_Name: The name of the column.
 Ordinal_Position: The sequence for where the column is defined in the table.
 Is_Nullable: An indicator for whether or not this column can have NULL values.
 Data_Type: A string for the data type for the column.

The rest of the columns in this view are used to gather more details about the data type, such
as the length, precision scale, etc.

Information_Schema.Views

The Views view has data for every view defined in the database. This is very similar to the

Tables view, except for one notable addition. The Views view includes a view definition column,

which contains the SQL used to create the view. This can be useful if we want to get the
definition of a view.

 96

Information_Schema.View_Table_Usage

The View_Table_Usage view has a record for every table used in any view definition. This can

make it easier to query and get a list of tables involved in any view to track down data mapping.

Information_Schema.View_Column_Usage

The view Information_Schema.View_Column_Usage has a record for every column that is

exposed in a view. This includes the Table_Name and Column_Name where the column comes

from home. This makes it easy to see where the data from views comes from.

Information_Schema.Routines

The Information_Schema.Routines view has a record for every stored procedure and stored

function defined in the database. There are lots of columns here to give more information about
the programmability objects defined. For the purposes of learning the data model, we don’t
really care about most of these columns. The columns that we do care about include:

 Specific_Name: The name of the routine being defined.
 Routine_Type: An indicator to identify the type of routine being defined.
 Routine_Definition: This column holds the SQL used to define the routine.

Often all we really care about is identifying the stored procedures that are in the database.

Information_Schema.Parameters

The Information_Schema.Parameters view has a record for every parameter used in any

routine.

 Specific_Name will have the name of the routine using the parameter.
 Parameter_Name will have the name of the parameter being defined.
 Ordinal_Position will have the order that the parameter is expected.
 Parameter_Name will be the name of the parameter being defined.

We also have a slew of columns to define the data type for the parameter.

We might use this to identify all of the stored procedures that include a specific parameter or list
all of the parameters used by a specific stored procedure.

Common queries

There are some queries that you might use over and over to get a feel for what you have when
you meet a new database for the first time.

 97

Find out who the owners are

Code Listing 7-1: Who are the owners?

SELECT TABLE_SCHEMA ,
 COUNT(1)
FROM INFORMATION_SCHEMA.TABLES
GROUP BY TABLE_SCHEMA;

This will tell you who the owners are and how many tables they each own.

 Tip: In many databases, you may find that everything is owned by one dbo
(database owner), but sometimes tables are grouped together into functional areas by
ownership.

Which tables are owned by a specific owner?

Code Listing 7-2: What does Finance own?

SELECT TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'Finance'
ORDER BY TABLE_NAME;

This will identify all of the tables owned by Finance. If you have table owners for each functional

area, this will give us a list of the tables that would be used in the Finance module of your

system.

Which tables include a specific column?

Sometimes you might have a column name used throughout the data model. For example, in an
insurance policy management system, you might find that every policy-level table will include a
PolicyKey column. In a mortgage loan origination system, every loan level table may include a

LoanKey column. This can help identify or filter out tables that are at that level.

Code Listing 7-3: Where are the PolicyKey columns?

SELECT t.TABLE_SCHEMA ,
 t.TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES t
 INNER JOIN INFORMATION_SCHEMA.COLUMNS ON COLUMNS.TABLE_NAME =
t.TABLE_NAME
 AND COLUMNS.TABLE_SCHEMA =
t.TABLE_SCHEMA
WHERE COLUMN_NAME = 'PolicyKey'

 98

ORDER BY t.TABLE_NAME;

This query should identify all of the policy-level tables in your database.

Sometimes you want to do the opposite. In this case, for example, we want to find all of the
tables that do not have a column named PolicyKey:

Code Listing 7-4: Which tables do not have a PolicyKey column?

SELECT t.TABLE_SCHEMA ,
 t.TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES t
 LEFT OUTER JOIN INFORMATION_SCHEMA.COLUMNS
 ON COLUMNS.TABLE_NAME = t.TABLE_NAME
 AND COLUMNS.TABLE_SCHEMA = t.TABLE_SCHEMA
 AND COLUMN_NAME = 'PolicyKey'
WHERE COLUMN_NAME IS null
ORDER BY t.TABLE_NAME;

This will give us a list of all of the tables that are not at the policy level. Often this might mean
that the tables are for configuration, administration, or something else not at the policy level.

Now we can extend this further to find the tables that have a combination of columns that we
are interested in:

Code Listing 7-5: Do any tables have a LoanKey and Term column combination?

SELECT t.TABLE_SCHEMA ,
 t.TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES t
 INNER JOIN INFORMATION_SCHEMA.COLUMNS P
 ON P.TABLE_NAME = t.TABLE_NAME
 AND P.TABLE_SCHEMA = t.TABLE_SCHEMA
 INNER JOIN INFORMATION_SCHEMA.COLUMNS Term
 ON Term.TABLE_NAME = t.TABLE_NAME
 AND Term.TABLE_SCHEMA = t.TABLE_SCHEMA
WHERE P.COLUMN_NAME = 'LoanKey' AND term.COLUMN_NAME = 'Term'
ORDER BY t.TABLE_NAME;

Here we get a list of the tables that have both a LoanKey column and a Term column. This could

be used to filter out any tables used to configure term options or term restrictions, and instead
only report the references to Term that are at the loan level.

 99

Search for common patterns that might point to a problem

I worked on an application once where the city, state, and zip fields for an address were
combined in CSZ fields. Various tables would have all three values in one column. This will

ultimately be problematic for various reasons, so I started explicitly looking for tables that have
any columns that end with CSZ.

Code Listing 7-6: Did anyone put city, state, and zip in a single column?

SELECT TABLE_NAME ,
 COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE COLUMN_NAME LIKE '%CSZ';

Another problem may be dealing with common or inconsistent abbreviations. I see this a lot with
date fields. Often, people get creative when naming date columns. For example, I have seen
ClosingDt, FirstPaymentDueDte, and RecissionDate all in the same table. My preference is

to always spell out the components of the name, but not everyone agrees with me. We can
easily find all the variations used in your database:

Code Listing 7-7: How did we name the date columns?

SELECT TABLE_NAME ,
 COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE (DATA_TYPE = 'DateTime' or DATA_TYPE = 'Date')
 AND COLUMN_NAME NOT LIKE '%Date';

 Tip: Never include a NOT LIKE clause in a condition that you plan to run in
production, because it will generally involve a full table scan to retrieve the data.
Fortunately, you can easily get the data you want in from the development or training
environments.

Another common problem you are likely to run into is inconsistent data types for columns that
should be consistent. This can complicate integrating with other systems or cause unexpected
results when reporting within a single application.

Code Listing 7-8: Did we standardize the length of a City column?

SELECT TABLE_NAME ,
 COLUMN_NAME, CHARACTER_MAXIMUM_LENGTH
FROM INFORMATION_SCHEMA.COLUMNS
WHERE COLUMN_NAME LIKE '%City';

 100

You probably want to run a similar query to confirm consistent lengths for all state columns, zip
code columns, phone number columns, etc. Anytime you see a common component for multiple
field names, review these columns and ensure that they have a consistent data type, or that you
understand why they are not consistent.

 Note: Sometimes they may need to be different to accommodate a third-party
interface or similar integration concerns.

Are we using any obsolete data types?

There are several data types that have been identified as obsolete, and we have been warned
that they may be dropped in the future. It is a good idea to track these columns and make sure
that new columns don’t show up in your list. You can potentially even update them to a more
functional standard, depending on your change control.

Code Listing 7-9: Finding obsolete types

SELECT TABLE_NAME ,
 COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE DATA_TYPE IN ('text', 'ntext', 'image', 'datetime');

You may identify other data types that you want to avoid, so you may want to track their usage.

Code Listing 7-10: Finding types to avoid

SELECT TABLE_NAME ,
 COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE DATA_TYPE IN ('uniqueidentifier', 'ntext');

What data types are being used?

It’s good to know what data types are being used across the system. The first time you run such
a query, you may find a lot of inconsistencies.

Code Listing 7-11: What data types are being used?

SELECT DATA_TYPE ,
 COUNT(1)
FROM INFORMATION_SCHEMA.COLUMNS
GROUP BY DATA_TYPE
ORDER BY DATA_TYPE;

You may find results like this:

 101

Data Type Count

Bit 17

char 2

datetime 34

datetime2 9

decimal 124

float 1

Int 25

Nchar 2

nvarchar 5

Smallint 2

Varbinary 1

varchar 270

Result Set 7-1: Data types being used

This is good information to have. You can quickly tell that you have not taken advantage of the
new Date data type. You can also quickly tell that someone has probably gotten confused about

the various numeric data types, such as NChar and NVarChar.

 Tip: Unless you need support for internationalization, stick with Char and VarChar.

This will help you track the inconsistencies and progress towards standardization.

Summary

We have seen in this chapter that the data dictionary provides a good source of documentation
for the database, even when all other documentation has long since been outdated, because
the database itself is keeping this documentation current. We have seen how to use this
information to quickly get an overview of what’s in the database by finding out who owns the
structures in the database, and getting a list of every table in the database and the columns
associated with each of these tables. We can easily identify which tables are reference data and
which have transaction data by searching for key columns being included in the table.

 102

We have also seen some examples of how to detect patterns in the database structure that may
cause problems. We looked at finding a pattern where city, state, and zip code data was
combined in a single field, where naming conventions were inconsistent for Date columns,

where the lengths for common columns such as City were not consistent, or we had not

standardized on data types for numeric values.

There is a wealth of information available that can help you quickly get up to speed on a data
model when you face one and wonder where to begin.

	Table of Contents
	The Story behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Chapter 1 Introduction
	The role of SQL
	What will be covered
	What won’t be covered
	Summary

	Chapter 2 Basic CRUD
	Insert statements
	Default values
	Identity columns
	Constraints
	Triggers

	Select statements
	Single table
	Inner join
	Outer join

	Update statements
	Identity column
	Triggers

	Delete statements
	Referential constraints
	Cascading deletes
	The importance of transactions

	Summary

	Chapter 3 More Advanced CRUD
	Fancy inserts
	Select-based inserts
	Practical uses of Cartesian products

	Fancy updates
	Correlated updates
	Common table expressions
	Merge statement

	Fancy deletes
	Select feeding a delete
	Merge statement

	Summary

	Chapter 4 Slicing and Dicing Data
	Aggregate functions
	Group By
	Sum and Count
	Min and Max
	Having

	Sorting
	Changing directions
	Multiple sorts
	Offset and Fetch

	Summary

	Chapter 5 Selecting From Yourself
	Joining the same table multiple times
	Selecting various phone numbers

	General selecting trees and graphs
	Classic organization chart
	Who’s the boss?

	Summary

	Chapter 6 It’s About Time
	Understanding the Date and Time data types
	DateTime
	DateTime2
	Date
	Time
	DateTimeOffset

	Common functions
	Getting dates
	Getting parts of a date
	Difference between two dates
	Changing the value of a date

	Date-based business logic
	Evaluating right of rescission
	Determining turn time

	Summary

	Chapter 7 Importance of the Data Dictionary
	Learning the data model
	Information_Schema.Tables
	Information_Schema.Columns
	Information_Schema.Views
	Information_Schema.View_Table_Usage
	Information_Schema.View_Column_Usage
	Information_Schema.Routines
	Information_Schema.Parameters

	Common queries
	Find out who the owners are
	Which tables are owned by a specific owner?
	Which tables include a specific column?
	Search for common patterns that might point to a problem
	Are we using any obsolete data types?
	What data types are being used?

	Summary

