
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Early Praise for Secure Your Node.js Web Application

Every Node.js team should have Karl’s book under their belt. If you are seasoned
developer entering Node’s ecosystem, this book brings you up to speed with what
you can expect from the darker corners of the Internet.

➤ Lukáš Linhart
CTO, Apiary Inc.

The Node.js community has been waiting for a book like this. For all of Node.js’s
ease, it comes at a cost: security. This book eases that cost and removes the often-
overlooked downsides of Node.js development.

➤ Glen Messenger
Chief Information Officer, Ditno

If you want to learn how to secure your Node.js apps, there’s no way around Karl
Düüna’s book. In a clear and concise manner the author shows the ins and outs
of making your Node.js app an impenetrable fortress. Not a Node.js user? No
problem—much of what’s covered in Karl Düüna’s book can be used in other en-
vironments with little change.

➤ Brian Schau
Developer, Rovsing Applications ApS

A thorough and clear explanation of web app security, from the database to the
app server to the client. Highly recommended for developers of node-based apps!

➤ Loren Sands-Ramshaw
CTO, @parlay

www.allitebooks.com

http://www.allitebooks.org

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

www.allitebooks.com

http://www.allitebooks.org

Secure Your Node.js Web Application
Keep Attackers Out and Users Happy

Karl Düüna

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-085-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2016

www.allitebooks.com

https://pragprog.com
rights@pragprog.com
http://www.allitebooks.org

Contents

Acknowledgments ix
Preface xi

1. Meet Your Tools 1
Meet Node.js 1
Meet JavaScript 3
Wrapping Up 9

2. Set Up the Environment 11
Follow the Principle of Least Privilege 12
Start with the Basics: Secure the Server 13
Avoid Security Configuration Errors 15
Wrapping Up 21

3. Start Connecting 23
Set Up Secure Networking for Node.js Applications 24
Decide What Gets Logged 29
Don’t Forget About Proper Error Handling 32
Wrapping Up 40

4. Avoid Code Injections 43
Identify Code Injection Bugs in Your Code 44
Avoid Shell Injection in Your Application 47
Wrapping Up 51

5. Secure Your Database Interactions 53
Start with the Basics: Set Up the Database 54
Separate Databases for Better Security 57
Identify Database Injection Points in Your Code 59
Avoid SQL Injection Attacks 61

www.allitebooks.com

http://www.allitebooks.org

Mitigate Injection Attacks in NoSQL Databases 69
Wrapping Up 72

6. Learn to Do Things Concurrently 73
A Primer on Concurrency Issues 73
Ways to Mitigate Concurrency 78
Concurrency with MongoDB Explained 79
Concurrency with MySQL Explained 84
Wrapping Up 86

7. Bring Authentication to Your Application 87
Store the Secret in a Safe Place 88
Enforce Password Strength Rules on Your Users 91
Move the Password Securely to the Server 93
Deal with the Fact That Users Will Forget 97
Add Other Authentication Layers for Better Security 98
Wrapping Up 98

8. Focus on Session Management 99
Set Up Sessions for Your Application 99
Anonymize the sessionID Used 101
Let the Session Die, aka Set a Time-to-Live 102
Secure the Cookies so No One Can Steal Them 104
Re-create the Session When the User Logs In 106
Bind the Session to Prevent Hijacking 107
Wrapping Up 110

9. Set Up Access Control 111
Access Control Methods 111
Missing Function-Level Access Controls in Your Code 114
Don’t Use Insecure Direct Object References 121
Wrapping Up 123

10. Defend Against Denial-of-Service Attacks 125
Recognize Denial-of-Service Attacks 125
Avoid Synchronous Code in Your Application 127
Manage How Your Application Uses Memory 132
Avoid Asymmetry in Your Code 136
Wrapping Up 138

11. Fight Cross-Site Scripts 139
Recognize Different Types of XSS 139

Contents • vi

www.allitebooks.com

http://www.allitebooks.org

Prevent XSS Through Configuration 142
Sanitize Input for Reflected/Stored XSS 144
Sanitize Input for DOM XSS 154
Wrapping Up 159

12. Avoid Request Forgery 161
Follow the Logic to Protect Against CSRF 162
Synchronize Your Tokens as Part of CSRF Protection 163
O Request, Where Art Thou From? 165
Avoid Setting Up Common CSRF Pitfalls in Your Code 167
Wrapping Up 169

13. Protect Your Data 171
Understand Your Application’s Data Flow 171
Protect the Client Application and Data 172
Securely Transfer Data in Your Application 175
Secure the Data Stored Within Your Application 176
Wrapping Up 186

14. Secure the Existing Codebase 187
Perform a Risk Assessment First 188
Test Your Application’s Code Quality 189
Analyze Your Application’s Data Flow 190
If Nothing Else, Use a Helmet 196
Clean the Modules You Use in Your Code 197
Test Your Application Security Thoroughly 202
Wrapping Up 203
Where to Go from Here 203

Bibliography 205
Index 207

Contents • vii

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments
I’ve been lucky to have had a number of great tech reviewers along the way.
I’m grateful to Gábor László Hajba, Woody Lewis, Glen Messenger, Daniel
Poynter (@DanielSPoynter), Craig Castelaz, Loren Sands-Ramshaw, Nouran
Mhmoud, Brian Schau, John Cater, and Michael Hunter for sharing their
time and expertise.

Of course, a book on Node.js wouldn’t exist without Node.js’ father, Ryan
Dahl, and the vibrant open source community of Node.js and IO.js projects.
Their work is both instructive and inspirational. We’re all lucky to have it.

Most important, I want to thank my family, friends, and coworkers at
NodeSWAT for all their questions, early feedback, and encouragement
throughout the writing process.

And finally, thanks to you, dear reader. Yes, you, reading this sentence! I
hope you enjoy the book!

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec
http://www.allitebooks.org

Preface
Building an application is a bit like constructing a house—you need to have
a decent understanding of what you’re building. You have to lay a solid
foundation and add all the features such as walls, roof, windows, and doors
to make the house. To extend the metaphor further, you also want to install
locks on your house to keep the weirdos from coming in and wrecking the
place. A lock fixed with a few pieces of bubblegum is not as effective as one
attached to the door with stainless steel screws. Similarly, you need to know
where you can build strong locks in your application. This book shows you
how to create strong locks for your Node.js web application to keep out
attackers.

If you’ve been listening to the news lately, you’ve heard about data breaches
and websites being attacked. You may be one of the millions of people whose
information has been stolen from a web application. No one is immune: big
retailers, government agencies, and small websites are all targeted. The last
thing you want as a developer is for attackers to break into your application
because of a mistake in your code. This book identifies the techniques used
in most attacks today and shows you how you can block those techniques in
your Node.js application.

Who Should Read This Book?
This book is intended for intermediate Node.js developers, or developers who
have built at least one Node.js web application. This isn’t an introduction to
Node.js but a book teaching Node.js developers how to write secure code.

We quickly review Node.js and JavaScript to make sure everyone understands
the core basics, but don’t treat that review as a substitute for learning Node.js.
If you don’t know how to write Node.js or how to work different modules, you’ll
be lost as you go further into the book.

All the code examples in this book have been tested against Node.js v0.12
and v4.0.

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

What’s in This Book?
Attackers can break your Node.js application in many ways, and they’re
always adding more tricks. But they won’t bother with new, exotic methods
when the tried-and-tested techniques continue to work just as well. This book
focuses on the common techniques they use and shows you how to close
those avenues of attack within your application.

Chapter 1, Meet Your Tools, on page 1 provides a quick overview of Node.js
and JavaScript. We review some of the quirks in the language and show how
to prevent them from becoming security issues in your application.

Securing your application is not just about writing secure code. Of course
we’ll learn how to avoid common security mistakes, but in Chapter 2, Set Up
the Environment, on page 11 and Chapter 3, Start Connecting, on page 23
we’ll also learn how to set up our environment so that attackers can’t just
waltz right in.

Then we’ll move on to writing secure code.

Chapter 4, Avoid Code Injections, on page 43 introduces you to code-injection
attacks and how attackers steal from your database.

Chapter 5, Secure Your Database Interactions, on page 53 focuses on protecting
the database layer so that attackers can’t easily grab the data stored inside.

Chapter 6, Learn to Do Things Concurrently, on page 73 will take a small
detour and focus on how concurrency—one of the bases of computer sci-
ence—is important to the integrity of your application.

Chapter 7, Bring Authentication to Your Application, on page 87, Chapter 8,
Focus on Session Management, on page 99 and Chapter 9, Set Up Access
Control, on page 111 will take a look into the weak points of the main security
mechanisms most web applications employ—authentication, sessions, and
authorization.

Chapter 10, Defend Against Denial-of-Service Attacks, on page 125 focuses on
denial-of-service attacks, which can knock your application offline so that
users can’t access it anymore.

Chapter 11, Fight Cross-Site Scripts, on page 139 and Chapter 12, Avoid Request
Forgery, on page 161 focus on two of the most popular client-side attack vectors:
cross-site scripting (XSS) and cross-site request forgery (CSRF). We’ll look at
how those attacks work and how you can protect your clients against them.

Preface • xii

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Chapter 13, Protect Your Data, on page 171 helps you avoid leaking confidential
information to the public and set up encryption for your database.

Finally in Chapter 14, Secure the Existing Codebase, on page 187 we’ll see how
we can methodically analyze our existing applications and put to use every-
thing we’ll learn in this book.

The chapters in this book mostly build on one another as we go along, and
so I invite you to read it from start to finish. While the concepts are connected,
the code samples are not, so after the first three chapters you can skip around
if you feel comfortable with the topics.

Online Resources
On the website for this book (https://pragprog.com/titles/kdnodesec) you’ll
find the following:

• The full source code for all the sample programs used in this book.

• An errata1 page, listing any mistakes in the current edition.

• A discussion forum where you can communicate directly with me and
other Node.js developers. Feel free to ask questions via the forum page.2

Are you ready to get started? Let’s write some secure code!

1. https://pragprog.com/titles/kdnodesec/errata
2. https://forums.pragprog.com/forums/384

report erratum • discuss

Online Resources • xiii

https://pragprog.com/titles/kdnodesec/errata
https://forums.pragprog.com/forums/384
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 1

The expectations of life depend upon diligence; the mechanic that
would perfect his work must first sharpen his tools.

 ➤ Confucius

Meet Your Tools
The foundation of the house is usually regarded as the most important part
of the construction, but everything begins with the craftsmanship and tools.
An expert can still do good work using unfamiliar tools, but it’s hard to do
great work without being accustomed to the quirks and limitations of them.
Knowing all the ins and outs of your tools provides you the means to do a
good job while avoiding unnecessary mistakes stemming from ignorance.

Even experienced developers might not know some facets of JavaScript and
Node.js. So to help you avoid setting up walls with holes in them, we’ll begin
our journey by becoming acquainted with the main tools we’re going to use.
It will be a nice reminder for those who are already familiar with the material
and a crash course for those who are not.

Meet Node.js
First and foremost is Node.js—a platform built on Google’s V8 JavaScript
engine that allows JavaScript to be run outside the browser. It extends
JavaScript with binders for various C libraries, along with modules to
manipulate binary data, access system functions, and request handling
interpreters. These libraries allow Node.js to access files, execute system
commands, and listen/respond to network requests—everything a server
needs but was missing in JavaScript.

You should know three important things about programming in Node.js from
a security standpoint. First, we’ll be using the V8 WebKit engine to run
JavaScript. Second, the main program of Node.js will run in a single continu-
ous loop thread. As shown in the illustration, the event loop1 passes jobs to

1. https://www.youtube.com/watch?v=8aGhZQkoFbQ

report erratum • discuss

https://www.youtube.com/watch?v=8aGhZQkoFbQ
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

a thread pool and handles callbacks. Finally, we’ll probably be using a lot of
other people’s code through NPM.

This model is powerful because it allows for great non-blocking I/O to occur
in a single thread, which makes the overhead of Node.js very small—no new
threads are made. However, the fact there’s only one main thread housing
the process can be a serious drawback. This leads to some interesting secu-
rity and reliability issues, which we’ll analyze thoroughly in Chapter 4, Avoid
Code Injections, on page 43 and Chapter 10, Defend Against Denial-of-Service
Attacks, on page 125.

The other notable thing about Node.js is its ecosystem. A good design decision
was made early in Node.js development when NPM was created and then
bundled with Node.js. It started as Node Package Manager but has now evolved
to be a generic JavaScript package manager. NPM has made programming
for Node.js modular—people create small modules designed for a specific task
and can then easily share and reuse this code in countless projects.

Chapter 1. Meet Your Tools • 2

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

This sharing and reusing of code creates an environment where coding is
productive, since a lot of complicated tasks can simply be solved by installing
a module using npm install. But there’s also the question of trust—we have to
trust that the modules were written by benign individuals, not malicious ones.
We have to trust that the modules don’t contain errors or backdoors. We
address this trust issue more thoroughly later on in Clean the Modules You
Use in Your Code, on page 197.

Now let’s look at JavaScript, the most prominent feature of Node.js, and the
main gotchas that you should know about. Taking the time to understand
these potential traps will help you be more confident that you’re writing secure
code.

Meet JavaScript
ECMAScript, or JavaScript as it’s mostly known (I’m going to stick with
JavaScript from now on), is one of the most misunderstood programming
languages in the world. Because of its rocky history from a simple scripting
language to a full-blown development language, it has retained some
unusual behaviors and qualities that originally set it apart. Reviewing these
is a good practice since even long-time fans may forget about them.

This chapter is not an introduction for beginner JavaScript developers. But
if you feel like brushing up on your knowledge of the language itself, I recom-
mend the following resources:

• Secrets of the JavaScript Ninja [Res09]
• JavaScript: The Good Parts [Cro08]

Understand That Tools Have Quirks
Jon Erickson explains how hackers look for unintended or overlooked ways
to solve a problem in Hacking: The Art of Exploitation [Eri08]. Crackers, or
attackers, as I’ll call them from now on, are just one type of hacker. They look
for flaws or unintended behaviors in your code and try to exploit them for
their own criminal ends. If you understand the language’s quirks, your
opponents are less likely to catch you by surprise.

Let’s dig in to the security features and weirdness of JavaScript: using strict
mode, numbers and how automatic conversions affect calculations, comparing
values, working with scope, and understanding inheritance. Once you grasp
these elements, you can secure your code and avoid making mistakes that
make you question your own sanity.

report erratum • discuss

Meet JavaScript • 3

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Always Use ‘use strict’

JavaScript’s strict mode is the cornerstone of writing secure JavaScript code.
Strict mode changes both syntax and runtime behavior to be less tolerant of
errors and ambiguous constructs. You can enable it by adding use strict to the
beginning of the file or function. I recommend that you start all your Java-
Script files this way.

Strict mode makes it impossible to accidentally create global variables, since
variable definitions without var would automatically throw an error. You also
won’t be able to use with or assign compiler functions such as eval to other
names. And finally, the function scope (this value) isn’t boxed to an object and
is by default undefined. Let’s look at the the following example, where I’ll
demonstrate those points:

'use strict';
a = 1; // this will throw an error because it is executed in strict mode

var x = 17;
with (obj) // !!! syntax error
{

// If this weren't strict mode, would this be var x, or
// would it instead be obj.x? It's impossible in general
// to say without running the code, so the name can't be
// optimized.
x;

}

// This is not an object all the time
// and defaults to undefined
function fun() { return this; }
assert(fun() === undefined);
assert(fun.call(2) === 2);
assert(fun.apply(null) === null);
assert(fun.call(undefined) === undefined);
assert(fun.bind(true)() === true);

var myFunc = eval; // Throws an error

To reiterate, you enable strict mode by putting use strict at the beginning of all
your files. It takes away some of JavaScript’s bad parts and enforces rules
that make your code more secure. I recommend reading up on strict mode2

if this is new to you.

2. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode

Chapter 1. Meet Your Tools • 4

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Beware of Numbers

JavaScript represents all numbers as double floating point numbers. Many
people don’t realize this, and it frequently results in unexpected errors. For
example, (0.1 + 0.2) === 0.3 would return false in JavaScript because the actual
value of 0.2 + 0.1 is 0.30000000000000004. Imagine the possible problems that can
happen because of this in applications where precise calculations matter,
such as shopping carts.

When dealing with calculations, you have to be extra careful not to introduce
strings into the mix because of resulting type conversion mix-ups and possibly
propagating Not a Numbers (NaN)s.

Any invalid mathematical operation, such as trying to subtract strings, will
produce NaN. In the same way, any mathematical operation involving NaN
will result in NaN. In this manner NaNs can propagate and mess up the entire
calculation logic unless we put a stop to it with isNaN() checks.

JavaScript’s automatic type conversions can also lead to weird results.
Automatic conversions can be useful—they’re why 60 / "6" returns the correct
value. However, if you don’t pay attention to the order in which the conversions
are made, you’ll quickly run into trouble. For example, what is 3 + 5 + "6"?

Did you guess "356"? Well, you’d be wrong. Neither is it 14.

In fact, it’s "86".

> 3 + 5 + "6" // converts to (3 + 5) + "6"
"86"

> (4 + 5 + "3") / 3 // (9 + "3")/3 -> 93/3, not 12/3 = 4
31

To avoid getting caught up in these conversions, use parseInt() or parseFloat() to
purge those strings. Remember to include the base argument; otherwise,
strings starting with 0x will be parsed as hexadecimal values:

> parseInt("0x16") // hexadecimal
22

> parseInt("0x16", 10) // base 10
0

These types of unpredictable results are problematic because they can lead
to possible exploits for the attackers. So always check the mathematical
operands in your code:

> (typeof x === 'number' && !isNaN(x))
// typeof and isNaN are both required, because typeof NaN is 'number'
// whoever did this is probably laughing maniacally at the moment

report erratum • discuss

Meet JavaScript • 5

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Prepare yourself as this automatic conversion problem isn’t limited to only
numbers. It can also cause logic problems when trying to compare things.

Avoid Loose Comparisons

When doing a loose Boolean comparison ==, values like false, 0, the empty
string (""), NaN, null, and undefined all become false and all other values become
true. Except when they don’t. And I am being serious here.

Loose comparisons don’t always seem logical, and the results frequently
depend on the order of the operands. When evaluated in a Boolean expression,
null and undefined both return false; however, in a loose comparison they do
not.

Boolean(undefined) // false
Boolean(null) // false

//however
false == undefined // false
false == null // false

Here I illustrate the problem in a security check:

var user = {
name: 'Karl'

};
// forgot to define isAdmin property on my user

function isAdmin() {
return user && user.isAdmin; // this will return undefined

}

if(isAdmin() == false) { // This will not pass, because false != undefined
console.log('You should be allowed here, but you are not');
return;

}
if(!isAdmin()) { // This will pass because undefined is falsy

console.log('You are allowed here');
return;

}

Here are a few other interesting comparisons you should know:

"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
null == undefined // true
" \t\r\n" == 0 // true

Chapter 1. Meet Your Tools • 6

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Feeling a headache coming on? Don’t worry; we’ve all been there. This is why
you should always use strict comparison === to avoid conversion issues with
comparisons. Unexpected results lead to logic errors in the application, which
again could be exploited by attackers.

Understand Scopes in JavaScript

Scope is a context within a program where a variable name can be used.
JavaScript scope can be somewhat tricky to understand at first, and resulting
program flow errors and security issues are common.

By default, variables are global. Omit the var keyword and you declare a
global variable. This is the biggest security issue with JavaScript scopes. The
previously discussed strict mode will save us from this by disallowing variable
declaration without the var keyword, which means no more accidental global
variables.

It doesn’t save us from accidentally accessing the parent scopes’ variables,
though. Accidentally overwriting a parent variable is a common mistake and
typically results in unexpected system behavior or an application crash:

chp-1-node/scope-iterate.js
var i = 0;

function iteratorHandler() {
i = 10;

}

function iterate() {
//this iteration will only run once
for (i = 0; i < 10; i++) { // Since we don't use var here the global i is used

console.log(i); //outputs 0
iteratorHandler();
console.log(i); //outputs 10

}
}

iterate();

Understand scope, and you avoid unwanted changes in the global and parent
scopes. No unexpected changes, fewer program flow errors. Google Developer
Expert Todd Motto3 has a great overview if you’re interested in learning more
about scope.

3. http://toddmotto.com/everything-you-wanted-to-know-about-javascript-scope/

report erratum • discuss

Meet JavaScript • 7

www.allitebooks.com

http://media.pragprog.com/titles/kdnodesec/code/chp-1-node/scope-iterate.js
http://toddmotto.com/everything-you-wanted-to-know-about-javascript-scope/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec
http://www.allitebooks.org

Inherit from the Prototype

If you’re familiar with other common languages, you’re probably used to
writing class-based inheritance. Unlike those languages, JavaScript doesn’t
have classes (at least not before ECMAScript 6) but instead relies on prototyp-
ical inheritance. This complex subject4 is one of the most misunderstood
topics in JavaScript, so let’s quickly review it.

In JavaScript, every object has a base object called a prototype. If you try to
access an object’s property and it’s not defined, Javascript returns the value
from the prototype’s property, if it exists. Otherwise, it goes up the hierarchy
and asks the prototype’s parent if it has the property.

This sounds a lot like classical inheritance, except for the fact that classical
inheritance inherits the behavior from the parent class, without state. It
inherits the behavior at the moment the object is instantiated. Prototypical
inheritance, on the other hand, inherits both the behavior and state from the
parent object. It inherits the behavior at the moment the object is called. If
the parent object changes at runtime, then the state and behavior of the child
object will be affected. It means you can change objects even after they’re
created, without direct access to the objects themselves. Take a look at this:

chp-1-node/prototype.js
'use strict';

function Person() {} // define the Person Class

Person.prototype.walk = function(){ // Modify the prototype
console.log('I am walking!');

};
Person.prototype.sayHello = function(){

console.log('hello');
};
// now every Person object will be able to invoke these functions

var person = new Person();
person.walk(); // logs 'I am walking!'

var person2 = new Person();
person2.__proto__.walk = function () {

console.log('I am walking fast');
};

person2.walk(); // logs 'I am walking fast'
person.walk(); // also logs 'I am walking fast' as we changed the prototype

4. http://msdn.microsoft.com/en-us/magazine/ff852808.aspx

Chapter 1. Meet Your Tools • 8

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-1-node/prototype.js
http://msdn.microsoft.com/en-us/magazine/ff852808.aspx
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Changes to the prototype will affect all objects that have that prototype in
their prototype chain. It can be cool but also confusing. In the interest of
maintaining your sanity and the integrity of your application, please avoid
changing original prototypes. We cover some security implications of this in
Chapter 4, Avoid Code Injections, on page 43.

Wrapping Up
You should now have a better overview of your tools. We covered that a Node.js
application runs in a single thread and supports events at the base level. We
also examined how JavaScript’s peculiarities, from mathematical rounding
errors to automatic type conversions, can cause hard-to-debug errors. You
should now be aware of these issues and know how they can cause problems.

Now that we have a inspected our tools, we can start securing a Node.js
application. Let’s start with the server and work our way up.

report erratum • discuss

Wrapping Up • 9

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 2

By failing to prepare, you are preparing to fail.

 ➤ Benjamin Franklin

Set Up the Environment
You should now have a better understanding of how your tools work and,
more importantly, how they can cause problems if not used correctly. In this
chapter, we’ll start working on the foundation—the server. There are many
things to secure before we can write Node.js code.

You’re looking at the title and wondering why I’m talking about the server
instead of Node.js. Application security is a layered concept—we start from
the outside and first secure our environment, network, and other auxiliary
systems before we can even start work on the core application, as the following
illustration shows.

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Why? Because if we don’t secure the surrounding layers, the inner defenses
in our application matter little. We can’t just put a password on a computer
and say that computer is safe from thieves. We first need to lock the front
door, right? That password won’t stop a thief from simply taking the computer
and walking out the door.

Every application has to live somewhere—a server, a phone, a device—an
environment. Before we can secure higher levels of the stack and adopt secure
coding practices, we must work our way up.

In this chapter, we’ll discuss the principle of least privilege, how to properly
configure our server, and ways to manage different environments. Yes, this
isn’t writing code, but good security starts with making sure the server is set
up correctly. And while some of these topics might seem basic to you, I’ve
seen time and time again that often it’s the basics that get overlooked.

So, let’s get started.

Follow the Principle of Least Privilege
The principle of least privilege (PLP) will help us design better security
throughout the application.

In PLP, every abstraction layer in an application—program, user, process—has
access only to the information and resources that it needs to complete its
task. If the application layer can’t access privileged resources, then it can’t
be abused to give attackers access to those resources. PLP limits damages in
case of a breach.

A common example of PLP can be seen in the operating systems; as a user,
you have a regular account for working with installed applications. When you
want to do something that requires higher privileges, such as installing an
application, you see a prompt asking for higher privileges. This kind of man-
ual privilege escalation system makes it harder for attackers to execute
malicious programs on victims’ machines.

We can also see PLP in web applications, where the server process doesn’t
have read access outside the web application directory. This prevents
attackers who somehow found a loophole in the server configuration from
abusing it to read and modify other files on the server.

In reality, true PLP is practically impossible because it’s extremely difficult
to determine all the resources that a program needs and at what point in
time. However, even a moderate implementation of the concept increases
application security by a great deal.

Chapter 2. Set Up the Environment • 12

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

From our web application standpoint, we have the following rules:

• The web application should not be run with root privileges. It should instead
use a limited account that has access to only the required resources.

• The database account should not be a root account. The account should
have limited privileges over the database tables. We touch upon this in
Chapter 5, Secure Your Database Interactions, on page 53.

• The users of the web application should be given the minimum set of
privileges they need.

Following this simple list while developing the application greatly increases
the security and fault tolerance because the impact of all errors and vulnera-
bilities is contained within their specific areas.

Start with the Basics: Secure the Server
PLP isn’t enough if the hardware housing our application is riddled with holes.
Attackers are looking for any way in and will target both the production and
development servers hosting the application. If we forget to secure the server
itself in the rush to code a secure application, all the things we’re going to
discuss in later chapters will no longer matter.

What good is session management in our application if the server has a weak
password? Does it matter if we implement a rock-solid authentication scheme
if the server is running old and vulnerable software? No. Remember, we need
to lock the front door before we password-protect the computer.

Since this book is about Node.js security and not server security, we’ll keep
things brief and basic.

The first step is authentication, because it’s the most important aspect of
server security. Keep the following guidelines in mind for a secure authenti-
cation scheme:

• Do not use the root account all the time. Using an ordinary account and
sudo to elevate permissions when required minimizes the attack vector by
limiting the timeframe and execution rights.

• Do not give the same account to everyone. It makes it hard to separate
permissions of individuals or determine a point of attack later on.

• Use dedicated machines. Having the production site running on a machine
otherwise used for email or web browsing opens up so many attack vectors
that anything that you might save on hardware would be gobbled up by
balancing security.

report erratum • discuss

Start with the Basics: Secure the Server • 13

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

• Keep access to the production server to a minimum. There’s no reason for
someone from accounting to have root access to the production server
hosting your web application. Let access be limited to the minimum
number of people possible.

• Change the default password or use key-based authentication. Most cloud
services provision machines with default root accounts and send the
passwords by email. Change those!

The application server should be single purposed. Running a pet development
app on the same server as a business-critical application is a great idea—if
you want to sabotage your production environment. (That was sarcasm.) Don’t
do it, because you’re just offering up a buffet of attack vectors to break into
the server and the resident applications.

Set up a proper firewall. Block all network traffic that should not be occurring
in the first place. If necessary, you can also set up a reactive firewall to block
denial-of-service attacks when they occur.

Another basic step, but an important one, is to make sure all the software
installed on the server is up to date. If the history of computers has shown
us anything, it’s that complex software without bugs is like a miracle—some
say they have seen it, some even say that they have made such a program,
and the rest of us just shake our head in disbelief. Keep your system up to
date to limit exposure time to vulnerabilities as they’re found.

In 2014 alone, two serious bugs were found in commonly used networking
software and required a software update for almost all servers around the
world: Heartbleed1 and ShellShock.2 Make sure you’re running updated
server software to ensure these two and other security bugs don’t affect you.

Securing the server operating system, setting up firewalls, and hardening the
environment are all broad topics and out of scope for this book. I recommend
taking the time to understand network and OS-level security. Here are a few
good online tutorials and lists to get you started:

• Securing and Optimizing Linux: The Ultimate Solution3

• An Introduction to Securing Your Linux VPS4

• 20 Linux Server Hardening Security Tips5

1. http://heartbleed.com/
2. http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
3. http://www.tldp.org/LDP/solrhe/Securing-Optimizing-Linux-The-Ultimate-Solution-v2.0.pdf
4. https://www.digitalocean.com/community/tutorials/an-introduction-to-securing-your-linux-vps
5. http://www.cyberciti.biz/tips/linux-security.html

Chapter 2. Set Up the Environment • 14

report erratum • discuss

http://heartbleed.com/
http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
http://www.tldp.org/LDP/solrhe/Securing-Optimizing-Linux-The-Ultimate-Solution-v2.0.pdf
https://www.digitalocean.com/community/tutorials/an-introduction-to-securing-your-linux-vps
http://www.cyberciti.biz/tips/linux-security.html
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Avoid Security Configuration Errors
Now that our server won’t fall to the first script kiddie that comes along, let’s
make sure we won’t make errors configuring our software stack. Breaches
due to misconfiguration are more common than those due to zero-day vulner-
abilities.

What Is a Zero-Day Vulnerability?

Some software bugs let attackers remotely execute commands on
targeted machines. Although software developers quickly release
patches as soon as these issues are found, sometimes attackers
find the bugs first. Zero-day vulnerabilities are bugs attackers are
using before the software developer has the chance to fix them.
Zero days have passed since the patch for that bug, hence the
name.

There are as many possible areas of misconfiguration as there are different
combinations of software installed on your server, making it impossible to
cover them all in a single book. Let’s focus on common configuration mistakes
and how to configure the production and development environments. These
examples should give you a good grounding of what you should and shouldn’t
do in your setup.

Change Default Users and Passwords
First, you need to keep an eye on default accounts. We all like it when things
work right out of the box—little to no setup and everything runs smoothly.
While the fact that some frameworks and content management systems (CMSs)
ship with default accounts pre-created makes installation convenient, it
presents a serious security threat.

What’s the threat, you ask? Well, anyone who has either installed the software
or read the documentation will know about those accounts. So unless you
change them, anyone can use those accounts and walk through all your layers
of security. This is a widespread issue, since default accounts can also be
found on networking equipment, databases, and cloud server instances, to
name a few. Any default accounts in the software and hardware stack must
be either deactivated or reconfigured.

Set Up Separate Development and Production Servers
In a proper software development environment, you test and stage code so
that you iron out any bugs before production. However, there’s a security

report erratum • discuss

Avoid Security Configuration Errors • 15

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

paradox: you want to keep the development, testing, and staging environments
separate and homogenous at the same time. What you end up should be
similar to the following diagram.

Let’s start with the separation. Production and development environments
should not be on the same machine. You might wonder why, especially since
consolidating would reduce development costs.

The answer is simple: development versions of the application are by definition
incomplete and have bugs. Attackers can exploit those issues to access pro-
duction data or look at the source code to understand how the application
works. The development environment should be treated as an internal
resource, one that cannot be accessed directly from the web and lives behind
an authentication screen to make sure only authorized users can get in.

To reiterate, keep your production code separate from everything else.

You want to make sure the application runs as expected in production, which
means the development, testing, and production environments have to have
the same software and settings. But it’s neither optimal nor safe to configure
production exactly the same as other environments, because they fulfill dif-
ferent purposes, as the following illustration shows.

Chapter 2. Set Up the Environment • 16

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Development environment tends to have more relaxed security and verbose
logging for debugging. All the developers on the team need to have access to
the development environment. In comparison, the whole team typically doesn’t
work on production servers, so fewer users should be able to log in. As I also
discuss in Decide What Gets Logged, on page 29, verbose logging in production
is not a good idea.

There are a few ways to configure the development and production environ-
ments. You can do it manually with the process.NODE_ENV environment variable,
use a configuration manager, or look for a built-in solution, such as the
environment in the express framework. The manual process isn’t recommended
because it gets hard to maintain.

I prefer a configuration manager, but it depends on the complexity and size
of the application. I like easy-config6 (which I wrote), but there are dozens
available, such as node-config7 and nconf.8

I suggest using environmental variables such as NODE_ENV to differentiate
between them externally. This is less error prone than using runtime argu-
ments, and you’re less likely to start up an environment with the wrong set-
tings. Even the express framework recognizes NODE_ENV.

To sum up, live, or production, environments should have restricted policies,
with fewer people having access and with fewer privileges. All third-party
software should have separate accounts used only within the production
environment. And finally, live environments should also have less-verbose
logging and error handling, which we look at next.

6. https://github.com/DeadAlready/node-easy-config
7. https://github.com/lorenwest/node-config
8. https://github.com/flatiron/nconf

report erratum • discuss

Avoid Security Configuration Errors • 17

https://github.com/DeadAlready/node-easy-config
https://github.com/lorenwest/node-config
https://github.com/flatiron/nconf
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Limit Error Messages in Production

In the development environment it’s useful to have descriptive error messages
and the stack trace printed out for easy debugging. However, they shouldn’t
be shown in the production environment because they would provide
attackers with extra information about the application structure and could
possibly expose some vulnerabilities or attack vectors.

For example, with SQL injection, which we’ll cover in Chapter 5, Secure Your
Database Interactions, on page 53, there’s a vast difference between regular
SQL injection and blind SQL injection. The first shows descriptive error
messages that provide attackers with insight into what exactly happened and
what they have to do to construct a valid attack:

Error: ER_PARSE_ERROR: You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server version
for the right syntax to use near '"karl""' at line 1
at Query.Sequence._packetToError (mysql/lib/protocol/sequences/Sequence.js:48:14)
at Query.ErrorPacket (mysql/lib/protocol/sequences/Query.js:82:18)
at Protocol._parsePacket (mysql/lib/protocol/Protocol.js:271:23)
at Parser.write (mysql/lib/protocol/Parser.js:77:12)
at Protocol.write (mysql/lib/protocol/Protocol.js:39:16)
...

Blind SQL is much more difficult for attackers since error messages provide
no information about what went wrong. That’s what we want to see more of.
Or in this case less of.

In the express framework, the default error handler watches for NODE_ENV to
determine if the detailed stack trace information gets shown. If you set
NODE_ENV=production, then all you see is the message, Internal Server Error.

As it should be. As long as you’re tight lipped in your production environment,
then you can feel good—you’re doing things the way they should be done.

Locking the Environment

We’ve been talking for a while about how the production and development
environments should be on separate machines and have different configuration
settings. But at the same time we also need the environments to be homoge-
neous.

Before you start roll your eyes and say, “What!” let me explain. I am talking
about the software stack. In a perfect world, the servers are clones in terms
of operating system, packages installed, and configuration settings.

The recommended setup for Node.js projects places used modules in a pack-
age.json file, to look something like the following:

Chapter 2. Set Up the Environment • 18

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec
http://www.allitebooks.org

{
"name": "security-misconfiguration",
"version": "0.0.1",
"main": "environment.js",
"dependencies": {

"connect-redis": "*",
"easy-session": "*"

}
}

(This example package.json is useless; it was severely gutted to shorten the
examples that follow.)

package.json lets you use the npm install command to install all the dependencies.
Since we marked each dependency with *, the latest available versions from
the repository will be installed. This sounds like a good idea, except now we
don’t know whether any of the packages have been updated since they were
installed in the development environment. The production environment may
wind up with newer versions installed than the ones in development.

We talked about having updated software earlier, so having newer versions
is better, right? While that’s true to some extent, if you haven’t tested your
application against the newer version of software, then you don’t know about
potential problems. Maybe the new version of the software causes your
application to break or introduces some weird inconsistencies. If you don’t
know that your software works exactly the same way in production as it does
in development, that’s not a good thing.

So we should change the package.json to tie down the versions:

{
"name": "security-misconfiguration",
"version": "0.0.1",
"main": "environment.js",
"dependencies": {

"connect-redis": "~1.4.6",
"easy-session": "0.0.2"

}
}

This defines more precisely the versions of the packages you want to use. The
first is added as an approximate version and the last as a specific version of
the package. To make it easier to add approximate versions during develop-
ment, use the --save flag:

npm install express --save

This will install the express module and add "express": "~3.4.8" under "dependencies".

report erratum • discuss

Avoid Security Configuration Errors • 19

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

This seems to solve the problem, except for the fact that required dependencies
frequently have subdependencies. So it didn’t really fix the issue, did it? The
following example lists the dependencies for connect-redis:

"dependencies": {
"redis": "0.9.x",
"debug": "*"

},
"devDependencies": {

"connect": "*"
}

This might make it look like the node_modules folder should be included within
the repository itself. However, since Node.js supports modules written in C
and C++ as well, some of them might need compiling and compiled modules
tend to break when moved around. To mitigate, we can use shrinkwrap9 to
lock up the whole dependency tree.

For example, let’s look at our original project to install two dependencies.
Run the following to create the npm-shrinkwrap.json:

npm shrinkwrap

{
"name": "security-misconfiguration",
"version": "0.0.1",
"dependencies": {

"connect-redis": {
"version": "1.4.6",
"from": "connect-redis@*",
"dependencies": {

"redis": {
"version": "0.9.2",
"from": "redis@0.9.x"

},
"debug": {

"version": "0.7.4",
"from": "debug@*"

}
}

},
"easy-session": {
"version": "0.0.2",
"from": "easy-session@*"

}
}

}

9. https://www.npmjs.org/doc/cli/npm-shrinkwrap.html

Chapter 2. Set Up the Environment • 20

report erratum • discuss

https://www.npmjs.org/doc/cli/npm-shrinkwrap.html
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Now we can see all dependencies listed in the tree. When we run npm install
and the npm-shrinkwrap.json file is in the directory next to package.json, then shrinkwrap
installs the same versions we used originally. This keeps the environments
homogeneous. I won’t go into more detail here, but I recommend looking up
more information about the versioning and contents of package.json.10

Wrapping Up
Proper server configuration is critical for any secure web application because
you’re building the base of the application. In this chapter, we looked briefly
at securing the web server, password security, and separating development
and production environments. The last thing you want is poor setup or a bug
in development to compromise production.

We continue our focus on layered security by moving up another step. This
time we’ll secure the network layer, which defines how we communicate with
the world. Let’s move on.

10. https://www.npmjs.org/doc/files/package.json.html#dependencies

report erratum • discuss

Wrapping Up • 21

https://www.npmjs.org/doc/files/package.json.html#dependencies
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 3

Humankind has not woven the web of life. We are but one thread
within it. Whatever we do to the web, we do to ourselves. All things
are bound together. All things connect.

 ➤ Chief Seattle

Start Connecting
In the last chapter you learned how to secure the first layer of defense—the
environment. With that out of the way, we can now focus on the next two
layers of defense—networking and application support—shown in the following
illustration.

It doesn’t matter how carefully you avoid security errors inside your application
if you aren’t careful about how the application communicates with users and
other network components. In this chapter you’ll learn how to set up network
defenses, track what’s happening, and make sure the server doesn’t kick the
bucket for any old request.

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

First, we’ll see how to set up traffic encryption with Node.js to prevent
eavesdropping. We’ll then set up a support system for the application to pro-
vide diagnostics and robustness for its operational life.

Set Up Secure Networking for Node.js Applications
Compared to the widely used LAMP (Linux Apache MySQL PHP) or LEMP
(Linux Nginx MySQL PHP) stacks, Node.js acts as both the interpreted lan-
guage (PHP) and the web server (Apache/Nginx); see the following graphic.
Node.js handles the communications within the application as well as with
outside components.

We have full control over network setup and traffic from our Node.js code and
don’t have to worry about another layer outside the codebase doing something
we don’t know about, such as serving an index or allowing someone to access
a file stored in one of the internal directories.

The lack of outside default configuration is at once both good and bad. It’s
good because our server does only what we say it can do, similar to how
whitelisting works. It’s bad because most developers don’t know all the caveats
of every request type, making their implementations likely to contain common
mistakes.

Luckily Node.js has a vibrant ecosystem, with thousands of modules to solve
common problems. We get to pick and choose the ones we need for our current
application. So while we’re not forced to write everything from scratch, we
still need to understand how the modules work. Otherwise, we’re back to the
problem where we don’t know what’s happening with our application.

Chapter 3. Start Connecting • 24

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Although there are benefits to having Node.js handle all the network configu-
ration, I still recommend using Nginx for static file serving. One reason is that
Node.js is a single-threaded process, as we discussed previously. Every second
or millisecond the application wastes reading files from disk and sending
them to the users is time it’s not responding to other requests. That’s a lot
of time lost if the application responds to twenty image requests for one page
load.

And the other reason is that, frankly, Nginx is better at it. Nginx excels at
caching and serving static files, and you should always try to use the best
tools for the job.

From a security standpoint, why should you care about this? Well, availabil-
ity is one of the three pillars of web application security. Attackers can try to
knock your application offline by overwhelming it with requests. If you reduce
the load on your Node.js process, your application becomes more resilient to
traffic overload.

Use TLS and SSL to Secure Your Connections
How would you like it if someone could observe every move you made online,
not to mention your login credentials to every site and your credit card
information? You probably wouldn’t be thrilled (maybe you would, no judgment
here), and trust me, neither would your users. You can stop attackers from
listening in by encrypting network traffic between your application and the
user using Transport Layer Security (TLS) or its predecessor Secure Sockets
Layer (SSL), which are more commonly known as HTTPS.

We won’t go into a lot of detail about TLS and SSL here, but I recommend
reading up on various attack methods against TLS and SSL.1 For our purposes,
we’ll just set up an HTTPS server and assume the rest is taken care of.

To set up an HTTPS server in Node.js, we just need valid SSL certificates
generated by a certificate authority (CA). Many developers use self-signed
certificates during development, but these certificates throw red flags in
browsers and don’t protect you from eavesdroppers. Self-signed certificates
are okay for development purposes but should never be used in production
environments.

1. http://en.wikipedia.org/wiki/Transport_Layer_Security

report erratum • discuss

Set Up Secure Networking for Node.js Applications • 25

http://en.wikipedia.org/wiki/Transport_Layer_Security
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

There are several ways to generate a self-signed certificate, including online
generators like the one at cert-depot,2 and plenty of documentation3 available
for your reference. For the following examples, we’ll use self-signed certificates
since they’re easier to obtain, but make sure you apply for CA-generated
certificates to use in production. The setup process is the same, so what you
learn here will still apply to your production certificates.

Do Not Use Self-Signed Certs in Production!

Self-signed certificates aren’t secure enough to use in production.
Without a trusted CA-signed certificate, you’re protected against
the most basic attacks and not much else. The security levels vary
depending on the type of certificate you buy, so consider your
application requirements during the selection process. There are
several sources for free certificates, including startssl.com.4

With a certificate in hand, you can use the following example to set up an
HTTPS server using Node.js:

chp-3-networking/https-plain.js
'use strict';

var fs = require('fs');
var https = require('https');

var options = {
key: fs.readFileSync(__dirname + '/certs/key.pem'),
cert: fs.readFileSync(__dirname + '/certs/cert.pem')

};

https.createServer(options, function (req, res) {
res.writeHead(200);
res.end("hello world\n");

}).listen(8000);

It’s just as simple using the express framework, as this example shows:

chp-3-networking/https-express.js
'use strict';

var fs = require('fs');
var https = require('https');
var express = require('express');

var app = express();

2. http://www.cert-depot.com/
3. http://www.akadia.com/services/ssh_test_certificate.html
4. https://startssl.com

Chapter 3. Start Connecting • 26

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/https-plain.js
http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/https-express.js
http://www.cert-depot.com/
http://www.akadia.com/services/ssh_test_certificate.html
https://startssl.com
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

app.get('/', function (req, res, next) {
res.send('hello world');

});

var options = {
key: fs.readFileSync(__dirname + '/certs/key.pem'),
cert: fs.readFileSync(__dirname + '/certs/cert.pem')

};

https.createServer(options, app).listen(8000);

And it really is that simple to configure an HTTPS server in Node.js. As you
can see, getting the certificates is the biggest hassle in this whole process.

Let’s Encrypt!

Let’s Encrypt5 is a free, automated, and open certificate authority
brought to you by the Internet Security Research Group (ISRG).
It aims specifically to solve the hassle of obtaining, installing, and
updating a certificate to encourage the adoption of SSL across
websites.

Just remember, though, that Node.js does not automatically redirect from
HTTP to HTTPS. So be sure to set up a simple HTTP request handler for
redirection:

chp-3-networking/http-redirect.js
http.createServer(function (req, res) {

res.writeHead(301, {
Location: 'https://' + req.headers.host + req.url

});
res.end();

}).listen(80);

Or use the express framework:

chp-3-networking/http-express-redirect.js
var httpApp = express();
httpApp.get('*', function (req, res){

res.redirect('https://' + req.headers.host + req.url);
});
httpApp.listen(80);

Although in this section we looked at how to set up an HTTPS site using
Node.js, I must point out that you should use Nginx or other servers in front
of your Node.js application to handle the SSL connection. Setting up an SSL
connection is expensive, and as Node.js is single threaded, it would suffer in

5. https://letsencrypt.org/

report erratum • discuss

Set Up Secure Networking for Node.js Applications • 27

http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/http-redirect.js
http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/http-express-redirect.js
https://letsencrypt.org/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

performance when having to deal with many SSL handshakes. Also, dedicated
server software is much better at creating and handling SSL connections,
with support for newer advanced HTTP features such as HTTP2.

Add HSTS to the Connection
Although we’ve now set up our HTTPS connection, it doesn’t mean our work
is done, since there are attacks designed to break SSL like SSL-stripping
attack methods that trick browsers into downgrading an HTTPS connection
to HTTP on the initial request. This allows the attacker to eavesdrop the pro-
tected traffic. To protect our connection we should set up HTTP Strict Trans-
port Security, or HSTS.

The mechanism of HSTS is to send a Strict-Transport-Security header to the client
specifying when the SSL policy will expire. The browser will then default to
HTTPS when communicating with the application until this header expires.
The following graphic illustrates the difference.

Let’s set this header using some simple express framework middleware:

app.use(function (req, res, next) {
var aYear = 60 * 60 * 24 * 365;
// Set the Strict Transport Security header for a year
// Also include subdomains
res.set('Strict-Transport-Security',
'max-age=' + aYear + ';includeSubdomains');

next();
});

Chapter 3. Start Connecting • 28

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

The header is respected by the browser only if it’s sent over an HTTPS connec-
tion and there are no errors with the certificate. Yet another reason you need
a proper certificate!

If you are using Nginx or another proxy in front of your Node.js application
as recommended, then you should set protection headers in the proxy config-
uration to reduce distribution of this knowledge all over the application.

Once the header is received, the browser will start defaulting to HTTPS on
your site. The header can be updated on the fly, so you can keep the policy
active as long as necessary.

Unfortunately, HSTS doesn’t protect the first request ever made by the user
to the application. Some browsers work with this limitation by referencing a
predefined list of sites using HSTS. Since the list isn’t exhaustive, it protects
only a limited number of sites. Even with the limitation, setting the header
on the first request makes sense because it drastically narrows the possible
attack window.

We won’t go into more detail here, but Mozilla has a nice page with more
information about the HTTP Strict Transport Security header.6

Decide What Gets Logged
We’ve now set up a secure connection between the application and the users,
but we’re still missing some important parts of our application’s support
mechanisms.

Imagine that your company has an office in another country, and things there
are very active, with people coming and going at all hours. You know this
because you have cameras capturing information about what’s happening in
that office. Logging is to your application what cameras are to that office.
Without logging, you’d have no idea what’s happening with your application.

Other web servers do a basic amount of logging by default, but as I discussed
before, Node.js does no hand-holding. You have to do this by yourself.

It’s a common misconception that logging is useful only when crashes occur
(completely false, as we both know). Another misconception is that logging is
not related to security. In fact, logging is important for security, because it
provides input for both prevention and forensics.

Let’s first look at prevention. Logging helps us debug code, detect anomalies
in the program workflow, and detect attacks. Inserting proper log lines will

6. https://developer.mozilla.org/en-US/docs/Security/HTTP_Strict_Transport_Security

report erratum • discuss

Decide What Gets Logged • 29

https://developer.mozilla.org/en-US/docs/Security/HTTP_Strict_Transport_Security
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

allow us to learn when the program isn’t working as expected. These unex-
pected behaviors are exactly what attackers exploit to attack the system. So
by logging, hopefully we’ll be able to find and fix bugs and logic errors in our
code before any attacker finds them. Learning about these anomalies by
examining log lines is much cheaper than combing the application code after
a breach to learn how it could have happened.

Logging also helps you stop an attack during its occurrence. You might be
wondering how. Let me demonstrate.

Say our usual log line looks like this:

GET / 200 11 - 4 ms

Now we get a group of logs like these:

GET /’`([{^~' 404 - - 1 ms
GET /aND 8=8' 404 - - 0 ms
GET /' aND '8'='8' 404 - - 1 ms
GET //**/aND/**/8=8' 404 - - 1 ms
GET /%' aND '8%'='8' 404 - - 0 ms

We can deduce from these requests that the user is looking for SQL injection
points and can act appropriately—by blocking the IP or collecting more
information about the attacker for further analysis.

Logging also provides input for forensics. With logging, we can determine the
extent of the breach and track down information about the perpetrators. It
is likely that at some point attackers will get past our defenses. When they
do, we’ll need logs to understand how they succeeded, what they did, and
where they originated from. Without logging, we’d be effectively blind and
have nothing to go on.

Logging is something we simply must do when writing a secure web applica-
tion. Let’s look at how we can do it easily.

The express v3 framework exposed a simple logger middleware from connect, the
lower-level node module express is built upon. You could enable it with just
one line:

chp-3-networking/morgan-simple.js
app.use(express.logger());

As of express v4, this has been moved to a separate module called morgan and
can now be used like so:

// Require the morgan logger
var morgan = require('morgan');
app.use(morgan('combined'));

Chapter 3. Start Connecting • 30

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/morgan-simple.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

This will provide logs in the following format:

':remote-addr - :remote-user [:date[clf]] ":method :url HTTP/
:http-version" :status :res[content-length] ":referrer" ":user-agent"'

//example
127.0.0.1 - - [23/Nov/2014:14:34:21 +0000] "GET / HTTP/1.1" 200 13 "-"
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.62 Safari/537.36"

You may need a custom solution because you need to log data that isn’t
supported, or you’re not using connect or express. In that case, keep in mind
that you should, at the bare minimum, log the time, the user’s remote IP
address, the requested path, the type of the request (such as GET or POST), and
the response code to see how the request was handled. It also helps to log
important internal information such as detailed error messages and application
procedures. You want to know about database alerts (such as database errors
and fatal errors) and important application procedures (such as withdrawal
transactions in a financial application).

Put your logger high up the stack so that all requests pass through it. For
express it means putting the morgan middleware before other middleware. I
recommend looking up and becoming familiar with the morgan logger middle-
ware7 and the various configuration methods.

You might be thinking now that logging is simple—“I’ll just log everything.”

I’ll just say don’t. Logging everything isn’t as good in practice as it might
sound in your head. In this section I’ll provide a few guidelines for what not
to do.

First of all, don’t log too much. Different environments and applications can
and usually should require different logging levels. In development you want
to see as much of the request’s movement as possible in order to trace various
problems and/or better understand the internal flow of the application.

However, this information is cumbersome in production because production
logs must be persistent. Assuming that the application has proper logging
set up, then with development settings the log files would probably grow
rapidly.

This would result in information overload—although logs can be searched
and consolidated using various tools, you’d still have issues with storage and
management if the application usage is high enough.

7. http://www.senchalabs.org/connect/logger.html

report erratum • discuss

Decide What Gets Logged • 31

http://www.senchalabs.org/connect/logger.html
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Second, store your logs securely. I recommend that the production logs be
consolidated to separate machines and if the application type demands it,
timestamped. By timestamping I mean they should be signed cryptographically
so that their time and validity can be checked afterward. This is to prevent
log tampering.

And finally, don’t log sensitive information. You need to be aware of what
you’re logging. Avoid logging sensitive information like passwords and credit
card/Social Security numbers and so on. If your logs are compromised, they
will provide a wealth of information to the attacker.

Also, if you plan to add session-based grouping to logs by logging a session-
specific token every time, you must not log the sessionID itself as the token.
Instead, generate a random value every time a session is created, or hash the
sessionID and use that value (the latter should be saved to the session because
it’s computationally expensive to hash on every request). The last thing you
want, if your application gets compromised, is for the logs to be a ready source
of sessionIDs and other sensitive information for the attackers.

Don’t Forget About Proper Error Handling
Now that your server is talking to the world and you can see what’s going on
there, we have another important topic to discuss—errors.

Due to the single-threaded nature of Node.js and the lack of default configu-
ration, a single error could bring the entire application crashing down,
something we definitely don’t want.

Error handling has been left in the hands of the programmers, and because
of the nature of Node.js, it’s somewhat complicated to implement correctly.

Let’s investigate the various ways to address error handling in Node.js. There
are several layers of implementation, and the best one to use would depend
on the scale and nature of the application.

Keep the Process Alive
First, we want to prevent the Node process from exiting unexpectedly. If that
happens, all of our open requests will be terminated, even after restarting the
process. That results in a bad user experience and introduces possible
integrity errors. The process could crash while another person is withdrawing
money, for example. That would be hard to recover, and what happened to
the money? We must try to avoid the situation altogether.

Chapter 3. Start Connecting • 32

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

To achieve this we have to catch all errors that are thrown or emitted. This
means you have to wrap fragile parts, where there’s a possibility of an error
being thrown, in try{}catch(e){} statements.

It also means that all EventEmitters must have an error event listener, because
in Node.js error events are special. If an error event is emitted and there are no
listeners, then the default action is to print the error and exit the process.

Now this might sound cumbersome, but doing those things will make the
application much more stable. And it will also make you analyze possible
erroneous parts of the code for what could go wrong—leading to a better
understanding of your code.

Also, newer versions of some frameworks (express, for example) already wrap
all the route handlers in try{}catch(e){} statements and upon an error direct
the output to the specified error handler. This makes it much more convenient
for the user and less likely for the whole process to die.

Try/Catch Asynchronous

While "try/catch" is a good way to execute possible erroneous parts of code without
risking a thrown error killing the whole process, you can’t use "try/catch" with
asynchronous code. The following code won’t work:

function asyncFn(cb) {
setTimeout(function() {

throw new Error('I am free');
cb();

}, 1000);
}
try {

asyncFn(function () { //this throws on a timeout
console.log('I finished');

});
} catch(e) {

//this will never fire
console.error(e);

}

The "try/catch" part works only for the initial synchronous part of the try block with
the function call (setup of the timeout). When the time comes and the error is thrown,
the scope of the error is outside the try statement because it has been executed and
is forgotten already.

Stick with the convention of returning errors as the first argument of the callback
and don’t just throw them.

report erratum • discuss

Don’t Forget About Proper Error Handling • 33

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

We might also use the generic process.on('uncaughtException') handler. This will
catch all errors that have been thrown or emitted and that haven’t been caught
somewhere. So in theory you could do something like the following:

process.on('uncaughtException', function (err) {
console.error(err); // just log the error

});

However, relying only on catching all errors, especially with the uncaughtException
handler, is a bad idea. Even the Node.js documentation is clear on this
point—because of how JavaScript handles throw(), there’s almost never any
way to safely pick up where you left off without leaking references or causing
other problems. So don’t do it.

Everything that throws an error is a threat to the overall stability of the pro-
cess. Catching those errors (especially with the uncaughtException handler) is
bound to corrupt the process eventually. The most common problem that
arises is memory leaks that accumulate and finally terminate the process.

This method will delay the crash, but depending on the errors thrown, the
process will probably still crash given enough time. Better than before, but
there’s definitely room for improvement.

Using Domains in Error Handling
No matter how hard we try, errors will probably still slip through our net of
try{}catch(e){} and error handlers and land in the process.on('uncaughtException')
that we set up just in case. But the uncaughtException handler gets the error
without any other information—we won’t know where or why it was thrown.
This is where domains come in.

Future of Domains Unclear

As of Node.js v4.0, the Domains API has been marked as deprecat-
ed. It means that the API is likely to change in future releases and
should not be depended on for long-term solutions. But when
dealing with applications that have a locked version of Node.js,
it’s still a great tool to use.

Domains were added to Node as of v0.8. They provide a way to handle multiple
different I/O operations as a single group. If any of the event emitters or
callbacks registered to a domain throw an error or emit an error event, then
the domain object will be notified. This lets us keep the context of the error,
unlike the process.on('uncaughtException'), and handle it better by contextualizing
our errors.

Chapter 3. Start Connecting • 34

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Let’s see how this works in practice:

chp-3-networking/domains.js
'use strict';

var http = require('http');
var domain = require('domain');

http.createServer(function(req, res) {
var d = domain.create();
d.on('error', function(err) {

console.error(err); // log the error
// Can also do some logging about the request here

// Respond to the request with an error message
res.writeHead(500, {'Content-Type': 'text/plain'});
res.end('Something bad happened!');

});

// Because req and res were created before this domain existed,
// we need to explicitly add them.
// See the explanation of implicit vs explicit binding below.
d.add(req);
d.add(res);

// Now run the handler function in the domain.
d.run(function() {

handleRequest(req, res);
});

}).listen(3000);

function handleRequest(req, res) {
switch(req.url) {

case '/error':
throw new Error('whoops');
break;

default:
res.end('ok');
break;

}
}

Here we see that every request is creating its own domain. This allows us to
catch the error much like process.on('uncaughtException'), but we also get to keep
the context of the request, so we can respond with an error message.

It’s a large improvement over simply using process.on('uncaughtException'), because
we can do better logging to understand why the error was thrown and also
respond to the original request with a polite error. But it still has the undesired
side effect of memory leaks and fragile execution states.

report erratum • discuss

Don’t Forget About Proper Error Handling • 35

http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/domains.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Fork the Process, Catch Errors
You should now understand that once an unexpected error is thrown, the
process is on its way to the junkyard. We will need to minimize the impact.
The best way is to have more than one process, or forking.

There are two main benefits to forking: it enables the application to make
better use of system resources, and it supports encapsulation with a graceful
restart of failed processes. From a security standpoint, we’re most interested
in encapsulation.

The goal is to create the master process that would fork itself into multiple
processes. When one of the child processes encounters an error, all the traffic
to that process is stopped and a new fork is created, as the following graphic
shows. The old fork is allowed to finish handling the requests in its queue
before being terminated. It keeps reforking new processes, but the leaked
references don’t accumulate. If service is interrupted, forking makes sure
only a small number of users are affected.

This can be achieved by using either built-in Node.js modules or external
solutions. For our examples, we’ll look at the built-in cluster module.8

We’ll start by first creating a process that’s forked into multiples. This is a
basic example of a web server that’s forked as many times as there are CPUs:

chp-3-networking/cluster-simple.js
'use strict';

var cluster = require('cluster');

8. http://nodejs.org/api/cluster.html

Chapter 3. Start Connecting • 36

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/cluster-simple.js
http://nodejs.org/api/cluster.html
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

var http = require('http');
// Ask the number of CPU-s for optimal forking (one fork per CPU)
var numCPUs = require('os').cpus().length;

if (cluster.isMaster) {
// Fork workers.
for (var i = 0; i < numCPUs; i++) {

cluster.fork();
}

// Log when a worker exits
cluster.on('exit', function(worker, code, signal) {

console.log('worker ' + worker.process.pid + ' died');
});

} else {
// Workers can share any TCP connection
// In this case its a HTTP server
http.createServer(function(req, res) {

res.writeHead(200);
res.end("hello world\n");

}).listen(3000);
}

But this example does nothing except log when a worker dies. If we add a
fork restart and a generic error handler for the fork to gracefully terminate
the process, we’ll improve security. The next code example is long, because
it also introduces domains to keep the ability to respond to your failed request:

chp-3-networking/cluster-domains.js
'use strict';

var cluster = require('cluster');
// Ask the number of CPU-s for optimal forking (one fork per CPU)
var numCPUs = require('os').cpus().length;
var PORT = +process.env.PORT || 3000;

if (cluster.isMaster) {
// In real life, you'd probably not put the master and worker in the same file.
//
// You can also of course get a bit fancier about logging, and
// implement whatever custom logic you need to prevent DoS
// attacks and other bad behavior.
//
// See the options in the cluster documentation.
//
// The important thing is that the master does very little,
// increasing our resilience to unexpected errors.

// Fork workers.
for (var i = 0; i < numCPUs; i++) {

report erratum • discuss

Don’t Forget About Proper Error Handling • 37

http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/cluster-domains.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

cluster.fork();
}

cluster.on('disconnect', function(worker) {
console.error('disconnect!');
cluster.fork();

});

} else {
// the worker
//
// This is where we put our bugs!

var domain = require('domain');

// See the cluster documentation for more details about using
// worker processes to serve requests. How it works, caveats, etc.

var server = require('http').createServer(function(req, res) {
var d = domain.create();
d.on('error', function(er) {

console.error('error', er.stack);

// Note: we're in dangerous territory!
// By definition, something unexpected occurred,
// which we probably didn't want.
// Anything can happen now! Be very careful!

try {
// make sure we close down within 30 seconds
var killtimer = setTimeout(function() {

process.exit(1);
}, 30000);
// But don't keep the process open just for that!
killtimer.unref();

// stop taking new requests.
server.close();

// Let the master know we're dead. This will trigger a
// 'disconnect' in the cluster master, and then it will fork
// a new worker.
cluster.worker.disconnect();

// try to send an error to the request that triggered the problem
res.statusCode = 500;
res.setHeader('content-type', 'text/plain');
res.end('Oops, there was a problem!\n');

} catch (er2) {
// oh well, not much we can do at this point.

Chapter 3. Start Connecting • 38

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

console.error('Error sending 500!', er2.stack);
}

});

// Because req and res were created before this domain existed,
// we need to explicitly add them.
d.add(req);
d.add(res);

// Now run the handler function in the domain.
d.run(function() {

handleRequest(req, res);
});

});
server.listen(PORT);

}

// This part isn't important. Just an example routing thing.
// You'd put your fancy application logic here.
function handleRequest(req, res) {

switch(req.url) {
case '/error':

// We do some async stuff, and then...
setTimeout(function() {

// Whoops!
flerb.bark();

});
break;

default:
res.end('ok');

}
}

We’ve done everything we set out to do: fork, catch errors, and gracefully
refork. However, keeping the clustering code in the same file as the application
is cumbersome and ugly, something we don’t want to do with real-life appli-
cations. So let’s use a separate file, as shown in this example:

chp-3-networking/cluster-separate-file.js
'use strict';

var cluster = require('cluster');
// Ask the number of CPU-s for optimal forking (one fork per CPU)
var numCPUs = require('os').cpus().length;

cluster.setupMaster({
exec : __dirname + '/index.js' // Points to the index file you want to fork

});

// Fork workers.

report erratum • discuss

Don’t Forget About Proper Error Handling • 39

www.allitebooks.com

http://media.pragprog.com/titles/kdnodesec/code/chp-3-networking/cluster-separate-file.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec
http://www.allitebooks.org

for (var i = 0; i < numCPUs; i++) {
cluster.fork();

}

cluster.on('disconnect', function(worker) {
console.error('disconnect!'); // This can probably use some work.
cluster.fork();

});

This code should be in master.js with the main server code in index.js, which
needs only slight—or no—alternations to be able to fork or gracefully restart
processes. We now have a graceful way to handle errors, and our application
uses system resources more efficiently. Better performance and improved
security—what a win!

Forking the process as many times as there are CPUs can, however, clog the
processor. Unfortunately, there’s no golden rule to follow when deciding the
number of forks you should have. The number is determined by the structure
and infrastructure of the application. If you have other vital processes on the
machine, such as the database, then some of the resources are already in
use, and you need to account for that before you start forking.

After all this, there’s always the possibility the process might exit unexpect-
edly. It could be because some other process consumed all available memory,
for example. The process must somehow be restarted, or the website will be
unavailable until the administrator has time to restart everything. That’s not
an ideal situation to be in.

We have lots of different ways to do this depending on the operating system
and tools. Under Unix, we can just daemonize our node script. But there are
also Node.js modules for this purpose that are operating-system agnostic.
Two popular choices are forever,9 which has been around for a long while, and
PM2.10 While forever is lightweight, PM2 is a feature-rich alternative, with auto-
matic clusterization, load balancing, log aggregation, and other features. It’s
definitely worth checking out.

Wrapping Up
Fabulous—in this chapter you learned about various ways you can secure
your networking layer and keep your service running despite errors (that
others have somehow sneaked into your code). We covered how encryption
protects messages so that others can’t listen in, how logging helps you

9. https://github.com/nodejitsu/forever
10. https://github.com/Unitech/pm2

Chapter 3. Start Connecting • 40

report erratum • discuss

https://github.com/nodejitsu/forever
https://github.com/Unitech/pm2
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

understand and defend your application, and how to use error handling to
prevent application crashes.

Let’s now move on to the most popular attack vector out there: code injection.
In the next chapter, we’ll look at different code injection attacks and how to
prevent them.

report erratum • discuss

Wrapping Up • 41

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 4

To expect the unexpected shows a thoroughly modern intellect.

 ➤ Oscar Wilde

Avoid Code Injections
Great job so far—you learned how to use your tools, set up your environment
correctly, and fortify your network communications. You’re now finally ready
to look at your application and learn about the most popular attack vector
out there: code injection.

Injection is an attack vector where the attacker introduces, or injects, mali-
cious code into the application to trick the program into executing it. Gener-
ally, the user sends specific data to the application, which is passed on to
the interpreter to execute. If the application doesn’t properly validate the data,
then any commands embedded inside are executed.

With code injection, the attacker can make the server do something other
than what it’s supposed to do. That means obtaining sensitive information,
disrupting and damaging the service, or even modifying the service itself.

Several subcategories of injection attacks exist, depending on the target exe-
cution environment. Because there are so many ways to use injection attacks,
the Open Web Application Security Project (OWASP)1 ranks injection attacks,
especially SQL injection, as the number-one attack vector for web applications.

In this chapter you’ll learn to avoid creating potential code injection points
in your application and server layers. We’ll look specifically at protecting the
the database layer from injection attacks in the next chapter, Chapter 5,
Secure Your Database Interactions, on page 53.

1. https://www.owasp.org

report erratum • discuss

https://www.owasp.org
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Identify Code Injection Bugs in Your Code
First, you need to learn how to recognize a potential code injection vulnerabil-
ity. In this section, we’ll discuss how injection vulnerabilities are introduced
into code so that you’ll know what you shouldn’t do.

Code injections target applications where the functionality is created and
interpreted during runtime based on user input. This makes finding possible
attack points straightforward. In Node.js there are two interpreter functions
to look out for: eval and Function. With these a developer can create a function
out of string input and execute it at will.

The easiest way to avoid code injection attacks is to simply not create and
evaluate code using user-submitted data. But using dynamically created code
can be necessary in some cases and greatly simplify code in others. So instead
of just saying “Never use user-submitted data in code construction,” let’s
learn how to deal with it.

Maybe we’re writing a service where the user supplies a mathematical foru-
mula and the app evaluates it. We could spend time creating a parser for the
operands and operations and then interpret this intermediate form. Or we
could simply expect a valid entry and evaluate it for JavaScript calculations:

chp-4-code-injection/calculator.js
'use strict';

var express = require('express');
var bodyParser = require('body-parser');
var app = express();

app.get('/', function(req, res){
var form = '' +

'<form method="POST" action="/calc">' +
'<input type="text" name="formula" placeholder="formula" />' +
'<input type="submit" value="Calculate" />' +
'</form>';

res.send(form);
});

app.use(bodyParser.urlencoded({extended: false}));

app.post('/calc', function (req, res) {
var result;
eval('result = ' + req.body.formula);
res.send('The result is: ' + result);

});

app.listen(3000);

Chapter 4. Avoid Code Injections • 44

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-4-code-injection/calculator.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

This is a fairly simple example that works great, as long as the user submits
valid calculations. A malicious individual could post something other than a
mathematical calculation, however, such as 3; process.exit();, which would ter-
minate the application. This would be a simple denial-of-service attack, which
you’ll learn more about later, but it clearly demonstrates that we’ve lost control
over our application and how much trust we’re putting in the user to submit
valid data.

The first line of defense for injection attacks, and many other attack vectors,
is to never trust user-submitted data. Any data coming from the user should
be viewed as poisonous, and any data interacting with the input will also
become poisonous. You need to worry both about data coming directly from
user input and data pulled from the database, if it was originally submitted
by the user.

The safest way is to check the input against a whitelist (not a blacklist) to
verify that the data is in the expected format. It’s better to use whitelists than
blacklists because it’s usually easier to identify all possible valid inputs than
it is to come up with every single invalid one. Let’s extend the previous
example to check the input to see if it contains anything other than numbers
and operands. It’s a basic check and doesn’t eliminate all invalid inputs, but
already the execution is much safer:

chp-4-code-injection/calculator-regex.js
app.post('/calc', function (req, res) {

var formula = req.body.formula;
// Check if there is anything else besides 0-9 - * + /
if(formula.match(/[^0-9\-\/*\+]/)) {

res.status(400).send('Invalid input');
return;

}

var result;
eval('result = ' + formula);
res.send('The result is: ' + result);

});

While rejecting input that doesn’t conform to a required format is a valid
solution, it isn’t the most convenient for the user who may want to insert
spaces to make the text easier to read. The user probably won’t understand
why the input was rejected. A more tolerant approach is to clean the input
yourself, as shown in the example on the following page.

report erratum • discuss

Identify Code Injection Bugs in Your Code • 45

http://media.pragprog.com/titles/kdnodesec/code/chp-4-code-injection/calculator-regex.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

chp-4-code-injection/calculator-regex2.js
app.post('/calc', function (req, res) {

var formula = req.body.formula || '';

// Remove everything besides 0-9 - * + /
var cleanFormula = formula.replace(/[^0-9\-\/*\+]/g, '');
if(cleanFormula.length < 1) {

res.status(400).send('Invalid input');
return;

}

var result;
// Surround with try-catch in case still invalid formula.
try {

eval('result = ' + formula);
} catch(e) {

res.status(400).send('Invalid input');
return;

}
// Say what we calculated
res.send('The result of ' + cleanFormula + ' is: ' + result);

});

The code injection attack’s success factor depends on the system being tar-
geted as well as the access rights assigned to the process. If the process has
root privileges (which I’ve pointed out previously is a Very Bad Idea), the
attacker would be able to take over the whole server and even use it to launch
further attacks.

Another interesting method in the attacker’s arsenal is called server poisoning,
where the attacker rewrites the server code as part of an injection attack to
change the server’s behavior altogether.

Attackers can use server poisoning to steal information, such as modifying
the application to send them an email containing the user’s password in plain
text, or for monetary gains, such as changing how orders are calculated. You
could lose money on every transaction and not know why.

Attackers can also rewrite server code in other interpreted languages such
as PHP, but the approach is different to that with Node.js. In PHP, the
attacker has to change the code file, so you can defend against server poison-
ing by making sure the code files on your server aren’t writable by the server
process. Because Node.js treats functions as variables and runs in a single
thread, the attacker doesn’t need to touch the file system to modify server
behavior. This makes server poisoning attacks stealthier and harder to defend
against in Node.js applications.

Chapter 4. Avoid Code Injections • 46

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-4-code-injection/calculator-regex2.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

So far we’ve looked at how code injection attacks can be insiduous and stealthy
and how to use input validation to protect the code. Next, we’ll look at
another type of code injection attack that targets the server.

Avoid Shell Injection in Your Application
Shell injection is a form of injection attack where the target is the underlying
operating system. More specifically, the attackers are focusing on the com-
mands executed by the web application in the operating system layer. In
Node.js this means commands executed through the child_process module, using
exec, execFile, spawn, or fork. These commands can execute scripts on the oper-
ating system and can become a possible attack vector for code injection if the
commands are incorrectly constructed with user input.

As with interpreter functions, shell commands are useful because they sim-
plify the application logic by pushing certain tasks to external libraries. The
two differences are the character set used and the execution environment.
The attacker may not have access to runtime variables in a shell injection
attack, but there are still plenty of ways to cause serious damage.

You might be thinking “Great. Another group of commands I simply won’t
use.” As before, there are situations where shell commands drastically simplify
the development or are required because of parallelism needs, for example,
when we write an application that provides IP address information about
URLs. We could look for a third-party module or write code to connect to the
Domain Name System (DNS) and look up the information. Or we could use
a command that comes with practically every operating system, host:

chp-4-code-injection/shell.js
'use strict';

var express = require('express');
var bodyParser = require('body-parser');
var exec = require('child_process').exec;
var app = express();

var form = '' +
'<form method="POST" action="/host">' +
'<input type="text" name="host" placeholder="host" />' +
'<input type="submit" value="Get host" />' +
'</form>';

app.get('/', function(req, res){
res.send(form);

});

report erratum • discuss

Avoid Shell Injection in Your Application • 47

http://media.pragprog.com/titles/kdnodesec/code/chp-4-code-injection/shell.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

app.use(bodyParser.urlencoded({extended: false}));

app.post('/host', function (req, res) {
exec('host ' + req.body.host, function (err, stdout, stderr) {

if(err || stderr) {
console.error(err || stderr);
res.sendStatus(500);
return;

}
res.send(

'<h3>Lookup for: ' + req.body.host + '</h3>' +
'<pre>' + stdout + '</pre>' +
form

);
});

});

app.listen(3000);

And now a user could simply ask for information on Google.com, for example,
and get a nice output, as shown in the figure on page 49.

Again, the problem is trusting the user to send valid input. What if the
attacker sends something like google.com | cat /etc/shadow? If you don’t validate
the user input, the attacker will probably be able to see the contents of the
server’s /etc/shadow file, containing password information. Not a good result.

The first recommendation is to use execFile instead of exec when possible. The
exec command uses the /bin/sh shell interpreter to run the command, which
can be targeted by attackers to break out and launch other commands. execFile,
however, executes the file directly, giving attackers a much smaller attack
surface (limited by the file being executed). On the downside, you will lose
some interoperability between environments and the ability to run complex
commands with piping, but in turn your code will be more secure.

chp-4-code-injection/shell-fix-execfile.js
var execFile = require('child_process').execFile;

app.post('/host', function (req, res) {
execFile('/usr/bin/host', [req.body.host], function (err, stdout, stderr) {

// . . .
});

});

Another way to mitigate the attack surface is to whitelist and typecast the
user-supplied variables when constructing shell commands. First, let’s
whitelist our input and allow only certain characters:

Chapter 4. Avoid Code Injections • 48

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-4-code-injection/shell-fix-execfile.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

chp-4-code-injection/shell-fix-whitelist.js
app.post('/host', function (req, res) {

var host = req.body.host || '';

// Test for everything besides alphanumeric and . and -
// Also test for starting . and -
if(host.match(/^[-\.]|[^a-zA-Z0-9\-\.]/)) {

res.status(400).send('Invalid input');
return;

}

execFile('/usr/bin/host', [host], function (err, stdout, stderr) {
// ...

});
});

This fix is effective because it prevents users from creating other commands
or manipulating them in unseemly ways. But whitelisting isn’t always possible,

report erratum • discuss

Avoid Shell Injection in Your Application • 49

http://media.pragprog.com/titles/kdnodesec/code/chp-4-code-injection/shell-fix-whitelist.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

so instead we can limit run rights. We limit the rights the Node.js process has
when executing the command by running it as a user with a limited set of
rights. We can do this by providing corresponding uid or gid options.

Most Unix systems have a nobody user that we can use to run common services.
We can set up our code to run the command as nobody by looking for the UID
and setting it in the command options:

chp-4-code-injection/shell-fix-uid.js
var opts = {};
app.post('/host', function (req, res) {

// Add options specifying uid, which we asked from system
execFile('/usr/bin/host', [req.body.host],

opts, function (err, stdout, stderr) {
if(err || stderr) {

console.error(err || stderr);
res.sendStatus(500);
return;

}
res.send(

'<h3>Lookup for: ' + req.body.host + '</h3>' +
'<pre>' + stdout + '</pre>' +
form

);
});

});
// Look for the nobody user

// NOTE:
// On OSX this can cause an error because the UID of nobody
// is a negative number (-1) represented by overflowing integer
execFile('/usr/bin/id', ['-u', 'nobody'], function (err, stdout, stderr) {

if(err || stderr) {
console.error(err || stderr);
process.exit(1);

}

// Set the uid in the options
opts.uid = +stdout;

// Start server
console.log('Nobody is ' + opts.uid);
console.log('Listening on 3000');
app.listen(3000);

});

Now, an attacker trying to see the /etc/shadow file will see an error because it’s
a restricted file and the nobody user doesn’t have access to it.

Chapter 4. Avoid Code Injections • 50

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-4-code-injection/shell-fix-uid.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

For best results, use the combination of all mitigation methods: execFile, limit
access rights and possible inputs. As you can see, the defense methods for
both shell injection and code injection follow the same principles.

Wrapping Up
In this chapter we looked at one of the most versatile and popular attack
vectors in the enemy’s arsenal—code injection. You should now know how to
identify possible attack locations and how to properly validate user input.
You also learned about minimizing possible damages by limiting access rights
of your processes.

In the next chapter, we’ll dig deeper into this attack vector and learn how it
targets the database and what we can do to keep it safe.

report erratum • discuss

Wrapping Up • 51

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 5

Real knowledge is to know the extent of one’s ignorance.

 ➤ Confucius

Secure Your Database Interactions
In the last chapter we covered how to identify code injection attacks and ways
to defend your server and processes. We’ll continue by learning about database
security and especially about how most injection attacks target it.

The database is the heart of most modern web applications—without it the
applications are just empty husks. Books with covers but no pages. Application
data stored in the database, especially user information, is a prime target for
attackers. They want the passwords and personal information to log into
accounts on other sites. They desire financial and credit card information to
empty user bank accounts. They may want sensitive—or potentially embar-
rassing—information that can be used to blackmail users.

Knowledge is power.

Many companies suffered data breaches in 2014, and millions of individuals
saw their Social Security numbers, credit card numbers, and passwords
stolen. While many of these attacks, especially high-profile ones, used highly
sophisticated methods, some used a far simpler database injection attack.
This is similar to shell injection, except the targeted execution layer is the
database. As mentioned in the previous chapter, OWASP (Open Web Applica-
tion Security Project)1 considers database injection the top attack vector
against web applications.

We want to stop attackers from getting their hands on our users’ data. If the
attackers succeed, we lose our users’ trust, our business won’t be successful,
and we won’t be able to afford that new Tesla we like so much. We can’t have
that, so let’s spend this chapter preventing database injection and related
attack vectors.

1. https://www.owasp.org

report erratum • discuss

https://www.owasp.org
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

You can work work through the examples in this chapter with MySQL,2

PostgreSQL,3 and MongoDB4 databases. We’ll walk through the data model
and table schemas together. Setting up the database and account is out of
scope for this book, so you should reference your database documentation
to get started.

Start with the Basics: Set Up the Database
Let’s start from the beginning—your application has to successfully connect
to the database before you can do anything. Let’s make sure you don’t fumble
the ball even before you cross the line of scrimmage.

Any database that you work with, and it doesn’t matter if we’re talking about
MySQL, Mongo, Redis, or any other database system, should be configured
to use authenticated users. Sometimes people don’t bother with user accounts
and let everyone (including applications) connect to the database without a
password. They typically block outside connections, which is a good thing to
do. Unfortunately, it’s not sufficient, even if the database lives on the same
machine.

Yes, blocking outside connections narrows the attack surface significantly.
But the attacker can bypass this restriction by gaining access to one of the
whitelisted machines or the IP addresses. If I’m running a Redis database
server on my machine with default settings enabled—no authentication—then
all the attacker has to do is somehow get onto my machine. It doesn’t matter
if the attacker is using an unprivileged account since there’s no barrier to
connecting to the database. Voila! Full access to every database and all the
data.

Imagine your server as an apartment building, individual apartments as
databases, and each room in the apartment as a table in the database. Just
because you have a lock on the front door of the building does not mean you
don’t want locks for each apartment. It would still disturb you very much if
someone from the street managed sneak through the front door and then
could roam around the building visiting every room and looking at your things.
Just because someone has access to the server doesn’t mean they should
have access to all the data in each database.

It’s clear that proper authentication is an important aspect of defense. It will
be harder for attackers to pull off a successful attack if the application is

2. http://www.mysql.com/
3. http://www.postgresql.org/
4. http://www.mongodb.org/

Chapter 5. Secure Your Database Interactions • 54

report erratum • discuss

http://www.mysql.com/
http://www.postgresql.org/
http://www.mongodb.org/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

smart about who it lets in, who it keeps out, and who is allowed to do what.
Setting up authentication also lets you follow the principle of least privilege
to fine-tune different levels of access for each account. You may want to
revisit Follow the Principle of Least Privilege, on page 12 for a refresher.

Our theoretical web application has three separate database accounts for
users—guest, authenticated, and admin; see the following graphic.

• Guest users can only read articles on the site—so the guest database
account needs only read access for the database tables.

• Authenticated users can read and write articles, as well as post com-
ments—meaning the authenticated database account should have read and
write access on tables related to articles and comments.

• Admin users can add new users and do other administrative tasks. The
admin account on the database has the highest privilege level, with
read/write privileges on most, if not all, tables.

You might wonder why you need to go through the trouble of having separate
database accounts if you already have separate user roles. Suppose you have
a database injection vulnerability somewhere in the guest section of the
application. Attackers who exploit this hole won’t be able to cause as much
damage because the guest database user has only read privileges on the tables.

report erratum • discuss

Start with the Basics: Set Up the Database • 55

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Your admin account may not even need all the privileges it currently has. You
probably would never drop tables from the web application, for example.
Remove that privilege from the admin database account and the attacker won’t
be able to use code injection to delete data. You’d still have elevated privileges
as the admin user when connected directly to the database, which is all you
need.

Defining multiple accounts in the database with various levels of privileges
is a good thing, but you need to use them. Look at the following code snippet
to see an example how you could manage multiple connections to the
database:

chp-5-database/mysql-multiple-connections.js
// Set up guest connection
var guestConnection = mysql.createConnection({

host : 'localhost',
user : args.gu,
database : args.d,
password : args.gp,

// Set for testing, do not do unless you have a good reason
multipleStatements: true

});
guestConnection.connect();

// Set up admin connection
var adminConnection = mysql.createConnection({

host : 'localhost',
user : args.au,
database : args.d,
password : args.ap,

// Set for testing, do not do unless you have a good reason
multipleStatements: true

});
adminConnection.connect();

// Middleware for checking the logged in status
app.use(function (req, res, next) {

// If we have an admin session then attach adminConnection
if(req.session && req.session.isAdmin) {

req.db = adminConnection;
}
// Otherwise attach guestConnection
else {

req.db = guestConnection;
}
next();

});

Chapter 5. Secure Your Database Interactions • 56

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-multiple-connections.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

You now have a lock on your database, and, more importantly, you should
now understand why you need one. The lock will deter people trying to snoop
through data they shouldn’t be allowed to see, which will keep the clients
happy. And that keeps you happy.

Let’s take a quick look at another important data-separation paradigm that
you should know besides simple role-based connection—multi-tenancy.

Separate Databases for Better Security
Many web applications serve as platforms for multiple clients at the same
time. Depending on the application, this will involve storing business data or
logic in the database. For example, you may have a CRM system where clients
store their own records, connections, and billing information. You need to
safely separate the data so that clients can’t access each other’s data. There
are many approaches ranging from totally isolated databases to fully shared
ones, but they tend to fall somewhere along the spectrum, as shown here.

The security of these methods can vary and depend on other development
and infrastructure requirements. But let’s look at each one in detail.

First up is having separate databases
for everyone, as shown in the graphic.
This is the most isolated approach.
Every client has a separate database
for its data and each client can cus-
tomize the data structure for its own
needs. It can be more secure, but it
comes with higher infrastructure
costs. Databases take up space (an
empty MongoDB database takes 32
MB, for example), and there’s only so
much space available on a server.

report erratum • discuss

Separate Databases for Better Security • 57

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Completely isolating your tenants is a good approach when you have strict
security needs and clients who are willing to pay extra for security. You can
use this approach with most SQL and NoSQL databases (including MongoDB).

The middle approach is to use the
same database but separate the
schemas (tables/collections) for each
client, as the graphic shows. Each
tenant has access to only its own set
of tables. Like the isolated approach,
each tenant can customize the data
structures and keep database connec-
tion levels separate from everyone else.

This method makes backups tricky.
In the isolated approach, you back up
and restore a single tenant’s database without affecting anyone else. Here,
you have to back up all the tables together, regardless of client. Restoring a
single tenant’s data is a challenge as you don’t want to affect others.

Neither can you fully use this approach in MongoDB because it doesn’t have
collection-level access control. While there are modules like mongoose-multitenant,5

you still can’t control connection access at the collection level. You’d miss
out on most of the security benefits of this approach, and MongoDB has
limits on how many collections you can create in a single database as well.

The last approach is the most common—storing all the clients’ data in the
same database and sharing the database schema. The data is separated by
providing a unique tenant identifier for each row. It’s the cheapest approach
because it has the lowest infrastructure requirements, but it has the highest
implementation cost for security. You have to handle security in your code
and manage all the data-separation mechanisms yourself.

Most applications start out from a shared model, since businesses generally
start thinking about multi-tenancy only after the application has gotten large
enough. Or they have to comply with regulatory requirements. There’s no
best approach, because that depends on your specific needs. I recommend
generally starting out with the shared approach and eventually graduating
to the isolated approach when you can.

Next, let’s look at how to mitigate attacks against data stored in your database
(or databases).

5. https://www.npmjs.com/package/mongoose-multitenant

Chapter 5. Secure Your Database Interactions • 58

report erratum • discuss

https://www.npmjs.com/package/mongoose-multitenant
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Identify Database Injection Points in Your Code
We briefly talked about database injection earlier. It’s a variation of code
injection, but the intended target is the back-end database and not the
application server. Let’s look at this widely used attack in detail and discuss
ways to prevent it.

If an application has code injection issues, it means the application is not
correctly validating all input fields on the site. The same thing applies to
database injection. Attackers enter a series of database commands into the
application’s input fields (such as a textbox in a blog’s comment form) to trick
the application into executing the commands within the database. If the
application builds its database queries by concatenating user input with
hardcoded strings instead of using a decent ORM (object-relational mapper)
and neglects to properly escape input data, then the attacker succeeds.

Let’s take a look at what a database injection flaw looks like. Make sure you
understand what’s happening here, because we’ll revisit this again in later
chapters.

For the following examples you’ll need a MySQL database. For all database
examples, we’ll use the minimist6 module to parse command-line argu-
ments—which we’ll use to supply the database connection information.

chp-5-database/mysql-exploitable.js
var mysql = require('mysql');
var express = require('express');
var args = require('minimist')(process.argv);

if(!args.u || !args.d || !args.p) {
console.log('This example requires the ' +
'-u (user), ' +
'-d (mysql db) and ' +
'-p (password) command line variables');

process.exit();
}

var connection = mysql.createConnection({
host : 'localhost',
user : args.u,
database : args.d,
password : args.p,
multipleStatements: true // This is so we can execute multiple statements

});

6. https://github.com/substack/minimist

report erratum • discuss

Identify Database Injection Points in Your Code • 59

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-exploitable.js
https://github.com/substack/minimist
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

connection.connect();

var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

app.get('/:name', function(req, res, next){

// Query the account based on url parameters
// As you can see we use no validation on the name parameter
connection.query('SELECT * FROM accounts WHERE name="' + req.params.name + '"',

function(err, rows, fields) {
if (err) {

next(err);
return;

}
res.send(JSON.stringify(rows));

});
});

app.listen(3000);

Let’s ignore the fact that this application doesn’t perform any user validation.
You now have an application that displays the account information you
requested via the name parameter in JSON format. The database dump would
look like the following:

CREATE TABLE `accounts` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(255) NOT NULL,
`email` varchar(255) NOT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=3 ;

INSERT INTO `accounts` (`id`, `name`, `email`) VALUES
(1, 'karl', 'karl@dyyna.com'),
(2, 'juhan', 'juhan@gmail.com');

When you visit the URL /karl in the browser, you should see the following
response:

[{
"id": 1,
"name": "karl",
"email": "karl@dyyna.com"

}]

Chapter 5. Secure Your Database Interactions • 60

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

We could also construct the following URL to send the following SQL com-
mands in a single line: /";SELECT%20*%20FROM%20accounts%20WHERE%20"1"="1. You
can see here how the URL turns into two database queries:

SELECT * FROM accounts WHERE name="";SELECT * FROM accounts WHERE "1"="1";`

The first statement will return nothing because we didn’t provide a value for
name. However, the second statement will dump all the accounts stored in the
database:

[
[], // Our first query that selected nothing, since we terminated it
[{

"id": 1,
"name": "karl",
"email": "karl@dyyna.com"

}, {
"id": 2,
"name": "juhan",
"email": "juhan@gmail.com"

}]
]

A select query is only the beginning of what we can do. Imagine the damage
we could cause with /";DROP%20TABLE%20accounts;, which would delete the accounts
table altogether. A database injection lets someone modify the commands
sent to the database in order to view or modify the saved data. So how do you
protect your application?

Good News About Running Multiple Queries in MySQL

The good news is that one of the most popular MySQL drivers for
Node.js, node-mysql,7 disables by default the ability to execute
multiple commands in a single query. This makes SQL injection
attacks much harder to launch on web applications if you use this
module. The module won’t let the attacker terminate the original
query to start a separate malicious one. But for the sake of provid-
ing examples, we’ll enable the multiple queries option in node-mysql.

Avoid SQL Injection Attacks
As you just saw, attackers can cause a lot of damage with database injection.
We’ll now look at four main defense methods to protect against this kind of
attack: controlled error messages, input validation, escaping, and prepared
statements.

7. https://github.com/felixge/node-mysql

report erratum • discuss

Avoid SQL Injection Attacks • 61

https://github.com/felixge/node-mysql
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Database injection attacks are divided into two types: blind and normal SQL
injection. In normal SQL injection the attacker will see helpful error messages
and/or the result of the attack on the web page. With blind SQL injection,
the attacker sees only generic error messages if something is not valid.

In case of blind SQL injection attackers frequently append true-false state-
ments such as and 1=2 or and 1=1 at the end of the query to see the different
messages associated with successful and unsuccessful attempts. Blind SQL
injection requires the attacker to collect the information needed one piece at
a time.

The mechanics of defending are the same, but blind SQL injection is much
harder and more time consuming for the attacker to pull off. This is why your
first line of defense is to handle errors properly, as previously discussed in
Limit Error Messages in Production, on page 18. Forcing the attacker to spend
more time determining whether there is a vulnerability and how to get at the
data benefits you.

The second step is validating user input. You’ll have to verify that user-entered
data falls within expected parameters and is not malicious. Say you’re man-
ually constructing MySQL commands by combining user-entered data with
queries hardcoded within the application code. This approach is very important
if you’re using a database driver and handling database queries this way. You
have to be attentive when checking every input to make sure users aren’t
entering malicious strings. The best approach is whitelisting, or allowing only
types of data you expect to see.

Let’s go back to the previous example and see how you can validate user
input:

chp-5-database/mysql-exploitable-validation.js
var connection = mysql.createConnection({

host : 'localhost',
user : args.u,
database : args.d,
password : args.p,
multipleStatements: true // This is so we can execute multiple statements

});
connection.connect();

var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

Chapter 5. Secure Your Database Interactions • 62

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-exploitable-validation.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

app.get('/:name', function(req, res, next){
// Validate that the name has only letters➤

if(req.params.name.match(/[^a-zA-Z]/)) {➤

// It didn't so send a Bad Request response➤

res.sendStatus(400);➤

return;➤

}➤

// Query the account based on url parameters
connection.query('SELECT * FROM accounts WHERE name="' + req.params.name + '"',

function(err, rows, fields) {
if (err) {

next(err);
return;

}
res.send(JSON.stringify(rows));

});
});

This is restrictive but efficient. The thing is, you can’t take this approach all
the time because you don’t always have such a clear understanding of what
would be considered valid input.

Let’s move on to the third approach, escaping. This means that all characters
that can potentially break the query are formatted in such a way that the
application doesn’t treat them as part of a command.

This is a widely used method and many libraries, including node-mysql,
provide ready-to-go functions for escaping well-known problem characters.
You can utilize connection.escape(), which is the Node equivalent of PHP’s
mysqli_escape_string(). This way you don’t have the hassle of trying to write the
function yourself since you can just use a well-tested one.

So modify your vulnerable example again to escape the input string:

chp-5-database/mysql-exploitable-fixed.js
var connection = mysql.createConnection({

host : 'localhost',
user : args.u,
database : args.d,
password : args.p,
multipleStatements: true // This is so we can execute multiple statements

});
connection.connect();

var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

report erratum • discuss

Avoid SQL Injection Attacks • 63

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-exploitable-fixed.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

app.get('/:name', function(req, res, next){
// Query the account based on url parameters➤

var query = 'SELECT * FROM accounts WHERE name="' +➤

connection.escape(req.params.name) + '"';➤

➤

connection.query(query, function(err, rows, fields) {➤

if (err) {
next(err);
return;

}
res.send(JSON.stringify(rows));

});
});

The previous attack string no longer works because the quotation marks are
escaped. The application now knows the quotes should be treated as part of
a string and not as part of a command.

The final method is to use prepared statements; see the following illustration.
Here, you completely separate the command and data parts of the query by
sending them to the database separately. This leaves no room for misinterpre-
tation and is a good way to protect against injection. As a bonus, it also pro-
vides a speed boost on queries that run many times because you can reuse
the same procedure.

Chapter 5. Secure Your Database Interactions • 64

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Try out this technique:

chp-5-database/mysql-exploitable-fixed-prep.js
var connection = mysql.createConnection({

host : 'localhost',
user : args.u,
database : args.d,
password : args.p,
multipleStatements: true // This is so we can execute multiple statements

});
connection.connect();

var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

app.get('/:name', function(req, res, next){

// Query the account based on url parameters➤

connection.query('SELECT * FROM accounts WHERE name= ?', [req.params.name],➤

function(err, rows, fields) {➤

if (err) {
next(err);
return;

}
res.send(JSON.stringify(rows));

});
});

Prepared statements are by far the best solution against SQL injection attacks
and are the favored approach. The second-best option is to use proper
escaping, which is the method node-mysql uses currently. Whitelisting, while
very effective, is the least favored. That’s because it’s time consuming to
whitelist all possible endpoints and sometimes you need to have special
characters in the query, which makes this approach less effective. Whichever
method you use in your application, don’t forget to limit the error messages.

Prepared like node-mysql

While you can use prepared statement syntax with node-mysql,
such syntax is internally executed using connection.escape() and is
not prepared statements. node-mysql28 is a library that does
support prepared statements, and hopefully they will soon be
available in node-mysql as well.

8. https://github.com/sidorares/node-mysql2

report erratum • discuss

Avoid SQL Injection Attacks • 65

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-exploitable-fixed-prep.js
https://github.com/sidorares/node-mysql2
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Now that you know the three ways to protect yourself when constructing
database commands, you can feel confident that you aren’t such an easy
target for attackers. You might be able to order that Tesla after all.

Watch Out for Sneaky Issues
Before you start patting yourself on the back for a job well done, you still
have a few hurdles left to address. Developers often use an ORM (object-
relational mapper) instead of constructing commands manually, and that
can introduce some unexpected behavior.

Numerous ORMs are available for Node.js and various databases. Let’s look
at one of the popular ORM mappers for MySQL, MariaDB, SQLite, and Post-
greSQL in Node.js—Sequelize.9 While ORMs typically implement internal
escaping based on model properties and types, Sequelize does not always
perform thorough input cleaning. Some inputs are left vulnerable and can be
used to construct malicious SQL statements. It would be foolish to assume
the ORM is going to do something without checking. Trust but verify.

ORMs by their nature introduce overhead into your application, because they
construct interfaces around your data structures. This can lead to serious
performance issues in some cases. So using an ORM isn’t always the best
solution. But if you’re going to use ORMs, you need to test how they handle
input cleaning. We will look at Sequelize.

First, let’s do the setup:

chp-5-database/sequelize-example.js
'use strict';

var express = require('express');
var Sequelize = require('sequelize');
var args = require('minimist')(process.argv);

if(!args.u || !args.d || !args.p) {
console.log('This example requires the ' +
'-u (user), ' +
'-d (mysql db) and ' +
'-p (password) command line variables');

process.exit();
}

// Define connection to DB
var sequelize = new Sequelize(args.d, args.u, args.p, {

9. http://sequelizejs.com/

Chapter 5. Secure Your Database Interactions • 66

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/sequelize-example.js
http://sequelizejs.com/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

dialect: 'mysql',
port: 3306

});

// Define user model
var User = sequelize.define('user', {

company: Sequelize.STRING,
username: Sequelize.STRING

});

Now that we’ve done the database connection part, let’s define the application
paths:

chp-5-database/sequelize-example.js
var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

// Define a path where we can ask users by
// company name and optionally limit the response
app.get('/:company/:limit*?', function(req, res, next){

console.log(req.params);
User.findAll({

where: {
company: req.params.company

},
limit: req.params.limit || 0

}).then(function(users) {
res.send(JSON.stringify(users));

}).catch(next);
});

Finally, we create our example database entries and set the ball rolling:

chp-5-database/sequelize-example.js
// Set up the database
sequelize

.authenticate()

.then(function() {
// Sync the models
return sequelize.sync({ force: true });

})
.then(function () {

// Push example data into the database
return User.bulkCreate([

{ username: 'karl', company: 'nodeswat' },
{ username: 'harri', company: 'nodeswat' },
{ username: 'jaanus', company: 'nodeswat' },

report erratum • discuss

Avoid SQL Injection Attacks • 67

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/sequelize-example.js
http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/sequelize-example.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

{ username: 'jaak', company: 'mektro' }
]).then(function() {

// We are set up so start listening
app.listen(3000);

});
})
.catch(function (err) {

console.log('Unable to connect to the database:', err)
process.exit();

});

Now when we send the URL /nodeswat we should get the following data dump:

[{
"id": 1,
"company": "nodeswat",
"username": "karl",
"createdAt": "2014-01-24T11:33:01.000Z",
"updatedAt": "2014-01-24T11:33:01.000Z"

}, {
"id": 2,
"company": "nodeswat",
"username": "harri",
"createdAt": "2014-01-24T11:33:01.000Z",
"updatedAt": "2014-01-24T11:33:01.000Z"

}, {
"id": 3,
"company": "nodeswat",
"username": "jaanus",
"createdAt": "2014-01-24T11:33:01.000Z",
"updatedAt": "2014-01-24T11:33:01.000Z"

}]

Let’s take a look at the actual database command that was executed. So far,
so good:

SELECT * FROM `users` WHERE `users`.`company`='nodeswat';

When we add in malicious code as shown in the following URL, /nodeswat'";,
we see that the quotation marks are properly escaped (as expected!):

SELECT * FROM `users` WHERE `users`.`company`='nodeswat\'\";';

When we use the limit parameter in the URL like
/nodeswat/1;DROP%20TABLE%20users, we get an error. But let’s look at the final
command that was constructed. As you can see, this could have gone badly:

SELECT * FROM `users` WHERE `users`.`company`='nodeswat' LIMIT 1;DROP TABLE users;

The only reason the command didn’t execute and drop the users table was
that Sequelize uses node-mysql as its MySQL driver. As you saw earlier, node-

Chapter 5. Secure Your Database Interactions • 68

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

mysql disables by default the ability to run multiple statements off a single
command. But PostgreSQL’s driver doesn’t have that setting, so a similar
attack will succeed on that database. You’ll need to do validation or change
the configuration if you’re working with PostgreSQL or other databases that
don’t disable multiple queries by default:

var sequelize = new Sequelize(args.d, args.u, args.p, {
dialect: 'postgres',
port: 5432

});

Here, the solution is to either not allow the user to set the limit parameter or
validate that you’re dealing with a number.

The moral of this example is that you must be ever vigilant when using third-
party modules and talking to the database. You should always limit user
interaction with your database and test what users are allowed to do. Knowing
this makes you security conscious and in a better position to write secure
applications.

Mitigate Injection Attacks in NoSQL Databases
MongoDB and CouchDB10 are widely used alternatives to relational databases
when building Node.js applications. They don’t use a query language like SQL
for mapping the data—hence the name NoSQL. Instead they have their own
methods and queries. You may now think that using NoSQL means SQL
injection is not a problem for you. Alas, that isn’t quite true.

Strictly speaking, SQL injection doesn’t affect NoSQL databases. The thing
is, SQL injection isn’t the only form of database injection, and there are other
ways to inject commands despite not using the traditional SQL syntax. These
NoSQL injection attacks execute within a procedural language rather than
in the declarative SQL language, so the potential impact of these attacks is
greater.

In the following examples we’ll be using MongoDB,11 since it’s the most pop-
ular NoSQL database in use with Node.js.

The first security issue for NoSQL databases is that by default they don’t have
any authentication. Instead, they filter connections only to localhost. As you
saw in Start with the Basics: Set Up the Database, on page 54, that’s not
necessarily a good thing.

10. http://couchdb.apache.org/
11. http://www.mongodb.org

report erratum • discuss

Mitigate Injection Attacks in NoSQL Databases • 69

http://couchdb.apache.org/
http://www.mongodb.org
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Let’s see how to connect to our configured MongoDB using a password with
one of the most (if not the most) popular MongoDB ORMs in use—Mongoose:12

mongoose.connect('mongodb://user:pass@localhost:port/database');

The following example uses mongoose and express to illustrate how MongoDB
can be susceptible to attack:

chp-5-database/mongoose-example.js
'use strict';

var express = require('express');
var mongoose = require('mongoose');
var args = require('minimist')(process.argv);

if(!args.d) {
console.log('This example requires the -d (mongoose db) command line variable');
process.exit();

}

// Connect to mongoose db
mongoose.connect(args.d);
mongoose.connection.on('error', function (err) {

console.error('connection error:' + err);
process.exit();

});

// Define user model
var userSchema = new mongoose.Schema({

username: { type: String, required: true, index: { unique: true } },
company: { type: String, required: true },
age: { type: Number, required: true}

});
var User = mongoose.model('User', userSchema);

User.remove().exec(); // Delete all previous Users.

var app = express();

app.get('/', function(req, res){
res.send('ok');

});

app.get('/:age', function (req, res, next) {
// Lets implement a completely unvalidated way to query the documents
User.find({ $where: 'this.age < ' + req.params.age }, function (err, users) {

if(err) {
next(err);

12. http://mongoosejs.com/

Chapter 5. Secure Your Database Interactions • 70

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mongoose-example.js
http://mongoosejs.com/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

return;
}
res.send(JSON.stringify(users));

});
});
// Fill database
User.create([

{ username: 'karl', company: 'nodeswat', age: 25 },
{ username: 'harri', company: 'nodeswat', age: 35 },
{ username: 'jaanus', company: 'nodeswat', age: 45 },
{ username: 'jaak', company: 'mektro', age: 55 }

], function (err) {
if(err) {

console.error(err);
process.exit(1);

}
console.log('Listening');
app.listen(3000);

});

With this application, you can ask for a list of users under a specific age.
Constructing a URL with /40 would result in a data dump of some users:

[{
"username": "karl",
"company": "nodeswat",
"age": 25,
"_id": "52e25cc4251a7ce88b050e75",
"__v": 0

}, {
"username": "harri",
"company": "nodeswat",
"age": 35,
"_id": "52e25cc4251a7ce88b050e76",
"__v": 0

}]

The user input was not validated before constructing the search, which means
attackers can add malicious code into the statement. MongoDB won’t be
affected by SQL statements, but it does support JavaScript commands in its
queries. The attacker can execute JavaScript statements on the database
layer. It may look something like this URL, which would trigger a ten-second
loop in the database:

/40;var%20date=new%20Date();%20do%7BcurDate%20=%20new%20Date();%7Dwhile(curDate-
date<10000);

Keep in mind that this is a simple example; the attacker has access to the
whole JavaScript syntax to craft a more complicated query. Because most

report erratum • discuss

Mitigate Injection Attacks in NoSQL Databases • 71

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

NoSQL databases don’t support prepared statements, you’re left with two
solutions—validation and escaping. Be sure to use them liberally.

You just saw that NoSQL is not inherently safer just because it does not have
SQL. When constructing complex queries with user input, make sure the
data falls within the narrowly defined parameters of your query, just as you
would with a SQL database.

Wrapping Up
Databases are an integral and powerful part of a web application, and you
must secure all transactions in order to protect your clients’ data. As you
learned in this chapter, you must secure your database connections and
limit access privileges where you can. You must also be vigilant about
escaping and validating all user input that comes into contact with the
database, even if it’s a NoSQL database. Implementing these two steps will
greatly increase the security of your data.

Now that you’ve secured how the application communicates with the database,
the attackers will find it harder to target your application. Don’t get too cozy
just yet, because there are many more attack vectors to defeat out there. Next
we’ll move on to another common issue in web application design that also
affects databases: concurrency. Let’s go.

Chapter 5. Secure Your Database Interactions • 72

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 6

Time is what we want most, but what we use worst.

 ➤ William Penn

Learn to Do Things Concurrently
You’ve learned a lot about different ways to secure your configuration and
communications so that attackers wouldn’t be able to introduce malicious
variables into your code. In this chapter, we take a slight detour and study
application design, specifically, concurrency.

Concurrency has been a problem in application design since the beginning
of parallel computing. Two processes running modifications on the same
resource can cause a number of different issues. This is not technically a
security issue because the user isn’t circumventing a specific security mea-
sure, but it still poses serious security-related issues. In fact, if you’re aware
of how millions of bitcoins were stolen from the Mt. Gox exchange last year,
then you should know the thieves did so by abusing concurrency issues. It’s
a real-world problem, and we’re going to devote some time to it in this chapter
so that you can avoid the same fate.

We’ll start by identifying concurrency issues and learning how they occur
and then see how you can avoid those problems while keeping your application
intact. While this may feel like basic computer science material to many of
you, it will be a good reminder of how the topic applies to web security.

A Primer on Concurrency Issues
Problems of concurrency happen when multiple application processes modify
and use the same resource at the same time, or concurrently. Process state
mutates unexpectedly, leading to double processing and other issues. Problems
tend to occur when the resource is being accessed within a short timespan,
as shown in the following diagram, but it can also happen over a longer
period.

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Technically, concurrency issues aren’t constrained to the database layer, but
they most often occur there because the database is the typically the most
shared resource.

Although we treat concurrency and parallelism as synonyms in this chapter,
you should be aware that they’re different. Concurrency refers to when two
tasks either start, run, or complete in overlapping time periods, as would
happen on a single-core machine. They don’t have to run at the same instant.
Parallelism refers to when tasks literally run at the same time, such as on a
multi-core processor.

While talking about Node.js we mostly talk about concurrency when dealing
with a single thread and overlapping async processes. When we fork into
multiple threads on a multi-core machine, then we can start talking about
parallelism as a separate concept.

Let me illustrate this complicated explanation with an example you’re likely
to be familiar with: a withdrawal system for a wallet in an e-commerce
application. The application shows how much money you currently have in
your wallet and lets you withdraw some money.

First, we set up the models:

chp-6-concurrency/concurrency-wallet-mongo.js
var mongoose = require('mongoose');
var args = require('minimist')(process.argv);

if(!args.d) {
console.log('This example requires the -d (mongoose db) command line variable');
process.exit();

}

Chapter 6. Learn to Do Things Concurrently • 74

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// Connect to mongoose db
mongoose.connect(args.d);
mongoose.connection.on('error', function (err) {

console.error('connection error:' + err);
process.exit();

});

// Define wallet model
var walletSchema = new mongoose.Schema({

name: { type: String, required: true, index: { unique: true } },
amount: { type: Number, required: true}

});
var Wallet = mongoose.model('Wallet', walletSchema);

Wallet.remove().exec(); // Delete all previous Wallets.

The access points let us see and manipulate the data in the database:

chp-6-concurrency/concurrency-wallet-mongo.js
var bodyParser = require('body-parser');
var express = require('express');
var app = express();
app.use(bodyParser.urlencoded({extended: false}));

app.get('/:name', function(req, res, next){
// Query the account based on url parameters
Wallet.findOne({name: req.params.name}, function(err, wallet) {

if (err) {
next(err);
return;

}
// Send information and withdrawal form
res.send(

'<p> You have: ' + wallet.amount + '.
' +
'How much do you want to withdraw?</p>' +
'<form method="POST">' +
'<input type="number" name="amount" />' +
'<input type="submit" value="submit" />' +
'</form>');

});
});

app.post('/:name', function(req, res, next){
var amount = Math.abs(req.body.amount);

Wallet.findOne({name: req.params.name}, function (err, wallet) {
if (err) { // Something went wrong with the query

next(err);
return;

}
if(!wallet) {

report erratum • discuss

A Primer on Concurrency Issues • 75

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

res.send(404, 'Not found');
return;

}
if(wallet.amount < amount) {

res.send(400, 'Insufficient funds');
return;

}
wallet.amount -= amount;
wallet.save(function (rErr, updatedW, rowsAffected) {

if(rErr || rowsAffected !== 1) {
res.send(500, 'Withdrawal failed');
return;

}
res.redirect('/' + req.params.name);

});
});

});

We then fill the database with some test data:

chp-6-concurrency/concurrency-wallet-mongo.js
// Fill database
Wallet.create([

{ name: 'karl', amount: 1000},
{ name: 'mikk', amount: 1000}

], function (err) {
if(err) {

console.error(err);
process.exit(1);

}
console.log('Listening');
app.listen(3000);

});

In order to induce concurrency issues, you’d normally have to make multiple
requests close to each other, but that’s difficult to demonstrate. So let’s add
a processing function to the application to mimic the request to a bank for
the money transfer. To further simplify the demonstration, let’s make the
time period five seconds.

chp-6-concurrency/concurrency-wallet-mongo-delay.js
// Our processing function➤

function processCall(cb) {➤

// Add delay of 5 seconds here - imitating processing of the request➤

setTimeout(cb, 5000);➤

}➤

app.post('/:name', function(req, res, next){
var amount = Math.abs(req.body.amount);

Chapter 6. Learn to Do Things Concurrently • 76

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo.js
http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo-delay.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Wallet.findOne({name: req.params.name}, function (err, wallet) {
if (err) { // Something went wrong with the query

next(err);
return;

}
if(!wallet) {

res.send(404, 'Not found');
return;

}
if(wallet.amount < amount) {

res.send(400, 'Insufficient funds');
return;

}
processCall(function () {➤

wallet.amount -= amount;➤

wallet.save(function (rErr, updatedW, rowsAffected) {➤

if(rErr || rowsAffected !== 1) {➤

res.send(500, 'Withdrawal failed');➤

return;➤

}➤

res.redirect('/' + req.params.name);➤

});➤

});➤

});
});

Now we have two accounts with 1000 starting money and the ability to with-
draw some of it. If we make a request to withdraw 300, then in a little while
we’ll see only 700 in our wallet and 300 in our account. But if we make two
requests at the same time to withdraw 300, we’ll see both processes go
through. However, we’ll wind up with 700 still in our wallet instead of the
400 we’d expect to see. We just made 300 out of thin air.

You see, both processes looked up the wallet’s amount in the database and
got 1000. Both processes deducted 300 and saved the resulting value of 700
back to the database. If the second process starts before the first one finishes
writing the new value back to the database, it will use the wrong amount in
its calculations.

In the Mt. Gox robbery, this is exactly what happened. With enough concurrent
requests, the system lost integrity and paid out more bitcoins—millions of
dollars worth—than it was supposed to. You don’t want this to happen to
you, so let’s see how you can avoid this in your application.

report erratum • discuss

A Primer on Concurrency Issues • 77

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Ways to Mitigate Concurrency
The underlying problem is multiple processes working on the same resource,
so the mitigation methods look at how to limit exposure. Let’s first look at
general concepts and then look more specifically at databases, which usually
are at the heart of concurrency issues.

Two simple generic methods, resource locks and atomic operations, are gen-
erally good enough to use in most situations. Locking deals directly with
concurrency by preventing simultaneous process flows. Atomic operations
move operations closer to the resources and enforce serialization at the
resource level.

Locking the resources so no one else can run them makes sense if the workflow
is not supposed to run concurrently. In the withdrawal example, you wouldn’t
want the same person to make multiple concurrent operations. The following
flowchart illustrates how locks work. You start by having the process acquire
a lock. If it fails, another process is already using the resource and it must
wait for that process to finish. If the lock acquiring succeeds, you process the
request. After you finish, you release the lock.

The process seems straightforward, but there are a few problems with this
kind of resource locking. The locking process itself must be atomic and not
subject to concurrency issues. You don’t want to lock up the whole table, so
you have to make sure the lock only affects a small area of the application.
There also needs to be a fail-safe in case the process fails to unlock a resource
or the program crashes before the locks are released.

Locking creates bottlenecks in applications, and so it’s not recommended if
you need high throughput, if the process affects a large part of the resouces,
or processing takes a long time. You want the lock to be in place over a small
area for a short period of time. Otherwise, you should modify the application
logic or use atomic operations instead.

Atomic operations address concurrency by moving operations closer to the
resource and in a manner that prevents other processes from manipulating

Chapter 6. Learn to Do Things Concurrently • 78

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

data in between operations. Some operations are truly atomic. They tend to
be simple functions that run serially in the resource layer, such as INSERT in
SQL and INCR in Redis. When this command is running, another one won’t
run against the same table during that time.

Some operations can be grouped and performed as an atomic operation, such
as MULTI in Redis. Several commands are grouped together and executed as
a block without allowing other operations while they’re running. Other oper-
ations are optimistic locks, such as TRANSACTION in SQL and WATCH EXEC in
Redis. They tend to be used for more complex tasks and involve executing
the operations as a sequence. If no errors occur and no other process has
modified the same resources during the execution of the sequence, then all
the operations will be run and committed. If something goes wrong, the roll-
back restores state to what it was before the transaction started.

Atomic operations modify the resource serially by not allowing other operations
to access the resource during that time. At a close level they can and some-
times are implemented with lock mechanisms. Only the locking processing
and unlocking happen in a short timespan and inside the operation.

Concurrency with MongoDB Explained
Let’s move back to practical usage and look at MongoDB since it’s the most
used NoSQL database for Node.js applications.

MongoDB doesn’t guarantee ACID compliance1 in all cases. For example,
MongoDB doesn’t have transactions and atomic functions that cover multiple
documents. So if you have a database model where you need to avoid concur-
rency issues with multiple documents at the same time, you’re in trouble.
For example, you might have an e-commerce application that needs to
decrement the number of products in the warehouse inventory while at the
same time withdrawing money from the user’s wallet.

Faced with this situation you are left the option to modify the database schema
to collect information into single documents so that you can use atomic
functions, or you can create a locking mechanism for a collection of docu-
ments. MongoDB has good information in its documentation about two-phase
commit,2 which is essentially a locking mechanism. Finally, you could also
use another database, either in conjunction with MongoDB or completely
migrate to that.

1. http://stackoverflow.com/questions/7149890/what-does-mongodb-not-being-acid-compliant-really-mean
2. http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/

report erratum • discuss

Concurrency with MongoDB Explained • 79

http://stackoverflow.com/questions/7149890/what-does-mongodb-not-being-acid-compliant-really-mean
http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

ACID Compliance

When talking about concurrency and databases, the first thing that’s usually looked
at is whether the database is ACID compliant. That doesn’t mean it must be able to
withstand an acid attack; rather ACID stands for “Atomicity, Consistency, Isolation,
Durability.”

What these mean:

• Atomicity: operations must be atomic.
• Consistency: every transaction must leave the database in a consistent (valid)

state.
• Isolation: transactions cannot interfere with each other.
• Durability: effects of transactions must persist through crashes.

The reasoning is that concurrency issues are far easier to deal with in an ACID-
compliant database.

Mongo vs. Other

I think this is a good spot to point out that just because you’re
using Node.js in your application, it doesn’t mean that a NoSQL
database is the best solution for you—database selection should
be determined by your application and information types and
connections.

In this section, we’ll fix the example using locks and atomic functions. Locking
is the more general solution because you can extend it over several operations
and more complex applications; this specific example benefits more from
atomic functions. So let’s look at the simpler atomic approach and then see
how you can use locking.

To use atomic functions we need to modify our logic to deduct the amount
first and then perform the operation. If anything goes wrong, we reimburse
the amount:

chp-6-concurrency/concurrency-wallet-mongo-delay-atomic.js
// Our processing function
function processCall(cb) {

// Add delay of 5 seconds here - imitating processing of the request
setTimeout(cb, 5000);

}

app.post('/:name', function(req, res, next){
var amount = Math.abs(req.body.amount);

// Search by name and amount greater than or equal to requested➤

var search = {name: req.params.name, amount: {$gte: amount}};➤

Chapter 6. Learn to Do Things Concurrently • 80

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo-delay-atomic.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// Increment by negative amount➤

var update = {$inc: {amount: -amount}};➤

Wallet.findOneAndUpdate(search, update, function (err, wallet) {➤

if (err) { // Something went wrong with the query
next(err);
return;

}
if(!wallet) {

res.send(400, 'Insufficient funds or not found');
return;

}

processCall(function (err) {
if(err) {➤

// Process failed so reimburse➤

wallet.amount += amount;➤

wallet.save(function (rErr, updatedW, rowsAffected) {➤

if(rErr || rowsAffected !== 1) {➤

//TODO: This needs careful handling➤

console.error('Reimbursement failed');➤

}➤

res.send(500);➤

});➤

return;➤

}➤

res.redirect('/' + req.params.name);
});

});
});

And with these simple modifications our application is secure against concur-
rency attacks. All the calculations are atomic and the results will be correct.

Now let’s expand our database model to include a lock model so that you can
see how to achieve the same thing with locking:

chp-6-concurrency/concurrency-wallet-mongo-delay-lock.js
var mongoose = require('mongoose');
var args = require('minimist')(process.argv);

if(!args.d) {
console.log('This example requires the -d (mongoose db) command line variable');
process.exit();

}

// Connect to mongoose db
mongoose.connect(args.d);
mongoose.connection.on('error', function (err) {

console.error('connection error:' + err);
process.exit();

});

report erratum • discuss

Concurrency with MongoDB Explained • 81

www.allitebooks.com

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo-delay-lock.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec
http://www.allitebooks.org

// Define wallet model
var walletSchema = new mongoose.Schema({

name: { type: String, required: true, index: { unique: true } },
amount: { type: Number, required: true}

});
var Wallet = mongoose.model('Wallet', walletSchema);

// Define wallet model
var lockSchema = new mongoose.Schema({

name: { type: String, required: true, index: { unique: true } }
});
var Lock = mongoose.model('Lock', lockSchema);

Wallet.remove().exec(); // Delete all previous Wallets.

At this point, we’ll create and apply the mechanism to lock the resources and
release them afterward:

chp-6-concurrency/concurrency-wallet-mongo-delay-lock.js
// Our processing function
function processCall(cb) {

// Add delay of 5 seconds here - imitating processing of the request
setTimeout(cb, 5000);

}

function aquireLock(name, cb) {➤

// We will use the fact that name is unique and➤

// so insert will fail if a lock exists➤

Lock.create({ name: name }, function (err, lock) {➤

if(err) {➤

cb(new Error('Failed to aquire lock'));➤

return;➤

}➤

cb(null, lock);➤

});➤

}➤

➤

function releaseLock(name, cb) {➤

Lock.findOneAndRemove({name: name}, cb);➤

}➤

app.post('/:name', function(req, res, next){
var amount = Math.abs(req.body.amount);

aquireLock(req.params.name, function (err) {➤

if(err) {➤

res.send(409, 'Already processing');➤

return;➤

}➤

Wallet.findOne({name: req.params.name}, function (err, wallet) {

Chapter 6. Learn to Do Things Concurrently • 82

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo-delay-lock.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

if (err) { // Something went wrong with the query
next(err);
return;

}
if(!wallet) {

res.send(404, 'Not found');
return;

}
if(wallet.amount < amount) {

res.send(400, 'Insufficient funds');
return;

}
processCall(function () {

wallet.amount -= amount;
wallet.save(function (rErr, updatedW, rowsAffected) {

if(rErr || rowsAffected !== 1) {
res.send(500, 'Withdrawal failed');
return;

}
releaseLock(req.params.name, function (err) {➤

if(err) {➤

//FIXME: We should definitely handle the error here➤

console.error(err);➤

}➤

res.redirect('/' + req.params.name);➤

});➤

});
});

});
});

});

We can acquire a lock atomically to the wallet and perform operations before
releasing the lock. Because this example doesn’t take into account any
potential errors, we can wind up with eternally locked resources. We’ll solve
that problem by adding a timeout to the lock:

chp-6-concurrency/concurrency-wallet-mongo-delay-lock-improved.js
// Define wallet model
var lockSchema = new mongoose.Schema({

name: { type: String, required: true, index: { unique: true } },
timestamp: {type: Number}

});
var Lock = mongoose.model('Lock', lockSchema);

Now when acquiring the lock, we’ll have to adjust for the timestamp to prevent
eternal locks:

report erratum • discuss

Concurrency with MongoDB Explained • 83

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo-delay-lock-improved.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

chp-6-concurrency/concurrency-wallet-mongo-delay-lock-improved.js
// Our processing function
function processCall(cb) {

// Add delay of 5 seconds here - imitating processing of the request
setTimeout(cb, 5000);

}

function aquireLock(name, cb) {
var now = Date.now();➤

var expired = now - 60 * 1000;➤

➤

// The basics of this command is that we either:➤

// 1. Find an old lock and update it with a new timestamp➤

// 2. Don't find one, in which case we try to insert➤

// This will either:➤

// 2.1 fail, because of unique index - a lock exists➤

// 2.2 succeeds - a new lock is created➤

Lock.findOneAndUpdate({➤

name: name,➤

timestamp: {$lt: expired} //Include locks that are too old➤

}, {➤

timestamp: now➤

}, {➤

'new': true, // return new doc if one is upserted➤

upsert: true // insert the document if it does not exist➤

}, function (err, lock) {➤

if(err) {
cb(new Error('Failed to aquire lock'));
return;

}
cb(null, lock);

});
}

function releaseLock(name, cb) {
Lock.findOneAndRemove({name: name}, cb);

}

Both of these solutions are valid. Atomic functions require you to change your
operational logic only slightly, but you can see that locking mechanisms are
more versatile.

Concurrency with MySQL Explained
SQL databases such as MySQL are more mature than NoSQL when it comes
to concurrency and ACID compliance. All the solutions we just covered in
Concurrency with MongoDB Explained, on page 79 also apply to MySQL. Only
the database query syntax is different.

Chapter 6. Learn to Do Things Concurrently • 84

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-wallet-mongo-delay-lock-improved.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

However, MySQL also has transactions,3 which means that you can do ACID-
compliant operations over multiple tables. This means you can solve the
problem of updating multiple tables atomically in SQL databases.

Let’s continue with our previous warehouse and wallet example. We won’t
construct a full example because that would introduce too much overhead.
Instead we’ll just highlight the way you would check the product out of the
warehouse and into the shopping cart as part of a single transaction:

chp-6-concurrency/concurrency-mysql-transaction.js
// First we start the transaction
connection.beginTransaction(function(err) {

if (err) {
next(err);
return;

}
// Then we remove items from warehouse
var warehouseSql = 'UPDATE warehouse SET quantity = quantity - ? ' +

'WHERE quantity >= ? AND id = ?';

connection.query(warehouseSql, [quantity, quantity, productId],
function(wErr, result) {

if (wErr) {
// Unsuccessful so rollback
connection.rollback(function() {

next(wErr);
});
return;

}

if(result.changedRows !== 1) { // Not enough items in warehouse
connection.rollback(function() {

res.send(400, 'Insufficient funds');
});
return;

}

// Add items to cart
var cartSql = 'UPDATE wallets ' +

'SET amount = amount - ? WHERE amount >= ? AND name = ?';

connection.query(cartSql, [amount, amount, name],
function(cErr) {

if (cErr) {
// Unsuccessful so rollback
connection.rollback(function() {

next(cErr);

3. http://dev.mysql.com/doc/refman/5.5/en/commit.html

report erratum • discuss

Concurrency with MySQL Explained • 85

http://media.pragprog.com/titles/kdnodesec/code/chp-6-concurrency/concurrency-mysql-transaction.js
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

});
return;

}
// We have updated both so commit the result
connection.commit(function(commitErr) {

if (commitErr) {
connection.rollback(function() {

next(commitErr);
});
return;

}
// Everything went successfully
res.send(200);

});
});

});
});

This code makes those two queries inside a transaction—if you fail at any
point, then you roll back the whole thing and no unwanted changes are left
in the database.

Wrapping Up
In this chapter we looked at how concurrency issues occur and how they can
cause big problems if the application logic doesn’t account for it. You learned
how to mitigate concurrency by denying other processes access to a resource
until one process is finished by using locks. You also learned how to work
with atomic operations, where you implement changes to the resource as part
of a single operation. You should now know how to handle concurrent opera-
tions in MongoDB and MySQL.

Next, we look at ways to limit access to different resources. In the next
chapter, we get cracking on building the backbone of our authentication
scheme.

Chapter 6. Learn to Do Things Concurrently • 86

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 7

If you know the enemy and know yourself, you need not fear
the result of a hundred battles.

 ➤ Sun Tzu

Bring Authentication to Your Application
You’ve securely set up your server and database, and you now have an
application with valuable information people want to see. But how do you
know a user is who he or she claims to be, and how do you avoid malicious
impersonators? You don’t want to hand out personal information to just
anyone, so you need to think about authentication.

The level of security you need when dealing with user accounts and how to
validate them depends on the application and how much personal information
you’re storing. Consider how much damage an attacker can do to the customer
if the account is breached. If the application stores credit card information,
then it must have extra levels of validation to protect users and their data.
This chapter focuses on the common username/password authentication
system because you’re already familiar with it and because it’s easy to
understand.

Don’t Forget About PCI DSS if You Store Credit Cards

When dealing with credit card information, you have to follow the
Payment Card Industry Data Security Standard (PCI DSS).1

A user sets up an account by providing a secret (a password), and later you
verify that the user knows the secret before allowing access. Controlling this
knowledge lets you assume that you’re dealing with a trusted party. But
because everyone uses this form of authentication, there are many attack
vectors that specifically attempt to break it.

We’ll look at various parts of this system and how to harden your setup so it
will be more robust and not easily fooled.

1. https://www.pcisecuritystandards.org/security_standards/

report erratum • discuss

https://www.pcisecuritystandards.org/security_standards/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Store the Secret in a Safe Place
Let’s start with storage—you have to store the password somewhere so that
you can validate that the user knows the secret. There’s a big difference
between saving the password and saving the password securely.

First off, and I do hope I stress this enough, never, ever store passwords in
plain text. That’s just asking for trouble. You may think that people who will
see the passwords will already have access to the data—so what’s the big
deal. Oh, how wrong you would be.

There are two important differences between storing passwords in plain text
and hashed: impersonation and collateral damage. First off, seeing the pass-
word in hashed format will not allow you to simply log in as the user because
you still don’t know the secret. Depriving a malicious party of this is already
a big win; however, the bigger issue is your users themselves. People tend to
reuse passwords on different sites—so knowing a user’s password on one site
potentially gives access to several other accounts on other sites as well.

If you store passwords in plain text on the disk, then you’re both putting an
awful lot of trust in your administrations and gambling with your users’ data,
since even a simple breach in your security will allow the attacker to compro-
mise not only your site but likely other accounts on other sites as well. So do
everyone a favor and say no to plain text.

Plain text is the worst choice you can make. But if you were thinking about
using general-purpose hash functions such as MD5, SHA1, SHA256, SHA512,
and SHA-3, then you would also be wrong. They’re designed to calculate the
hash as fast as possible, a feature you don’t want in a password-hashing
function. You want the attackers to have to spend a long time trying to crack
the hashes in case of a database breach.

Why Passwords Get Cracked
Let me digress to discuss cracking for a moment. If the application stores its
passwords in hash format, attackers who get their hands on the hashes can’t
use the hash directly to log into the application. They need to find a plain-
text version of the password. This gets harder if the password is stored using
one-way hashing functions. Then the only way to determine the original
password is to generate hashes for all possiblities until they find a matching
one. How fast the function can calculate the hash has a significant impact
on password safety.

Chapter 7. Bring Authentication to Your Application • 88

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

A modern server can calculate an MD5 hash of about 330 MB every second.
This means that if you have lowercase, alphanumeric passwords that are six
characters long, then every possible combination can be calculated in 40
seconds. That’s without investing any real money. If attackers are willing to
pay, they can drastically increase computational power and reduce the time
required to crack hashes. Also, sometimes flaws are discovered in the hashing
algorithm itself that help narrow the possible inputs, greatly decreasing the
time it takes to find a solution.

Attackers take the time and effort to crack the passwords because they can
go after other user accounts on the current site as well as any place the
passwords may have been reused.

“Hey, but I salt my passwords!” you may be saying right now. Well, salts won’t
help if the attackers are intent on cracking your passwords. Salts were
designed to defend against dictionary attacks, but computational power is so
cheap nowadays that attackers just go straight to brute-force cracking.

Salting

Password salting means adding a secret string to all passwords
before hashing them in order to avoid getting the same hash for
common passwords. This helps mitigate dictionary attacks, where
attackers search for a match of the password hash from a large
precomputed list—much faster than brute forcing.

Use Hash Functions Designed for Passwords
With the quick lesson in cracking, you should now know why general hash
functions aren’t recommended for passwords. Instead, use bcrypt2 or scrypt,3

which are specifically designed for passwords.

bcrypt is based on the Blowfish4 cipher and is slow in hash calculation
depending on the number of iterations. scrypt was developed to make it costly
to perform custom hardware attacks by raising the memory requirements of
the hash calculation, thus increasing the cost of hardware implementations.

Let’s see how these compare to each other on my laptop. In my code I used
the most popular bcrypt5 and scrypt6 libraries for Node.js. Using twelve iterations

2. http://bcrypt.sourceforge.net
3. https://www.scrypt.com
4. https://www.schneier/com/blowfish.com
5. https://github.com/ncb000gt/node.bcrypt.js
6. https://github.com/barrysteyn/node-scrypt

report erratum • discuss

Store the Secret in a Safe Place • 89

http://bcrypt.sourceforge.net
https://www.scrypt.com
https://www.schneier/com/blowfish.com
https://github.com/ncb000gt/node.bcrypt.js
https://github.com/barrysteyn/node-scrypt
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

on bcrypt and the default settings for scrypt (with max calculation time of 1s) I
got the following results:

md5: 5d41402abc4b2a76b9719d911017c592
md5: 7μs
sha1: aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d
sha1: 7μs
sha256: 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824
sha256: 8μs
sha512: 9b71d224bd62f3785d96d46ad3ea3d73319bfbc2890caadae2dff72519673ca723
23c3d99ba5c11d7c7acc6e14b8c5da0c4663475c2e5c3adef46f73bcdec043
sha512: 8μs
bcrypt: $2a$12$N.xKbRQZ10Bzd9QAFBFfBu2abQMUWZHsKcoctu30nU2iw2YI0DNwG
bcrypt: 283ms
scrypt: 73637279707400100000000800000005a539df65707e021f8afde283021dac7423
b8ebc3ecd5653b1dc0eb0a7e96c1212d95502588785cde34e05913cc874f9f496a2e388b83
994a3321413c15278915923dcf94b771d69cf64b53bc96282a28
scrypt: 640ms

As you can see, bcrypt takes about 0.3s to calculate and scrypt about 0.6s,
whereas the rest are in microseconds. When cracking passwords this difference
will translate every second into a timescale of days. That makes a huge differ-
ence when cracking passwords, since something that would otherwise take
a day would now take more than 100 years.

bcrypt and scrypt also incorporate a salt to resist rainbow table attacks and are
adaptive functions. This means that you can increase the calculation costs
by changing the settings—making it resistive to brute force even when com-
putational power increases dramatically.

I personally use bcrypt because it’s easier to use than scrypt and my security
requirements are usually not that high.

So how do you use it? Let’s look at an example of a basic Mongoose model
that uses bcrypt and hooks to store the password securely:

chp-7-authentication/mongoose-bcrypt.js
'use strict';

var mongoose = require('mongoose');
var bcrypt = require('bcrypt');
var Schema = mongoose.Schema;

var accountSchema = new Schema({
email: { type: String, required: true, index: { unique: true } },
password: { type: String, required: true }

});

// Define pre-save hook

Chapter 7. Bring Authentication to Your Application • 90

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-7-authentication/mongoose-bcrypt.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

accountSchema.pre('save', function (next) {
var user = this;

// only hash the password if it has been modified (or is new)
if (!user.isModified('password')) {

return next();
}

bcrypt.hash(user.password, 12, function (err, hash) {
if(err) {

next(err);
return;

}
user.password = hash;
next();

});
});

// Define a method to verify password validity
accountSchema.methods.isValidPassword = function (password, callback) {

bcrypt.compare(password, this.password, function (err, isValid) {
if(err) {

callback(err);
return;

}
callback(null, isValid);

});
};

module.exports = accountSchema;

With these tools, you can now store your user passwords in a manner that
will keep attackers cracking at them for years.

Enforce Password Strength Rules on Your Users
Now that we’ve covered storage, let’s talk about the password itself. Most
users aren’t security conscious, so you have to help the user when selecting
a password. The table on page 92 is a top-ten list of the most popular pass-
words from 20147 It’s obvious that people don’t really think about account
security.

Don’t let your users use common dictionary passwords, because your high-
tech security measures are useless if the user is using monkey (position 12) or
letmein (position 13) as a password. When the user selects a password, compare

7. https://www.teamsid.com/worst-passwords-of-2014/.

report erratum • discuss

Enforce Password Strength Rules on Your Users • 91

https://www.teamsid.com/worst-passwords-of-2014/.
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

2014 RankPasswordPosition|2014 RankPasswordPosition

Unchanged1234567896.|Unchanged1234561.

Up 912347.|Unchangedpassword2.

Newbaseball8.|Up 17123453.

Newdragon9|Down 1123456784.

Newfootball10.|Down 1qwerty5.

Table 1—Top-ten Passwords of 2014

the string against a known dictionary of common passwords to make sure it
isn’t weak. You can easily find lists of common passwords8 with a simple
online search. The following example uses one such list to validate if the
selected password exists in a dictionary:

chp-7-authentication/dictionary-validator.js
'use strict';

var fs = require('fs');

var dictionary = {};

// Since we are doing it only once on startup then use sync function
fs.readFileSync(__dirname + '/data/dictionary.txt', 'utf8')

.split('\n')

.forEach(function (password) {
dictionary[password] = true;

});

// This function will return an error message if the password is not good
// or false if it is proper
module.exports.isImproper = function check(username, password) {

// About 3 percent of users derive the password from the username
// This is not very secure and should be disallowed
if(password.indexOf(username) !== -1) {

return 'Password must not contain the username';
}

// Compare against dictionary
if(dictionary[password]) {

return 'Do not use a common password like: ' + password;
}
return false;

};

8. https://wiki.skullsecurity.org/index.php?title=Passwords

Chapter 7. Bring Authentication to Your Application • 92

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-7-authentication/dictionary-validator.js
https://wiki.skullsecurity.org/index.php?title=Passwords
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

The more complete the dictionary, the better protection against weak pass-
words it will provide, but even the smallest dictionaries with just 500 common
passwords would provide some protection.

To further increase password security, you should force the user to select
stronger passwords. Instead of forcing the user to create passwords with
special characters that are hard to remember, have them select longer pass-
words. Long passwords are easier to remember and offer better security
because the resulting hashes take a longer time to crack.

Depending on the nature of the application, I also suggest the user should
be forced to change passwords periodically, whether that’s once a month,
once a quarter, or even twice a year. This limits the timeframe in which
attackers can try to break in with stolen passwords. And they have to start
over and recrack the new password after every change. If you do require users
to change their passwords, don’t let them use previously used passwords.
Just keep the previous hashes and compare the hash of the new one to make
sure the user isn’t trying to reuse the password.

Force users to use longer passwords, disallow common passwords, and change
them periodically. These three tips will help keep data stored by your applica-
tion safe.

Move the Password Securely to the Server
We’ve established that the user needs to set a strong password and have
covered how to store it. How do you move it from the web browser to the
server? The first step, of course, is to use HTTPS. In fact, you should use
HTTPS not just on login and registration pages but for the whole site. You
will need HTTPS for login and registration pages to prevent man-in-the-middle
attacks that try to steal passwords, but if you don’t use HTTPS for the whole
site, your session can still be stolen. This is discussed in length in Chapter
8, Focus on Session Management, on page 99.

Second, do not send a plain-text password to the user’s email as a reminder.
If the application is generating the password on the user’s behalf, then force
the user to change it immediately the first time the user logs in. Having a
permanent plain-text record of a user’s password in an email inbox is like
the employee who writes passwords on Post-It notes and puts them next to
the screen.

Third, insert delays in your login mechanism. We already covered brute-
forcing at the storage level, but you can also slow down brute-forcing attempts
on the application layer. A common way to do this is to punish the user for

report erratum • discuss

Move the Password Securely to the Server • 93

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

repeatedly failing to log into the application. You can ban the user for a while,
such as fifteen minutes after five failed attempts, or make the user fill out a
CAPTCHA challenge. Banning the user is a double-edged sword, because an
attacker can maliciously block legitimate users by intentionally entering bad
passwords, so use it carefully. The other approach is to create a universal
delay for each failed login for a certain period of time. The legitimate user
won’t feel the delay; the attacker will.

Let’s look at how you can ban the user’s IP for a period of time if the user
fails to log in a certain number of times:

chp-7-authentication/ban-user.js
var maxFailedCount = 5; // Max tries
var forgetFailedMins = 15; // time the user will be blocked
var blockList = {};

// Check if ip is still allowed
function isAllowed(ip) {

return !blockList[ip] || blockList[ip].count < maxFailedCount;
}
// Remove ip from blockList
function successfulAttempt(ip) {

if(blockList[ip]) {
if(blockList[ip].timeout) {

clearTimeout(blockList[ip].timeout);
}
delete blockList[ip];

}
}
// Increment blocklist counter
function failedAttempt(ip) {

if(!blockList[ip]) {
blockList[ip] = {

count: 0
};

}
blockList[ip].count++;
if(blockList[ip].timeout) {

clearTimeout(blockList[ip].timeout);
}
blockList[ip].timeout = setTimeout(function () {

delete blockList[ip];
}, forgetFailedMins * 60 * 1000);

}

app.post('/login', function (req, res, next) {
if(!isAllowed(req.ip)) { // Check if user is blocked

req.session.error = 'You have been blocked for ' +
forgetFailedMins + ' minutes';

Chapter 7. Bring Authentication to Your Application • 94

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-7-authentication/ban-user.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

res.redirect('/');
return;

}
validateUser(req.body, function(err, valid) {

if(err) {
next(err);
return;

}
if(valid.success) { // Validation success. Create authorized session.

successfulAttempt(req.ip); // Clear from blocklist
req.session.login({userId: valid.userId}, function () {

res.redirect('/user/' + valid.userId);
});

} else {
failedAttempt(req.ip); // Register the failed attempt
req.session.error = valid.error;
res.redirect('/');

}
});

});

Node.js also lets us easily set a universal delay in answering:

chp-7-authentication/delay.js
app.post('/login', function (req, res, next) {

function end(url) {
setTimeout(function () {

res.redirect(url);
}, 1000);

}
validateUser(req.body, function(err, valid) {

if(err) {
next(err);
return;

}
if(valid.success) { // Validation success. Create authorized session.

req.session.login({userId: valid.userId}, function () {
// delay before answer
end('/user/' + valid.userId);

});
} else {

req.session.error = valid.error;
// delay before answering
end('/');

}
});

});

However, the delay mechanism won’t stop attackers from running parallel
checks about a user’s account. We can fix that problem, though:

report erratum • discuss

Move the Password Securely to the Server • 95

http://media.pragprog.com/titles/kdnodesec/code/chp-7-authentication/delay.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

chp-7-authentication/delay-no-parallel.js
// Map our authentications
var inProgress = {};

app.post('/login', function (req, res, next) {
var key = req.ip + ':' + req.body.username;
// check if we are already authenticating this user from the given IP
if(inProgress[key]) {

req.session.error = 'Authentication already in progress';
res.redirect('/');
return;

}
inProgress[key] = true;
function end(url) {

setTimeout(function () {
delete inProgress[key];
res.redirect(url);

}, 1000);
}
validateUser(req.body, function(err, valid) {

if(err) {
delete inProgress[key];
next(err);
return;

}
if(valid.success) { // Validation success. Create authorized session.

req.session.login({userId: valid.userId}, function () {
// delay before answer
end('/user/' + valid.userId);

});
} else {

req.session.error = valid.error;
// delay before answering
end('/');

}
});

});

Examples Are Not Production-Ready Code

The previous examples have been simplified and are not directly
usable in a production environment. For example, using session
to transfer the error message can cause issues. Holding the list
of in-progress validations in memory won’t be valid if the process
is forked.

This will stop brute-force and dictionary attacks directly against the application
since the delays would slow down the attacker too much to make it worthwhile,
unless of course the user’s password is in the top ten.

Chapter 7. Bring Authentication to Your Application • 96

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-7-authentication/delay-no-parallel.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Deal with the Fact That Users Will Forget
Humans are not computers and will forget things, even important things like
credentials to an awesome web application such as yours. So let’s talk about
setting up a secure password-recovery mechanism.

The most common recovery system in modern web applications uses email.
A link is sent to the registered email address to prompt the user to change
the current (forgotten) password to a new one. While sufficient for most
applications, if your application is extremely critical, you need a more secure
recovery process. One option is to add a set of recovery questions or a sec-
ondary password that the user has to provide as part of the recovery process.
This will stop attackers who have access of the victim’s email inbox because
they won’t know the answers to those questions or the secondary password.

You should consider recovery answers as passwords that are intended to be
easier to remember. As such they should also be hashed, and the application
should validate the recovery questions as a group. If there are three questions,
the person has to get the answers to all of them correct in order to proceed.
If one of them is wrong, the person will be shown an error message, but this
is important: do not specify which question was incorrect. The illustration
shows the bad way to handle recovery questions (on the left) and the good
way (on the right).

This is also how you would want to handle the actual login form. Do not say
specifically if the username or the password was incorrect—just say that the
combination was wrong. And as with login forms you also want to protect
against brute-force attempts to figure out answers to recovery questions, so
limit the number of attempts and insert delays.

report erratum • discuss

Deal with the Fact That Users Will Forget • 97

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

With email-based recovery systems, always validate the user’s email address,
and don’t let the user change it without revalidating it and using another
layer of authentication. Without secondary verification when changing email
addresses, an attacker who manages to break into the account can change
the address unchallenged and permanently lock out the legitimate user.

Add Other Authentication Layers for Better Security
For important applications, add another layer of authentication besides
username and passwords. This will increase security because the attacker
now has more layers to cut through. Some ways to achieve this include using
hidden usernames, second passwords, and multi-factor authentication.

A hidden username is a two-username system. One is the username other
users see and the other is used only for logging in. This is common in forums,
where everyone sees a username, but you log in with your email address.

You can also let the user set up two passwords. The first password is used
for logging in, and the second one is reserved for special requests and opera-
tions. One example is to use the second password to change the email address
associated with the account. The session lifetime of the second password
should be short. This will stop attackers who have gained access to the session
or the first password from doing much damage.

Multi-factor authentication is becoming increasingly popular. The most
common form, two-factor authentication, uses a third-party system like Google
Authenticator to generate special codes. The idea is to force the user to log
in with something only the user knows (a password) and something the user
has (a phone running the Google Authenticator app, for example). This requires
the attacker to also steal or compromise the phone in order to successfully
log in. Multi-factor authentication schemes make credential theft much more
difficult because the attacker has to bypass a second system to gain access.

Wrapping Up
In this chapter we looked into hardening one of the backbones of web appli-
cation security—authenticating the user. We looked at ways to store passwords
securely, how to force users to use stronger passwords, how to protect against
brute-force attacks, and how to add a second layer of protection.

Having covered the bases for authenticating a user, we now look at how the
application remembers the user for a set period of time. We’ll cover sessions
in the next chapter so that your users won’t have to keep typing in their
password everytime they want to do something.

Chapter 7. Bring Authentication to Your Application • 98

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 8

Memory is the treasure house of the mind wherein the
monuments thereof are kept and preserved.

 ➤ Thomas Fuller

Focus on Session Management
In the last chapter we looked at authentication and how to make it difficult
for impersonators to steal credentials. This is critical for security, but we’d
lose users immediately if they were forced to retype their password every time
the application tried to do something. This is why we need sessions.

Think of sessions as pieces of your server’s short-term memory. When you
authenticate to the application, the server remembers who you are for a set
amount of time. Sessions make the application convenient to use and your
users happy, but if you don’t create and manage sessions securely, they’ll
also make attackers happy. Sessions let attackers bypass the authentication
scheme, and there are multiple attack methods designed specifically to steal
user sessions. We look at some of the common attack and defense methods
in this chapter.

We’ll start by setting up a session and then go through the implementation
of the more important guidelines to managing sessions in an application. For
a more thorough overview of what’s important when managing sessions I
recommend reading the OWASP Session Management Cheat Sheet.1

Set Up Sessions for Your Application
You can create sessions with query parameters, cookies, and tokens, to name
just a handful of ways. We’ll start with the cookie-token-based sessions since
they’re most commonly used.

Cookie-token sessions work by storing a token, also known as the sessionID,
in the cookie. The application regularly uses the token to look up session
information on the server side. Cookies are the preferred method for storing

1. https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

report erratum • discuss

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

sessionIDs because they offer some control over the token’s lifespan. They’re
also much more secure than using sessions based on the URL path.

Let’s set up a session using the express framework. Since the middleware uses
cookies to store the sessionID, we need to use the cookieParser middleware
before the session middleware:

chp-8-session/express-memory-session.js
'use strict';

var express = require('express');
var session = require('express-session');
var cookieParser = require('cookie-parser');
var app = express();

app.use(cookieParser());
app.use(session({

secret: 'this is a nice secret',
resave: false,
saveUninitialized: true

}));

app.get('/', function(req, res){
if(!req.session.views) {

req.session.views = 0;
}
req.session.views++;

res.send('hello world. ' + req.session.views + ' times so far.');
});

app.listen(3000);

And that’s it—we’ve set up a basic session. But we’re far from finished.

The express-session default storage is a MemoryStore—a session implementation
storing data in memory. This is not scalable, because it requires the web
application to run as a single process and it also leaks memory. To mitigate
this we need a different persistence layer.

In the following examples we’ll use connect-redis,2 which is a SessionStore imple-
mentation for the Redis3 database. Redis is an excellent fit for session storage,
since it’s a fast key-value database, where keys can contain strings, hashes,
lists, sets, and sorted sets.

2. https://github.com/visionmedia/connect-redis
3. http://redis.io/

Chapter 8. Focus on Session Management • 100

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-8-session/express-memory-session.js
https://github.com/visionmedia/connect-redis
http://redis.io/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

To use Redis for the session storage we must install the Redis server, configure
the SessionStore used by express, and set up a password for the database:

var express = require('express');
var RedisStore = require('connect-redis')(express); // Require connect-redis
var session = require('express-session');
var cookieParser = require('cookie-parser');
var app = express();

app.use(cookieParser());
app.use(session({

store: new RedisStore({
host: 'localhost',
port: 6379,
db: 2,
pass: 'funky password here' // <- specify password

}),
secret: 'this is a nice secret',
resave: false,
saveUninitialized: true

}));

And that’s it—we’re now using Redis as our session storage. This allows us
to scale horizontally because the database can be accessed by multiple pro-
cesses from various machines simultaneously.

We could also use other storage systems like connect-mongo4 or connect-
sqlite35 or others, but we’ll stick with Redis for our examples.

Although we now have session management, it’s not secure, so let’s look at
how we can improve session security.

Anonymize the sessionID Used
The first step for an attacker targeting a system is reconnaissance. The
attacker researches the environment and narrows possible attack vectors to
optimize the attack. As the defender, we want them to waste as much time
as possible, so keeping the intruder guessing is a good move.

The default implementation of session in express and connect uses connect.sid as
the sessionID token in the cookie. It’s not hard to understand what technolo-
gies are in use based on that. To make it harder for possible attackers to gain
information about the application’s underlying systems, we need to use a
more generic name for the sessionID:

4. https://github.com/kcbanner/connect-mongo
5. https://github.com/rawberg/connect-sqlite3

report erratum • discuss

Anonymize the sessionID Used • 101

https://github.com/kcbanner/connect-mongo
https://github.com/rawberg/connect-sqlite3
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

app.use(express.session({
store: new RedisStore({

host: 'localhost',
port: 6379,
db: 2,
pass: 'funky password here'

}),
name: 'id', // <-- a generic name for the session id
secret: 'this is a nice secret',
resave: false,
saveUninitialized: true

}));

With this configuration option, we can stop declaring to the world our session-
handling mechanism and force the attacker to spend more time using various
different attacks that don’t impact our setup.

Let the Session Die, aka Set a Time-to-Live
The MemoryStore session by default has no termination date—meaning if a
user is signed in, then in theory, the user remains signed in forever. Since
the default cookie expiration is undefined, forever in this case means as long
as the browser is open. Without expiration information, the cookie gets
deleted only if the browser closes.

The RedisStore implementation has a default Time-to-Live (TTL) of one day,
which is a lot better but still not good enough. If you log into some website,
say your bank, and move away from the computer, then it’s bad if an hour
later someone else can come along and still access your account. The OWASP
recommendation is that session timeout be no longer than five minutes for
highly protected applications and no more than twenty minutes for low-risk
applications.

We can easily add a twenty-minute TTL to the application:

app.use(express.session({
store: new RedisStore({

host: 'localhost',
port: 6379,
db: 2,
pass: 'funky password here',
ttl: (20 * 60) // TTL of 20 minutes represented in seconds

}),
key: 'id', // use a generic id
secret: 'this is a nice secret',
resave: false,
saveUninitialized: true

}));

Chapter 8. Focus on Session Management • 102

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Before you rush to implement a TTL, consider the application’s content when
selecting the timeout period. Sometimes you need more than twenty minutes.
If the app has long, time-consuming forms or pages with lengthy text, then
a longer timeout is necessary, or you should consider using a two-tier session
system. It would be annoying if your email client threw you out every twenty
minutes, wouldn’t it?

A two-tier system is a session with two states: one for a short period immedi-
ately after logging in and the other that keeps you signed in but with a lower
access level. Users can access less-secure areas for a longer period of time,
but when trying to access more privileged areas, the user must authenticate
again. A new session is created with privileged access for a short period of
time and then degrades a to low-level session again. GitHub uses this mode,
for example.

So how do you implement a two-tiered model? Let’s extend the Session proto-
type with custom functions:

chp-8-session/express-redis-session-two-levels.js
var session = require('express-session');
var RedisStore = require('connect-redis')(session); // Require connect-redis

// Extend the Session prototype with some custom functions
// Add a login function
session.Session.prototype.login = function login() {

// Set a time of login
this.session._loggedInAt = Date.now();

};
// Add a function to check the logged in status of the user
session.Session.prototype.isLoggedIn = function isLoggedIn() {

return !!this._loggedInAt;
};
// Add a function to check the freshness of the session
session.Session.prototype.isFresh = function isFresh() {

// Return true if logged in less then 3 minutes ago
return (this._loggedInAt && (Date.now() - this._loggedInAt) < (1000 * 60 * 3));

};

We can now use these functions in our application. We can check if the session
is valid and allow privileged access if the session was validated recently.

chp-8-session/express-redis-session-two-levels.js
app.get('/', function(req, res){

if(!req.session.views) {
req.session.views = 0;

}
req.session.views++;

report erratum • discuss

Let the Session Die, aka Set a Time-to-Live • 103

http://media.pragprog.com/titles/kdnodesec/code/chp-8-session/express-redis-session-two-levels.js
http://media.pragprog.com/titles/kdnodesec/code/chp-8-session/express-redis-session-two-levels.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

res.send('hello world. ' + req.session.views + ' times so far.');
});

app.get('/login', function (req, res) {
req.session.login()
res.send('ok - ' + req.session._loggedInAt);

});

app.get('/secure', function (req, res) {
if(!req.session.isLoggedIn()) { // Check if user is logged in

res.send(401);
return;

}
res.send('Access');

});

app.get('/secure/more', function (req, res) {
if(!req.session.isFresh()) { // Check if session is fresh

res.send(401);
return;

}
res.send('You are fresh');

});

app.get('/logout', function (req, res) {
req.session.destroy(); // Delete session
res.redirect('/');

});

Now we’re keeping the user logged in for longer periods of time for convenience
without compromising security. Awesome, isn’t it?

Secure the Cookies so No One Can Steal Them
When you use cookies as a session identifier, you also need secure cookie
handling. Attackers will try to steal cookies—or more specifically, the session
token information stored in those cookies. This attack is called session
hijacking because it relies on stealing the token to access the victim’s
authenticated session.

You have to first configure the server to limit your exposure and mitigate
attack vectors like man-in-the-middle (MITM) and cross-site scripting (XSS).
We’ve talked about MITM before in Chapter 3, Start Connecting, on page 23
and will cover XSS more thoroughly in Chapter 11, Fight Cross-Site Scripts,
on page 139. To prevent MITM session hijacking attacks, you need to use
HTTPS over the whole site and not just for login and registration pages. If you
set up HTTPS, then also set the cookie as secure. This will stop the cookie

Chapter 8. Focus on Session Management • 104

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

from being sent unless it’s part of an HTTPS request. It prevents situations
where insecure content from the same domain is sent over HTTP along with
the sessionID.

We can mitigate XSS attack vectors by preventing JavaScript from accessing
the cookie contents. Use the httpOnly setting, which was specifically designed
for that purpose, so that only browser requests have access to the cookie.
Besides httpOnly, you can also limit the cookie’s exposure by setting a minimum
domain restriction. For example, if an example.com website has a well-defined
logged-in section under the subdomain secure.example.com, there’s no reason
to send a cookie for every *.example.com request. The more places you send
your cookie, the larger your attack surface. So let’s limit the cookie exposure
to its minimum. The following example looks at how you prevent anyone from
accessing the cookie:

app.use(express.session({
store: new RedisStore({

host: 'localhost',
port: 6379,
db: 2,
pass: 'funky password here',
ttl: (20 * 60)

}),
key: 'id',
secret: 'this is a nice secret',
resave: false,
saveUninitialized: true
cookie: {

domain: 'secure.example.com' // limit the cookie exposure
secure: true, // set the cookie only to be served with HTTPS
path: '/',
httpOnly: true, // Mitigate XSS
maxAge: null

}
}));

If possible, the path should also be set, but that means the user is always
under a determined path after login. That’s not a common scenario.

These configuration settings mitigate attacks against active sessions, but it
might be possible to access the exchanged sensitive information from the
browser’s cache even after the session has been closed. This is especially
relevant when considering public access points.

To improve the security of the application, the more sensitive parts of the
website should not be cached. And at the very least, the sessionID should

report erratum • discuss

Secure the Cookies so No One Can Steal Them • 105

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

never be cached. The Cache-control header should be set to at least Cache-Control:
no-cache="Set-Cookie, Set-Cookie2". You can do this using middleware:

// Set cache control header to eliminate cookies from cache
app.use(function (req, res, next) {

res.header('Cache-Control', 'no-cache="Set-Cookie, Set-Cookie2"');
next();

});

This will tell the browser not to save this information so it can’t be accessed
afterward.

Re-create the Session When the User Logs In
Many web applications create a session even when the user isn’t authenticated
to track the user for marketing or other related reasons. These applications
often make the mistake of escalating a non-authenticated session to an
authenticated session by setting flags on the Session object. This isn’t a secure
approach because it leaves open the possibility for session-fixation attacks.

In session-fixation attacks, the attackers set the target’s sessionID, and once
the session is authenticated, they use that knowledge to hijack the session.
This is why you should regenerate the sessionID every time session privileges
are escalated.

You can do that by extending the express Session object’s login function from
the previous examples:

session.Session.prototype.login = function login(cb) {
var req = this.req;
this.regenerate(function (err) {

if(err) {
cb(err);
return;

}
req.session._loggedInAt = Date.now();
cb();

});
};

Now we have an async login function on the Session object, so we have to
redefine the login path:

app.get('/login', function (req, res) {
req.session.login(function(err) {

res.send('ok - ' + req.session._loggedInAt);
});

});

Chapter 8. Focus on Session Management • 106

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

The sessionID is now regenerated upon login, which mitigates the session-
fixation attack vector. One more step toward secure sessions!

Bind the Session to Prevent Hijacking
You can also take extra measures to avoid session hijacking attacks by
binding the session to various user information such as the IP address or
user agent. Since the information typically doesn’t change mid-use, you can
use it as a way to check if the session or account has been hijacked. If the
information has changed, you know the session has a high probability of
being hijacked and can take appropriate steps, including destroying the ses-
sion, notifying the user, and logging for further analysis.

An experienced attacker can proxy the request through the same subnet to
appear as the same IP address as the victim or change the user-agent infor-
mation. Binding doesn’t offer absolute protection, but it does place another
hurdle for attackers to jump over.

Here, the previously defined login function is extended to bind the session
variables:

chp-8-session/express-redis-session.js
session.Session.prototype.login = function login(cb) {

var req = this.req;
this.regenerate(function (err) {

if(err) {
cb(err);
return;

}
req.session._loggedInAt = Date.now();
req.session._ip = req.ip;
req.session._ua = req.headers['user-agent'];
cb();

});
};

And here is the middleware to check the bindings. This middleware will check
both the IP address and user agent against stored information in the session,
and if the information deviates, then the whole session is thrown out:

chp-8-session/express-redis-session.js
// Check Session information
app.use(function (req, res, next) {

if(!req.session) { // If there is no session then something is wrong
next(new Error('Session object missing'));
return;

}

report erratum • discuss

Bind the Session to Prevent Hijacking • 107

http://media.pragprog.com/titles/kdnodesec/code/chp-8-session/express-redis-session.js
http://media.pragprog.com/titles/kdnodesec/code/chp-8-session/express-redis-session.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

if(req.session.isGuest()) { // If not logged in then continue
next();
return;

}

if(req.session._ip !== req.ip) { // Check ip match
// It would be wise to log more information here
// to either notify the user or
// to try and prevent further attacks
console.warn('The request IP did not match session IP');

// Generate a new unauthenticated session
req.session.regenerate(function () {

next();
});
return;

}

if(req.session._ua !== req.headers['user-agent']) { // Check UA validity
// It would be wise to log more information here
// to either notify the user or
// to try and prevent further attacks
console.warn('The request User Agent did not match session user agent');

// Generate a new unauthenticated session
req.session.regenerate(function () {

next();
});
return;

}
// Everything checks out so continue
next();

});

The examples only address session hijacking, but you can use bindings to
also protect accounts from being hijacked. Instead of checking the session,
you store a list of expected IP addresses and user-agent values in the database.
If the user ever logs in with an unknown device or from an unknown location,
you can either notify the user about a suspicious login or ask for additional
verification. Some applications handle this by sending an email with a confir-
mation link.

There are caveats to binding the session to an IP address: if the user is using
a mobile device and moving around, for example, then the IP address changes
frequently. That would make binding inconvenient for the user, so keep that
in mind.

Chapter 8. Focus on Session Management • 108

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Introducing the easy-session Module

I packaged most of the discussed session security functionality into a node module
called easy-sessiona in order to make session regeneration, IP/UA checks, and two-level
sessions easier to adopt.

Look at how easy it is to use it:

chp-8-session/express-redis-easy-session.js
var easySession = require('easy-session');
// Initialize easy session,
// with all the optional options
app.use(easySession.main(session, {

ipCheck: true,
uaCheck: true,
freshTimeout: 5 * 60 * 1000,
maxFreshTimeout: 10 * 60 * 1000

}));

This allows you to use simple functions to adopt the discussed protective methods:

chp-8-session/express-redis-easy-session.js
app.get('/', function(req, res){

if(!req.session.views) {
req.session.views = 0;

}
req.session.views++;

res.send('hello world. ' + req.session.views + ' times so far.');
});

app.get('/login', function (req, res) {
req.session.login(function(err) {

res.send('ok - ' + req.session._loggedInAt);
});

});

app.get('/logout', function (req, res) {
req.session.logout(function (err) { // Logout

res.redirect('/');
});

});

app.get('/secure', easySession.isLoggedIn(), function (req, res, next) {
res.send('secure');

});

app.get('/secure/more', easySession.isFresh(), function (req, res, next) {
res.send('You are fresh');

});

a. https://github.com/DeadAlready/node-easy-session

report erratum • discuss

Bind the Session to Prevent Hijacking • 109

http://media.pragprog.com/titles/kdnodesec/code/chp-8-session/express-redis-easy-session.js
http://media.pragprog.com/titles/kdnodesec/code/chp-8-session/express-redis-easy-session.js
https://github.com/DeadAlready/node-easy-session
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Wrapping Up
In this chapter we looked at the session, an integral part of the authentication
scheme. We started by setting up a session system and then added layers of
security. We looked at how to add a Time-to-Live, secure cookies, mitigate
session-fixation attacks, and add protections against hijacking.

We’ve covered our bases for authenticating a user and setting up a secure
session, so in the next chapter we’ll look at how to allow or deny user access
to resources based on the user’s access level.

Chapter 8. Focus on Session Management • 110

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 9

The opportunity to secure ourselves against defeat lies in our own
hands, but the opportunity of defeating the enemy is provided by
the enemy himself.

 ➤ Sun Tzu

Set Up Access Control
In the previous chapters we set up authentication and sessions. We now know
who is logged in and who is not. That’s not enough; you don’t want me to be
able to see your information just because I’m logged into the same application.
We need to be more specific, and for that we have to set up access control.

Access control defines and enforces the relationship between users and their
privileges so that only the right users can access certain things in the appli-
cation. In this chapter, we start with a refresher about the main access control
methodologies and how they differ. While access control methods are gener-
ally simple to use, people make two common mistakes: missing function-level
access control and insecure direct object reference. We’ll also address how to
avoid them in this chapter.

Access Control Methods
The access control system’s job is to figure out if a user should be allowed to
run some function or see some data. There are different ways of distributing
and then checking those rights; in this section we will discuss three of the
most widely used methods in computer systems: mandatory/discretionary
access control (MAC/DAC), identity-based access control (IBAC), and role-based
access control (RBAC).

MAC and DAC are both focused on the data objects instead of the users. Upon
authorization the user is assigned to a group, and the access decisions are
based on the settings of the data object in question. The DAC model allows
the owner of the data object to determine the access-level requirements at
the owner’s discretion—hence the name. This is a common model found in
UNIX systems where the access rights to files and folders are determined by
the owner. The MAC model is similar in the access decision making; however,
the access-level requirements are not at the discretion of the owner but are

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

instead mandatory based on the sensitivity of the data. The latter system is
mainly only used in systems with high security requirements because it’s
difficult to implement.

IBAC is an access control method that focuses on the identity of the user. It’s
usually implemented with an access control list (ACL)—a list of users that
specifies what operations each person has access to. It’s granular and simple,
making it a good approach for non-complex systems with a limited number
of users. Remember the KISS (Keep it simple, stupid) methodology.

Represented as a table, an ACL might look something like this:

User
Operation

Read Write Delete Publish

Karl

Jill —

Jack — —

John — — —

But an ACL table will be hard to maintain for a complex system with lots of
users. If you develop a new feature, you’ll have to go through the whole table
and decide on a per-user basis whether to assign the rights for that user.
This applies for every change you make to the system.

Imagine that this is just the beginning of a table with thousands of users and
tens of different privileges, and you’ll see how maintaining it can quickly
become a problem:

User
Operation

Read Write Delete Publish Create Revoke Upload Change

Karl

Jill —

Jack — — — — — — —

John — — — — —

William — — — — — — —

Thomas —

Florence — — — —

Alice — — — — — — —

Logan — — — — — — —

Alexis — — — — —

Olivier —

Leah — — — — — — —

Emma — — — — — — —

Félix — — — —

Liam — — — — — — —

Olivia

Nathan — — — — —

Jacob — — — — — — —

Zoé — — — — — — —

Rosalie — — — — —

—

Chapter 9. Set Up Access Control • 112

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

RBAC is an access control method that was designed to alleviate the problem
of managing large ACL tables. It does this by consolidating rights into logical
groups—roles. Now, instead of defining for each individual all the different
access rights, you simply specify which role they belong to and the access
rights are determined by the role. It’s meant to mimic real-world access rights
management.

This means our previous example would become two separate tables. One to
determine the access rights of the roles:

Role
Operation

Read Write Delete Publish Create Revoke Upload Change

Admin

Manager —

Publisher — — — —

Writer — — — — —

Reader — — — — — — —

And one to determine the roles of individuals.

User Role

Karl Admin

Jill Manager

Jack Reader
John Writer

William Reader

User Role

Thomas Manager
Florence Publisher

Alice Reader

Logan Reader
Alexis Writer

User Role

Olivier Admin

Leah Reader
Emma Reader

Félix Publisher

Liam Reader

User Role

Olivia Manager

Nathan Writer
Jacob Reader
Zoé Reader

Rosalie Writer

We lose a little granularity, but it’s already much simpler to manage, as you
can see. Instead of having to manage all the individuals in case of new func-
tionality, you just manage the associated roles. RBAC in web applications is
also often implemented with inheritance logic to further simplify the assign-
ment of rights. Let’s look at an example.

Some system has the roles reader, writer, editor, and admin. The reader can
read the posts, so that would be anyone coming to the application. The writer
can read and write new posts, so this would be a few select people. The editor
can modify the posts and then publish them. And the administrator can do
everything. We can see all the roles in the following Venn diagram:

Editor:
can PUBLISH

Writer:
can WRITE

Administrator:
can DELETE

Reader:
can READ

report erratum • discuss

Access Control Methods • 113

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

In this system we can see that each role inherits all the rights of the parent
role and then adds some of its own. If you want to create a second type of
internal post that everyone who isn’t a reader can read and only administrators
can write, then you just have to modify the rights associated with the appro-
priate roles (in this case writer and administrator):

Editor:
can PUBLISH

Writer:
can WRITE
can READ INTERNAL

Administrator:
can DELETE
can WRITE INTERNAL

Reader:
can READ

There are dozens of modules written for both ACL and RBAC in Node.js to
help you implement proper access control for your application, such as acl1

or easy-rbac.2 The principles aren’t complicated, and implementation is fairly
straightforward. You just assign the rights to users and check if users have
the correct privileges when needed. Yet people frequently make mistakes with
access control. Let’s review some common implementation issues. What’s
more common than forgetting to lock your door?

Missing Function-Level Access Controls in Your Code
The most common mistake people make when implementing access control
is misplacing or poorly implementing validation in the code. That means you
don’t have access control right before the action that requires it. In this situ-
ation, attackers can circumvent access control by figuring out how the
application handles the access checks.

For example, path validation mismanagement occurs when private function-
ality is hidden from unauthorized users on the client side, but no correspond-
ing check is performed on the server side. An attacker who knows the appli-
cation well enough would be able to access restricted functionality.

This example consists of a web application that builds a menu based on the
user’s authentication status. Logged-out users see three links, whereas users
with permission see four:

1. https://www.npmjs.com/package/acl
2. https://www.npmjs.com/package/easy-rbac

Chapter 9. Set Up Access Control • 114

report erratum • discuss

https://www.npmjs.com/package/acl
https://www.npmjs.com/package/easy-rbac
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

chp-9-access-control/client-side.js
// Function to build menu
function getNav(req, cb) {

var html = '<nav>' +
'Page 1 ' +
'Page 2 ' +
'Page 3 ';

req.session.can('read users', function (err, can){
if(!err && can) {

html += 'Users';
}
cb(null, html);

});
}

// Show a welcome message
app.get('/', function (req, res, next) {

getNav(req, function (err, html) {
res.send(html + '
<div>Welcome home</div>');

});
});

Let’s look at the functionality of the links:

chp-9-access-control/client-side.js
// Regular pages, show what page we are on
app.get('/page/:nr', function (req, res, next){

getNav(req, function (err, html) {
res.send(html + '<div>Page ' + req.params.nr +'</div>');

});
});

// Our admin function to show users
app.get('/users', function (req, res, next) {

getNav(req, function (err, html) {
res.send(html + '<pre>' + JSON.stringify(db.users, '', 2) +'</pre>');

});
});

/page paths show different pages, but for admin accounts there’s also the /users
path, which shows all the accounts of this website in JSON format. Do you
see what’s wrong with this picture?

The problem is that the only authentication is in the construction of client-
side HTML. But if the attacker knows (has seen, mapped, or otherwise gathered
information) that there’s also the path /users meant for administrators, then
the attacker can visit the path and see that part of the application. No
authentication is required—only knowledge that it exists.

report erratum • discuss

Missing Function-Level Access Controls in Your Code • 115

http://media.pragprog.com/titles/kdnodesec/code/chp-9-access-control/client-side.js
http://media.pragprog.com/titles/kdnodesec/code/chp-9-access-control/client-side.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

As you know by now, this isn’t a secure scenario. So let’s fix this by adding
an access check to the function:

// Our admin function to show users
app.get('/users', function (req, res, next) {

// Check access
req.session.can('read users', function (err, can) {

if(err || !can) {
res.sendStatus(403); // Send forbidden
return;

}
getNav(req, function (err, html) {

res.send(html +
'<pre>' + JSON.stringify(db.users, '', 2) +'</pre>');

});
});

});

Now the path /users will return as unauthorized. The authorization check is
done immediately before the execution, eliminating this attack vector.
Depending on the nature of the application and the function, you can also
add a bit of obfuscation to the mix:

// Our admin function to show users
app.get('/users', function (req, res, next) {

// Check access
req.session.can('read users', function (err, hasAccess) {

if(err || !can) {
console.warn('Unauthorized access attempt', req.path, err);
next(); // Move along
return;

}
getNav(req, function (err, html) {

res.send(html +
'<pre>' + JSON.stringify(db.users, '', 2) +'</pre>');

});
});

});

By simply moving on to the next() function, you refuse to even acknowledge
the existence of this function—this prevents attackers from learning (or con-
firming) that there’s a privileged function at this path. At the same time, it
can make development a hassle. Logging is added precisely for that rea-
son—without it you get no feedback whatsoever as a developer. For a more
thorough overview of why logging is important, you can review Decide What
Gets Logged, on page 29.

Chapter 9. Set Up Access Control • 116

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Pay Attention to Client-Side Forms
Paths aren’t the only client-side problems you have to worry about. It’s com-
mon for applications to validate forms on the client side, but that should
never be the only data validation layer. Client-side validation does not substitute
for server-side validation.

Security checks on the client side can be easily circumvented, such as by
using a custom browser or proxy. Consider what happens if you have an
application with a registration form and you’re a logged-in user (or adminis-
trator) who can add other administrator users. Unauthorized users don’t see
this option on the form, but you do. The constructor would look something
like the menu constructor you saw previously:

chp-9-access-control/client-side-form.js
// Show registration form
app.get('/register', function (req, res, next) {

var form = '<form method="POST">' +
'<input type="text" name="username" placeholder="username" />' +
'<input type="text" name="name" placeholder="name" />' +
'<input type="text" name="company" placeholder="company" />';

// If has rights then show admin checkbox
req.session.can('add admins', function (err, has) {

if(!err && has) {
form += '<label for="isAdmin">Is Admin? ' +
'<input id="isAdmin" type="checkbox" name="isAdmin" value="1" />' +
'</label>';

}
form += '<input type="submit" value="Submit" />' +
'</form>';

res.send(form);
});

});

To complete the circle of bad access control, let’s add a form handler:

chp-9-access-control/client-side-form.js
// Post request handler
app.post('/register', function (req, res, next){

// Check username
if(db.users[req.body.username]) {

res.sendStatus(409);
return;

}

var newUser = {

report erratum • discuss

Missing Function-Level Access Controls in Your Code • 117

http://media.pragprog.com/titles/kdnodesec/code/chp-9-access-control/client-side-form.js
http://media.pragprog.com/titles/kdnodesec/code/chp-9-access-control/client-side-form.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

name: req.body.name,
company: req.body.company,
isAdmin: req.body.isAdmin || 0 // if no isAdmin is sent then set to 0

};
db.users[req.body.username] = newUser;

console.log(db.users); // show us the users
res.redirect('/');

});

We should now see some users listed in db.users after completing the registra-
tion form a few times:

{
'admin': { name: 'Admin', company: 'This', isAdmin: 1 },
'karl': { name: 'karl', company: 'Karl', isAdmin: 0 }

}

But since no check is performed on the data that was posted, an unauthorized
user could also send the isAdmin field using a cURL request to modify the data
in db.users:

curl 'http://localhost:3000/register' \
-H 'Content-Type: application/x-www-form-urlencoded' \
--data 'username=attack&name=attack&company=attack&isAdmin=1'

New users can be added to db.users, which is now a problem:

{
'admin': { name: 'Admin', company: 'This', isAdmin: 1 },
'attack': { name: 'attack', company: 'attack', isAdmin: 1 }

}

I think you see where we’re going with this. If you perform access checking
right before the action, you prevent the unauthorized registrations:

// Post request handler
app.post('/register', function (req, res, next){

// Check username
if(db.users[req.body.username]) {

res.sendStatus(409);
return;

}

var newUser = {
name: req.body.name,
company: req.body.company,
isAdmin: 0 // Default to false

};

Chapter 9. Set Up Access Control • 118

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// check if we are authorized to set the flag and set if allowed
req.session.can('add admins', function (err, can) {

if(!err && can) {
newUser.isAdmin = req.body.isAdmin || 0;

}

db.users[req.body.username] = newUser;

console.log(db.users); // show us the users
res.redirect('/');

});
});

Performing the access check right before the actual operation is the key to
keeping the application secure.

Don’t Forget About Server-Side Validation
The most common server-side mistakes involve misconfigured access valida-
tion. It usually occurs when authentication is expected but it doesn’t happen
or is forgotten. Let’s modify the last section’s registration form by adding a
whole separate path. The form will be the same for both /register and /add-admin,
but the handling is different. First we set up the routes:

chp-9-access-control/server-side.js
// Show registration form
app.get('/register', function (req, res, next) {

res.send(getForm());
});

// Post request handler for regular users
app.post('/register', function (req, res, next){

addUser(req.body, false); // Add a regular user
res.redirect('/');

});

// Authentication middleware
app.get('*', easySession.can('add admin'));

// Show the admin user adding form
app.get('/add-admin', function (req, res, next) {

res.send(getForm('/add-admin'));
});

// Post request handler for adding admin users
app.post('/add-admin', function (req, res, next) {

addUser(req.body, true); // Add admin user
res.redirect('/');

});

report erratum • discuss

Missing Function-Level Access Controls in Your Code • 119

http://media.pragprog.com/titles/kdnodesec/code/chp-9-access-control/server-side.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

When you visit the site you see only the /register link, which allows you to add
a regular user. Even if you use the previous example’s cURL request, only a
regular user is added. Additionally, even if the attacker knows that there is
an /add-admin path, visiting it will show an Unauthorized error message.

Even though everything seems secure, it really isn’t.

Because we have misconfigured the authentication middleware, it doesn’t
apply to POST requests, only GET. An attacker only has to change the action of
the form, the POST path. This would let non-logged-in users add adminstrator
users:

curl 'http://localhost:3000/add-admin' \
-H 'Content-Type: application/x-www-form-urlencoded' \
--data 'username=attack&name=attack&company=attack&isAdmin=1'

First, let’s fix the middleware registration to work for all requests, not just
GET:

// Authentication middleware
app.all('*', easySession.can('add admin')); // all instead of get

You can also decide to use the middleware specifically before each route. The
benefit of this approach is that you always see if authentication is there or
not. The downside is that you’d have to write it every time:

// Show the admin user adding form
app.get('/add-admin', easySession.can('add admin'), function (req, res, next) {

res.send(getForm('/add-admin'));
});

// Post request handler for adding admin users
app.post('/add-admin', easySession.can('add admin'), function (req, res, next) {

addUser(req.body, true); // Add admin user
res.redirect('/');

});

Always remember to do access validation, and always test the expected
behavior to avoid mistakes associated with improperly placed validation. Don’t
forget to perform server-side validation no matter how much validation exists
on the client side. And the best place to perform authentication and validation
is directly before the executable function or at the beginning of the function
itself. This way, attackers can’t circumvent the authentication via some
loophole.

Chapter 9. Set Up Access Control • 120

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Don’t Use Insecure Direct Object References
Applications often use names, identifiers, or keys of objects when generating
web pages. Sometimes they forget to validate the user’s access to a specific
object. This becomes a problem after validation when an authenticated user
can still access objects that aren’t supposed to be accessible. And they can
do it by knowing or guessing the keys of other objects.

This is similar to the missing path validation issues we discussed earlier,
except this applies to dynamically generated pages. Let’s look at an in-mem-
ory database, db, which stores the user data. Users can log in and see the
data via the settings page on /settings/:id:

chp-9-access-control/idor.js
// Middleware to validate that users are authenticated
app.all('*', function (req, res, next) {

if(req.session.isGuest()) {
res.send(401);
return;

}
next();

});

app.get('/settings/:id', easySession.isLoggedIn(), function (req, res) {
res.json(db[req.params.id]);

});

For example, Johann will see the following when visiting /settings/1:

{
"username": "johann",
"password": "pw",
"name": "Johann",
"company": "Mixo",
"role": "user",
"age": 32

}

In this application the right to access this information is not authenticated,
so after logging in, Johann could change the URL to /settings/2 (not too hard
to guess) and see information about other users.

This is a common mistake—not validating if the user has access rights to a
directly referenced object. This is a problem especially if the references are
logically guessable or known.

So how do we fix this? There are two main mitigation techniques that you
can use to solve an insecure direct object reference issue.

report erratum • discuss

Don’t Use Insecure Direct Object References • 121

http://media.pragprog.com/titles/kdnodesec/code/chp-9-access-control/idor.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

First, do not use direct references unless they are necessary. For example, the
previous application should not use the userId from the request parameter
but instead use the session userId. This removes the user’s control over
parameters.

app.get('/settings', function (req, res) {
// Use session variable instead of a GET variable
res.json(db[req.session.userId]);

});

This approach solves the problem by removing the underlying issue, but it’s
not always feasible. Sometimes, you just can’t avoid direct references. For
example, in the previous application, you might want to provide the adminis-
trator access to all accounts.

So let’s take a different approach. Keep in mind the second rule: validate
access rights to an object when the object is accessed. You need to validate
the user and that person’s right to access the current object at the point of
access. We can fix the example by rewriting the route handler:

chp-9-access-control/idor-mitigation.js
app.get('/settings/:id*?', easySession.isLoggedIn(), function (req, res) {

// If there is no GET parameter
if(!req.params.id) {

// Use session variable instead of a GET variable
res.json(db[req.session.userId]);
return;

}
// If we are accessing our own info or we are admin
if(req.session.userId === +req.params.id ||

db[req.session.userId].username === 'admin'){

res.json(db[req.params.id]);
return;

}
res.sendStatus(403); // forbidden

});

This route handler will by default serve the session user information. But you
can still send a GET parameter with the requested userID if you need to. Either
way, before you display the information, the application validates to make
sure the user is allowed to see this information.

After logging in with Johann’s account, you can request the user information
from /settings or /settings/1; however, /settings/3 will return Forbidden. But if you log
in with admin, then you can request any /settings/:id that exists and get the
appropriate response.

Chapter 9. Set Up Access Control • 122

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-9-access-control/idor-mitigation.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

This is part of deep authentication methodology, where authentication is
woven into an application on every level and not just applied as a layer on
top. It’s also a definite requirement for good security and emphasizes how
important it is to validate at the point of access.

However, the previous example also features one of the common anti-patterns
of access control implementation—hardcoded role checks. Checking for various
combinations of access modifiers using inline if statements is not scalable
and is error prone should there be a need for change. So instead of the follow-
ing code:

if(req.session.userId === +req.params.id ||
db[req.session.userId].username === 'admin'){

res.json(db[req.params.id]);
return;

}

You should use something more generic such as:

var params = {
userId: req.session.userId,
id: +req.params.id

};
// Check access
req.session.can('access user', params, function (err, has) {

if(err || !has) {
res.sendStatus(403);
return;

}
res.json(db[req.params.id]);

});

This way, if the access control has to be changed, it can be changed in the
definition of the operation or the roles instead of having to go over all possible
implementation points.

Wrapping Up
Having users sign in to get access to advanced functionality isn’t always
enough. Access control lets you differentiate between users and enforce what
they can access. In this chapter, we discussed the similarities and differences
of various access control methods.

Then we moved on to discuss how access validation should always be done
as close to the actual operation as possible. We also established that you
should avoid direct object references to privileged objects where possible. And

report erratum • discuss

Wrapping Up • 123

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

finally, we covered that you shouldn’t just validate a user’s access level but
also validate access to specific objects.

We’ve set up our full application stack, but we’re missing one vital compo-
nent—functionality. In the next chapters we’ll discuss how you can write
functionality without making yourself an easy target for attackers—starting
with denial of service in the next chapter.

Chapter 9. Set Up Access Control • 124

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 10

It does not matter how slowly you go
as long as you do not stop.

 ➤ Confucius

Defend Against Denial-of-Service Attacks
In the previous chapter, we set up proper authentication and access control
mechanisms for our web application. Now it’s time to add features and flesh
out our application, but we want to do it securely. We don’t want to be the
proverbial baby holding candy for the attackers.

In this chapter we examine one of the more common and simple attack
methods that exists in the wild today: denial-of-service attacks. Let’s go over
what exactly constitutes a DoS attack, and then you’ll learn how to identify
and avoid anti-patterns such as asymmetry, synchronous code, and poor
memory management. By the end of this chapter you should be able to avoid
mistakes that would allow an easy or even accidental DoS attack against your
Node.js application.

No Cluster in this Chapter

In the following sections we ignore the fact that you can run a
Node.js process as a cluster, as this only alleviates the problem
by a constant factor (the number of processes). Since it isn’t all
that helpful, we’ll keep it simple and stick with a single thread.

Recognize Denial-of-Service Attacks
A denial-of-service (DoS) or distributed denial-of-service (DDoS) attack is an
attempt to make a machine or network resource unavailable. The means to
carry out, motives for, and targets of a DoS attack vary widely. In general,
attacks consist of efforts to temporarily or indefinitely interrupt or suspend
services. As the name implies, DDoS attacks are sent by more than one person
or bot, while DoS attacks are typically the work of one person or system.

There may be many reasons for attackers to want your application to be
unusable—perhaps they’re competitors or just bored kids—but the bottom

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

line is a DoS attack is bad for your business. It increases the running costs
and messes with the availability of your service. It’s clearly something you
want to avoid.

The following is a screenshot of the current reported network state from an
interactive DDoS monitoring site—the Digital Attack Map1 from Arbor Net-
works. That’s a lot of attacks on a given day.

Attack methods vary, ranging from flooding the server’s Internet connection
to a point where it’s no longer usable by legitimate users, to more complex
methods targeting the application’s configuration or routing. Other methods
take advantage of limited resources, such as the number of concurrent con-
nections allowed by Apache. Some attacks can even go after the physical
network components.

Fortunately, Node.js is resilient to flooding attacks since there’s no limit on
the number of concurrent requests and the process is events based. Slowloris
attacks, which exploit the limited number of concurrent requests, simply
don’t apply to Node.js applications. A flaw made earlier versions of Node.js
vulnerable, but if you’re using version 0.10.21 or newer, you won’t be affected.

Obviously, the first line of defense is the server’s firewall. While the firewall
needs to be configured properly, doing so is not in the context of this book.
Instead, we move on to look at synchronous code. Node.js programs and
libraries try hard to avoid this problem, but it keeps crawling back in.

1. http://www.digitalattackmap.com/

Chapter 10. Defend Against Denial-of-Service Attacks • 126

report erratum • discuss

http://www.digitalattackmap.com/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Avoid Synchronous Code in Your Application
As you know, Node.js is built around events. The whole process is a big event
machine juggling different flows. Since our main process is single threaded,
any function that takes a while to execute should be done in an evented
manner to avoid locking up the entire application.

If you’re used to working in other programming languages, this is a tricky
concept to get accustomed with. Let’s look at an example, where we implement
a recursive Fibonacci calculation and a server to allow access to it:

chp-10-dos/fibonacci.js
'use strict';

var express = require('express');
var app = express();

// Calculating fibonacci number recursively
function fibonacci(n) {

if(n < 3) {
return 1;

}
return fibonacci(n - 1) + fibonacci(n - 2);

}

app.get('/:n*?', function (req, res) {
if(!req.params.n) {

res.send('Hello');
return;

}
var fib = fibonacci(+req.params.n);
res.send('Fibonacci nr ' + req.params.n + ' is ' + fib);

});

app.listen(3000);

Now the client can ask for a Fibonacci calculation by going to a path like /7
and get a result of Fibonacci nr 7 is 13.

Let’s ignore that this is an inefficient way to calculate Fibonacci and focus
on the fact that it’s synchronous. If a user enters a large number, the whole
process gets locked up in that one calculation, and no one else gets a response
before this one finishes. To put things in context, it takes this method sixteen
seconds to calculate the forty-sixth number on my machine. During those
sixteen seconds, all other requests are simply hanging.

Yes, this is an artificial problem, but it illustrates why you should move
intensive calculations or long operations into a separate process or split them

report erratum • discuss

Avoid Synchronous Code in Your Application • 127

http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/fibonacci.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

into chunks that can run in an evented manner. We can fix our Fibonacci
example by moving the calculation into a separate calculation file:

chp-10-dos/fibonacci-calc.js
// Calculating fibonacci number recursively
function fibonacci(n) {

if(n < 3) {
return 1;

}
return fibonacci(n - 1) + fibonacci(n - 2);

}

console.log(fibonacci(process.argv[2]));

We can then rewrite the application to invoke the process in the new file. It’s
not the most optimal way, but it clearly demonstrates how you can move long
calculations into separate processes:

chp-10-dos/fibonacci-separate.js
'use strict';

var express = require('express');
var app = express();

var exec = require('child_process').exec;

app.get('/:n*?', function (req, res) {
if(!req.params.n) {

res.send('Hello');
return;

}

// Execute the separate calculation file
var cmd = 'node ' + __dirname + '/fibonacci-calc.js ' + parseInt(req.params.n);
exec(cmd, function (err, stdout, stderr) {

//FIXME: We should use execFile here
//FIXME: We should handle possible errors here

res.send('Fibonacci nr ' + req.params.n + ' is ' + parseInt(stdout));
});

});

app.listen(3000);

Another solution is to use callbacks or EventEmitters to create events. Let’s see
how you can do Fibonacci using callbacks:

Chapter 10. Defend Against Denial-of-Service Attacks • 128

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/fibonacci-calc.js
http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/fibonacci-separate.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Use the Right Tool for the Job

When creating separate process files or doing heavy calculations, it’s not wise to
always stick to Node.js. Starting a Node.js process takes a lot of resources and isn’t
always the most efficient way to solve problems. Instead, try to use optimal libraries
suited for the task. In the end it’s about choosing the right tool for the job.

chp-10-dos/fibonacci-callback-sync.js
'use strict';

var express = require('express');
var app = express();

// Non blocking fibonacci recursive
function fibonacci(n, cb) {

if(n < 3) {
// return the number in the callback
cb(1);
return;

}

var sum = 0;
function end(subN) {

if(sum !== 0) {
cb(sum + subN);

} else {
sum += subN;

}
}
// Start calculation of previous two numbers
fibonacci(n - 1, end);
fibonacci(n - 2, end);

}

app.get('/:n*?', function (req, res) {
if(!req.params.n) {

res.send('Hello');
return;

}

// Execute the separate calculation file
fibonacci(+req.params.n, function (result) {

res.send('Fibonacci nr ' + req.params.n + ' is ' + result);
})

});

app.listen(3000);

report erratum • discuss

Avoid Synchronous Code in Your Application • 129

http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/fibonacci-callback-sync.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Don’t start celebrating the callbacks just yet. This calculation is still not
asynchronous. Just because you’re using a callback, it doesn’t automatically
make a function asynchronous. This is a common misassumption and fre-
quently shows up in situations like the following example:

function someFn(input, callback) {
if(input.hasError) {

callback(new Error('Invalid input'));
return;

}
// Do our stuff

}

While someFn() might be asynchronous most of the time, if you have an error
in the input, the callback gets called synchronously. This can result in some
strange behaviors for the application:

function useSomeFn(req, res) {
// Start information query as soon as possible
someFn({hasError:true}, function (err, data) {

if(err) {
res.send(500);
return;

}
res.json(data);

});
// Set some cookies in the meantime
res.cookie('my', 'cookie');

}

Let’s assume someFn() is asynchronous and set some cookies. When the result
comes back from the server, you can respond to the client. This is a good
idea, but if the input has an error, then the callback is executed before the
cookie setting, resulting in a headers already sent error. This is a hard thing to
debug if you don’t know what you’re looking for.

In these situations, you can use setImmediate(). We can fix someFn() to work
properly so that even the error message is sent asynchronously:

function someFn(input, callback) {
if(input.hasError) {

setImmediate(callback, new Error('Invalid input'));
return;

}
// Do our stuff

}

Now let’s use setImmediate() to also fix our Fibonacci function:

Chapter 10. Defend Against Denial-of-Service Attacks • 130

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

chp-10-dos/fibonacci-callback.js
'use strict';

var express = require('express');
var app = express();

// Non blocking fibonacci recursive
// NOTE: it is slow
function fibonacci(n, cb) {

if(n < 3) {
// return the number in the callback
// as resources allow
setImmediate(cb, 1);
return;

}

var sum = 0;
function end(subN) {

if(sum !== 0) {
setImmediate(cb, sum + subN);

} else {
sum += subN;

}
}
// Start calculation of previous two numbers
setImmediate(fibonacci, n - 1, end);
setImmediate(fibonacci, n - 2, end);

}

app.get('/:n*?', function (req, res) {
if(!req.params.n) {

res.send('Hello');
return;

}

// Execute the separate calculation file
fibonacci(+req.params.n, function (result) {

res.send('Fibonacci nr ' + req.params.n + ' is ' + result);
})

});

app.listen(3000);

The Fibonacci function is now asynchronous. However, creating functions on
every iteration of a recursive function means we’ll soon run out of memory.

While this Fibonacci calculation is somewhat artificial, these types of problems
are fairly common. They occur when developers use synchronous file system
functions such as fs.readFileSync(). These synchronous functions should be used

report erratum • discuss

Avoid Synchronous Code in Your Application • 131

http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/fibonacci-callback.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

rarely in web server code and are considered safe only during application
startup. Synchronous code in Node.js is generally a bad thing and should be
avoided while processing requests. This isn’t a hard and fast rule—if you’re
writing a command-line utils library, synchronous code is not a bad thing.
But then again, no one is going to try to DDoS your utils library, either.

Finding performance issues isn’t always intuitive, especially if the application
codebase is large. There are several tools you should consider using, such as
Chrome DevTools plus Node Inspector,2 Spy.js,3 and Node WebKit Agent.4

You should now know why and how to avoid synchronous code in your
application, but this isn’t the only possible problem. As we saw with the last
asynchronous version of the Fibonacci, memory can also be a problem, so
we’ll discuss memory management next.

Manage How Your Application Uses Memory
Since the process thread is shared among all the clients, memory is also
shared. You should avoid storing much information in memory per request
because it can accumulate over concurrent clients and your process can die
simply because it runs out of memory. In threaded servers, a thread usually
has a separate memory limit that’s reached long before the whole server pro-
cess runs out of memory, so only the thread gets terminated instead of the
whole process. However, Node.js, being in a single thread, will kill the whole
process. Let’s look at a common mistake where memory is overtaxed:

chp-10-dos/memory/memory-error.js
'use strict';

var express = require('express');
var app = express();

var fs = require('fs');

app.get('/getfile', function (req, res) {
fs.readFile(__dirname + '/dictionary.txt', 'utf8', function (err, content) {

res.send(err ? 500 : content); // send an error or content of file
});

});

app.listen(3000);

2. https://github.com/node-inspector/node-inspector
3. http://spy-js.com
4. https://github.com/c4milo/node-webkit-agent

Chapter 10. Defend Against Denial-of-Service Attacks • 132

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/memory/memory-error.js
https://github.com/node-inspector/node-inspector
http://spy-js.com
https://github.com/c4milo/node-webkit-agent
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

It looks perfectly fine, doesn’t it? When the client requests a file, the application
reads it from the file system (asynchronously, as it should) and then sends
it to the client. The problem is that the whole file is read into memory before
it’s sent to the client. In our example, the file is small, so it doesn’t really
matter. But if the file was larger—a few hundred MB, for example—then it
could create a memory issue.

How do you fix this? Streams.

A basic building block in Node.js and a type of EventEmitter, streams are widely
used. Streams allow us to transmit the file to the client application bit by bit
as it becomes available so that we don’t hog memory no matter how big the
file. Let’s look at how to fix the previous example with streams:

chp-10-dos/memory/memory-stream.js
'use strict';

var express = require('express');
var app = express();

var fs = require('fs');

app.get('/getfile', function (req, res) {
fs.createReadStream(__dirname + '/dictionary.txt', 'utf8').pipe(res);

});

app.listen(3000);

Or in this case we could use express framework’s res.sendFile for more consistent
file handling:

chp-10-dos/memory/memory-sendfile.js
app.get('/getfile', function (req, res) {

res.sendFile(__dirname + '/dictionary.txt', 'utf8');
});

While there are cases when you need the whole file before you can perform
some kind of operation, in most situations you can work with the file a little
at a time, for example, when sending the hash of the file:

chp-10-dos/memory/memory-hash.js
'use strict';

var express = require('express');
var app = express();

var fs = require('fs');
var crypto = require('crypto');

report erratum • discuss

Manage How Your Application Uses Memory • 133

http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/memory/memory-stream.js
http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/memory/memory-sendfile.js
http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/memory/memory-hash.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

app.get('/getfile', function (req, res) {
var stream = fs.createReadStream(__dirname + '/dictionary.txt', 'utf8');
var hash = crypto.createHash('md5');

//FIXME: Add error handling
stream.on('data', function (data) {

hash.update(data);
});

stream.on('end', function () {
res.send(hash.digest('hex'));

});
});

app.listen(3000);

With Node.js, you can keep the memory footprint small when making requests.
Do things bit by bit, and don’t load huge amounts of data into memory. Sounds
like common sense, doesn’t it?

It helps to also be a minimalist when it comes to session data. Don’t store
loads of information into the Session object, especially for guest or unauthenticated
users. If you’re using MemoryStore or using a database like Redis, you can run
out of memory. It will take some effort to clog a Redis session store, but if you
have a cluster of machines against single-session storage, it’s possible.

Try Out a Real-World Example: connect bodyParser
Let me share an example I found in the connect framework. It was disclosed
to the development team and has long since been fixed (as of connect 2.0), so
it’s not something you have to worry about. But it’s still a good example of
how memory management should be taken into account.

This is an excerpt of branch 1.x bodyParser middleware in connect:

exports.parse['application/x-www-form-urlencoded'] = function(req, options, fn){
var buf = '';
req.setEncoding('utf8');
req.on('data', function(chunk){ buf += chunk });
req.on('end', function(){

try {
req.body = buf.length ? qs.parse(buf) : {};
fn();

}
catch (err) {

fn(err);
}

});
};

Chapter 10. Defend Against Denial-of-Service Attacks • 134

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

As you can see, it handles an incoming data request and parses it to the
req.body variable. Can you spot the problem?

It’s this line: req.on('data', function(chunk){ buf += chunk });.

All the data is collected into an in-memory object before parsing. You have
to do that anyway if you plan to present the data to the user, but the problem
is that there’s no limit to the size of the data. And since this middleware is
usually pretty high up in the stack, it doesn’t matter who sent the data or
which parameters were used if the POST request has the right headers.

The newer versions use the raw-body module for parsing out the body. It checks
both the content-length header and the parsed body length on each data event
if you give it a limit, and connect by default sets it at 1mb. The whole code is
too long to include here—you can find it in GitHub source5—but I’ll highlight
the data handler portion:

function onData(chunk) {
received += chunk.length
decoder

? buffer += decoder.write(chunk)
: buffer.push(chunk)

if (limit !== null && received > limit) { // <-- This is what interests us
if (typeof stream.pause === 'function')

stream.pause()
var err = makeError('request entity too large', 'entity.too.large')
err.status = err.statusCode = 413
err.received = received
err.limit = limit
done(err)
cleanup()

}
}

As you can see, request handling can have its quirks as well. The size of
mistakes you can make in your application regarding resource management
depends on your hardware. You’re likely not to notice anything until your
service goes down.

But the general guideline is to keep the footprint as small and light as possible
and always limit the user’s input, such as the type of input that can be sent,
its size, and specific characters. The less variation you allow in the input, the
more likely that it will behave as expected in your program flow.

5. https://github.com/stream-utils/raw-body/blob/master/index.js

report erratum • discuss

Manage How Your Application Uses Memory • 135

https://github.com/stream-utils/raw-body/blob/master/index.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

body-parser

The bodyParser middleware in Connect was removed as of Connect
3.0. It’s split into three separate parsers—urlencoded, json, and multipart
—which handle different post data headers accordingly. You should
always opt to use the minimum set of these three, to minimize the
attack surface.

So instead of using app.use(express.bodyParser()), you can use
app.use(bodyParser.urlencoded()), which most likely covers your applica-
tion’s needs. If you do have file uploads, add multipart, and if you’re
dealing with JSON posts (most likely when you’re developing an
API), add json.

Avoid Asymmetry in Your Code
Applications are often asymmetric when it comes to client requests. Handling
the request is much more resource heavy than making the request. Our
Fibonacci example was a good illustration of how it took a long calculation
to answer a simple request. Points like these are popular targets for DoS
attacks, because by targeting these, attackers can successfully take down a
service with limited resources.

You don’t want to be an easy target, so you should protect functions that are
asymmetrical by limiting access to those functions. One way is to restrict
access to the functions to only authenticated users. This way, you can block
users who abuse the functions. Another way is to provide a queue system for
guest users, where a request is put in the queue and executed only when
sufficient resources are available. There are many ways to set up a queue,
and I’ll demonstrate one way using vasync6 for our Fibonacci example. First,
we set up the function and queue:

chp-10-dos/fibonacci-separate-queue.js
// Keep track of jobs and results
var currentRunning = null;
var runningJobs = [];
var unreadResults = {};

// Our calculation function
function fibonacci(obj, cb) {

// Remove job from queue list
runningJobs.splice(runningJobs.indexOf(obj.id), 1);
currentRunning = obj.id;

6. https://github.com/davepacheco/node-vasync

Chapter 10. Defend Against Denial-of-Service Attacks • 136

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/fibonacci-separate-queue.js
https://github.com/davepacheco/node-vasync
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// Execute the separate calculation file
exec('node ' + __dirname + '/fibonacci-calc.js ' + obj.nr,

function (err, stdout, stderr) {
//FIXME: We should use execFile
//FIXME: We should handle possible errors here

// Insert result to map and continue
unreadResults[obj.id] = parseInt(stdout);
currentRunning = false;
cb();

});
}

// Create our queue with concurrency 1
var queue = vasync.queuev({

concurrency: 1,
worker: fibonacci

});

The route handler checks if our job is running or if we have a result:

chp-10-dos/fibonacci-separate-queue.js
app.get('/:n*?', function (req, res) {

var jobId = req.session.jobId;
if(jobId) { // Do we have a running job?

var result = unreadResults[jobId];
if(result) { // Do we have a result? If so:

var jobNr = req.session.jobNr;
delete unreadResults[jobId]; // Free memory

req.session.jobId = null;
req.session.jobNr = null;

// Show result to customer
res.send('Result for ' + jobNr + ' is ' + result);

} else if(currentRunning === jobId) {
res.send('Your job is running');

} else {
var jobInQueue = (runningJobs.indexOf(jobId) + 1);
res.send('Your job is ' + jobInQueue + ' in the queue');

}
return;

}

if(!req.params.n) {
res.send('Insert number parameter to path');
return;

}

report erratum • discuss

Avoid Asymmetry in Your Code • 137

http://media.pragprog.com/titles/kdnodesec/code/chp-10-dos/fibonacci-separate-queue.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// Create id for the job and input for our function
var input = {

id: Math.random().toString(36).substr(2),
nr: parseInt(req.params.n)

};

queue.push(input); // Push job to queue
runningJobs.push(input.id);

req.session.jobId = input.id; // Keep tracking info in session
req.session.jobNr = input.nr;

if(queue.length() === 0) {
res.send('Your job is running');

} else {
var jobInQueue = (runningJobs.indexOf(jobId) + 1);
res.send('Your job is ' + jobInQueue + ' in the queue');

}

});

You can see from this example how you can limit the resource usage and
make sure no one can use the calculation as a DoS attack point. Of course,
attackers can fill up the queue with a ton of jobs and essentially prevent
legitimate users from using the function correctly, but that’s a case of setting
limits. You can limit the size of the number that can be calculated, or how
many items can be in the queue at a given time, or even how many requests
can come from a single IP address.

We solved the asymmetry problem, though, because no matter how many
tasks get dropped into the queue, it still won’t kill the server or interfere with
other processes.

Wrapping Up
Denial-of-service attacks target different points of communication between
the web server and the client and can be performed in loads of different ways.
In this chapter, you learned to avoid using long synchronous functions,
storing loads of information in memory, and using heavily asymmetrical
functions.

Now that we’ve educated ourselves about the anti-patterns, we can move
forward to securing the client-side application. In the next chapter, we look
at one of the most prevalent client-side attacks: XSS.

Chapter 10. Defend Against Denial-of-Service Attacks • 138

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 11

The greatness of a nation and its moral progress can be judged by the
way its animals are treated. I hold that the more helpless a creature
the more entitled it is to protection by man from the cruelty of
humankind.

 ➤ Mahatma Gandhi

Fight Cross-Site Scripts
In the previous chapters we focused on securing our application’s server-side
code. In this chapter, we shift to the browser and look at the client side to
protect the users. We’ll look at one of the most common attack vectors on the
web: cross-site scripting (XSS, and yes, that’s how it’s written).

An XSS attack executes a malicious script in the targeted person’s web
browser as if the script was part of the website. There’s a place somewhere
on the website where user input wasn’t properly handled when the page was
rendered. Attackers take advantage of the mistake to trick the application
into executing their own scripts.

You may think XSS isn’t that harmful because it’s just a script running in
the browser. If so, you aren’t thinking broadly enough. Here are some things
that can happen if your application is hit with an XSS attack:

• Defacing and content manipulation
• Session hijacking
• Keylogging and other types of information stealing
• Request forgery
• Installation of malicious programs

The most common XSS attack vectors tend to be session hijacking and request
forgery because they potentially offer the most monetary gain for attackers.
In this chapter, we look at three different types of XSS: reflected, stored, and
DOM. You’ll learn how to protect your web application with various methods
and principles.

Recognize Different Types of XSS
I said earlier that an XSS attack happens when someone executes his or her
own scripts on your page in the context of your web application. Those scripts

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

are running within your website’s security space, and the application thinks
the site is intentionally running the scripts. How you defend against XSS
depends on the type of attack you’re facing.

First up is reflected XSS, which is a form of XSS where the injected script is
reflected off the web server; see the following illustration. This means the
script, or reference to the script, is not stored on the server but reflected from
somewhere else. This can be either through a form post or a URL parameter.

This typically happens because the website’s HTML is constructed using URL
parameters without proper escaping or validation. Attackers can inject mali-
cious scripts into the HTML and—voila!—have access to everything. Well, not
quite everything, but a lot.

Google Chrome has introduced an XSS prevention system whereby a script
on the page is not executed if it’s found in the request query. This greatly
limits the reflected XSS attack vector, but don’t skip this section just yet. Not
all your users will be using Chrome, nor does it solve the issue completely,
so stick with it.

Chapter 11. Fight Cross-Site Scripts • 140

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

The good news is that a reflected XSS attack requires the attacker to provide
the link to the victim, which usually raises suspicions in the target. Also the
constructed attack links are one off, so they have to convince every victim to
visit that specific link.

Compare this to the next type of XSS, stored XSS, shown here, where the
injected script is stored on the server and executes when rendering the web
page. It’s frequently stored in the database with user information or content-
like comments.

Since stored XSS is already on the server, any user visiting the corresponding
page is affected. The attacker doesn’t need to apply any phishing or other
social engineering methods to direct users to the payload.

DOM XSS, shown next, is the least known type of XSS, mainly because it’s
hard to recognize DOM XSS from stored and reflected attacks. Since DOM
XSS targets the browser’s interpretation functions, it’s considered a client-
side execution issue. Reflected and stored XSS are considered server-side
execution issues. The following is just one possible example of a DOM XSS.

report erratum • discuss

Recognize Different Types of XSS • 141

www.allitebooks.com

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec
http://www.allitebooks.org

DOM XSS has become increasingly relevant in recent years as websites have
transitioned toward a heavy client-side architecture with lighter server-side
components. This means more and more rendering is happening on the client
side, and the server simply serves the data like an API.

Let’s see how to protect your users from these different XSS attacks.

Prevent XSS Through Configuration
Protecting against XSS is a challenge because there are many ways to get
around the filters. You can derive large defensive benefits from configuration
changes, so let’s begin there.

Proper configuration is the most generic, easiest, and often most useful part
of mitigating XSS. The following options narrow the XSS vulnerability area
and mitigate possible damages caused by malicious scripts.

The first step is to set the HttpOnly flag on cookies. We covered this flag in
Secure the Cookies so No One Can Steal Them, on page 104. Since the main
aim of XSS is to hijack the user’s session, the script typically asks for docu-
ment.cookie containing the sessionID and forwards it to the attacker. If you set
the HttpOnly flag on the cookie, then all scripts running on the page are blocked
from accessing that cookie.

Chapter 11. Fight Cross-Site Scripts • 142

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

express and connect session managers turn on the flag by default, so don’t disable
it. If you’re using another framework, remember to set that flag.

Remember to Disable TRACE Calls on Your Server

While most modern browsers disallow TRACE XMLHttpRequest
calls, attackers can still use the method to obtain the session
cookie. This is why for extra protection you should disable trace
calls on your server.

You can also use the Content Security Policy (CSP)1 header on browsers to
defend against XSS. The aim of this header is to specify where scripts on the
site can originate from. Attackers can inject links to scripts stored on some
other server, but those scripts won’t be executed because they aren’t on the
whitelist. It’s a good idea to limit the site to serving up content only from the
site itself. A basic header to specify this policy is easy:

Content-Security-Policy: default-src 'self'

We can set the same header by defining the following middleware in our stack:

app.use(function (req, res, next) {
res.header('Content-Security-Policy', "default-src 'self'");
next();

});

For a more nuanced CSP header setup, I recommend you use a module
designed for ease of use, such as helmet-csp.2 It allows defining the headers in
a readable manner and sniffs the user-agent to determine the proper header
to set. Basic usage is simple:

chp-11-xss/csp.js
var csp = require('helmet-csp');

app.use(csp({
defaultSrc: ["'self'"]

}));

However, extending it with various options is also easy and modular:

chp-11-xss/csp-advanced.js
app.use(csp({

// Specify directives as normal
defaultSrc: ["'self'", 'default.com'],
scriptSrc: ["'self'", "'unsafe-inline'"],
styleSrc: ['style.com'],

1. https://developer.mozilla.org/en/docs/Security/CSP
2. https://github.com/helmetjs/csp

report erratum • discuss

Prevent XSS Through Configuration • 143

http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/csp.js
http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/csp-advanced.js
https://developer.mozilla.org/en/docs/Security/CSP
https://github.com/helmetjs/csp
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

imgSrc: ['img.com', 'data:'],
sandbox: ['allow-forms', 'allow-scripts'],
reportUri: '/report-violation',

// Set to an empty array to allow nothing through
objectSrc: [],

// Set to true if you only want browsers to report errors, not block them
reportOnly: false,

// Set to true if you want to blindly set all headers: Content-Security-Policy,
// X-WebKit-CSP, and X-Content-Security-Policy.
setAllHeaders: false,

// Set to true if you want to disable CSP on Android.
disableAndroid: false,

// Set to true if you want to force buggy CSP in Safari 5.1 and below.
safari5: false

}));

If the application has to include scripts from other locations, such as tracking
and feedback modules, you will need to list the possible locations in the
header. This can quickly grow into a headache. This is why you can use the
CSP header in a report only mode, which makes the testing and development
much easier.

Before greedily implementing all sorts of configuration options and methods
concerning Content Security Policy, refer to the Mozilla page about using
CSP3 for more information.

Sanitize Input for Reflected/Stored XSS
There’s a reason why XSS vulnerabilities are so common in the wild: they’re
difficult to get rid of. Sanitizing sounds simple in principle, but escaping and
disallowing characters can get complicated quickly. Let’s look at various rules
from the OWASP XSS Prevention Cheat Sheet,4 which you should keep in
mind when building your site.

But first, a small test: in the following code example there’s an HTML docu-
ment—actually, an Embedded JavaScript5 (EJS) template. Do you know where
you could in theory put unsafe content and where you should never put
unsafe content?

3. https://developer.mozilla.org/en-US/docs/Security/CSP/Using_Content_Security_Policy
4. https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
5. http://embeddedjs.com/

Chapter 11. Fight Cross-Site Scripts • 144

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Security/CSP/Using_Content_Security_Policy
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://embeddedjs.com/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

chp-11-xss/xss-all.ejs
<!DOCTYPE html>
<html>
<head lang="en">

<meta charset="UTF-8">
<title>My XSS</title>
<!--<%- 1 %>-->
<style>

body {
color: #000077;
font-size: <%- 2 %>;

}
<%- 3 %>

</style>
</head>
<body>

<nav>
<<%- 4 %> href="/second">Second page>
<a href="/third?x=<%- 5 %>">Third page

</nav>
<div>

<div><%- 6 %></div>
<input <%- 7 %>="nice" value="<%- 8 %>" />

<button onclick="<%- 9 %>">Touch me</button>
</div>
<script>

var x = '<%- 10 %>';
<%- 11 %>

</script>
</body>
</html>

Did you find all of them? Are you confident? If not, then keep reading.

It turns out there are some locations in an HTML document where sanitizing
is so difficult that you’d be better off avoiding them entirely. Unless, of course,
you want attackers to target your customers.

chp-11-xss/xss-nono.ejs
<!DOCTYPE html>
<html>
<head lang="en">

<meta charset="UTF-8">
<title>My XSS</title>
<!--<%- 1 %>--> <!---->❶
<style>

body {
color: #000077;
font-size: large;

}

report erratum • discuss

Sanitize Input for Reflected/Stored XSS • 145

http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/xss-all.ejs
http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/xss-nono.ejs
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

<%- 3 %> <!---->❷
</style>

</head>
<body>

<nav>
<<%- 4 %> href="/second">Second page>❸
Third page

</nav>
<div>

<div>Labeling</div>
<input <%- 7 %>="nice" />❹

<button onclick="alert('why')">Touch me</button>
</div>
<script>

var x = 'y';
<%- 11 %> <!---->❺

</script>
</body>
</html>

❶ Inside HTML comments (<%- 1 %>)

❷ Directly inside style attribute (<%- 3 %>)

❸ As a tag name (<%- 4 %>)

❹ As an attribute name (<%- 7 %>)

❺ Directly inside a script attribute (<%- 11 %>)

By avoiding these locations you give your website a fighting chance against
XSS. Now let’s look at where you potentially can put unsafe data without
causing too much harm:

chp-11-xss/xss.ejs
<!DOCTYPE html>
<html>
<head lang="en">

<meta charset="UTF-8">
<title>My XSS</title>
<!--Comment-->
<style>

body {
color: #000077;
font-size: <%- 2 %>;❶

}
</style>

</head>
<body>

<nav>

Chapter 11. Fight Cross-Site Scripts • 146

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/xss.ejs
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Second page
<a href="/third?x=<%- 5 %>">Third page❷

</nav>
<div>

<div><%- 6 %></div>❸
<input value="<%- 8 %>" />❹

<button onclick="<%- 9 %>">Touch me</button>❺
</div>
<script>

var x = '<%- 10 %>';❻
</script>

</body>
</html>

❶ As CSS values (<%- 2 %>)

❷ As URL parameters (<%- 5 %>)

❸ Inside HTML elements (<%- 6 %>)

❹ Inside common quoted HTML attributes (<%- 8 %>)

❺ Inside JavaScript data values in attributes (<%- 9 %>)

❻ Inside JavaScript data values in script elements (<%- 10 %>)

All of these locations require their own specific form of sanitizing, so we’ll go
over them one by one. And to be safe you should avoid any other locations
not mentioned here unless you do thorough research first and confirm it’s
okay.

Let’s start sanitizing!

node-esapi

Due to my inability to find context-specific escaping libraries for
Node, I’ve ported the ESAPI4JS (Enterprise Security API for Java-
Script) encoder module. This module is called ‘node-esapi‘.6

ESAPI4JS was developed by OWASP and implements the escape
rules described in this chapter. As such we’ll be using it as our
sanitizing library in the examples.

6. https://github.com/DeadAlready/node-esapi

report erratum • discuss

Sanitize Input for Reflected/Stored XSS • 147

https://github.com/DeadAlready/node-esapi
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Rule 1: Escape untrusted data inserted into HTML element content.
When you insert data into an HTML body, you have to HTML escape it. This
includes normal tags as well, such as div, p, b, and section. Some template
engines like jade7 do this automatically. However, this is absolutely not suffi-
cient for other HTML contexts, and you have to be certain of your template
engine if you want to rely on it to handle encoding automatically:

<body>...CAN PUT HTML ESCAPED DATA HERE...</body>
<div>...CAN PUT HTML ESCAPED DATA HERE...</div>
etc…

You can do this with the ESAPI library:

ESAPI.encoder().encodeForHTML(untrustedData);

HTML escaping means that you escape the five characters important for
XML8— &, <, >, ", '—and also the forward slash, /, because it helps end HTML
elements. You can use the following conversion table:

& → &
< → <
> → >
" → "
' → ' ' not recommended because it's not in the HTML spec.
/ → /

Rule 1.1: Sanitize HTML markup with a library designed for the job.
When your application lets users enter HTML content, you can’t just trust it,
but you can’t simply use encoding because it would break the HTML. Use the
library designed for the task.

Several different modules in Node.js were written specifically for this purpose;
I will highlight two of them:

• Bleach9: designed for easy HTML sanitizing. It supports both whitelist
and blacklist sanitizing and has other options as well. Unfortunately this
module hasn’t been updated for over a year.

• Sanitizer10: a port of the Caja-HTML-Sanitizer.11 It’s a thorough HTML
sanitizer developed by Google that also supports various options.

7. https://github.com/visionmedia/jade
8. http://en.wikipedia.org/wiki/XML
9. https://github.com/ecto/bleach
10. https://github.com/theSmaw/Caja-HTML-Sanitizer
11. https://code.google.com/p/google-caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js

Chapter 11. Fight Cross-Site Scripts • 148

report erratum • discuss

https://github.com/visionmedia/jade
http://en.wikipedia.org/wiki/XML
https://github.com/ecto/bleach
https://github.com/theSmaw/Caja-HTML-Sanitizer
https://code.google.com/p/google-caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Rule 2: Escape untrusted data inserted into HTML attributes.
When you insert untrusted data into common HTML attributes like value, width,
and name, you have to encode accordingly. Surround the attribute value with
either single or double quotes:

<!-- inside single quoted attribute -->
<div attr='...CAN PUT ATTRIBUTE ESCAPED DATA HERE...'>content</div>

<!-- inside double quoted attribute -->
<div attr="...CAN PUT ATTRIBUTE ESCAPED DATA HERE...">content</div>

The following shows how to apply the rule with the ESAPI library:

ESAPI.encoder().encodeForHTMLAttributes(untrustedData);

When escaping for HTML attributes you need to escape all characters, except
for alphanumeric characters, with ASCII values less than 256 with the &#xHH;
format (or a named entity if available) to prevent switching out of the attribute.

The reason this rule is so broad is that developers frequently leave attributes
unquoted. Properly quoted attributes can only be escaped with the correspond-
ing quote. Unquoted attributes, however, can be broken out of with many
characters, including \ [space] % * + , - / ; < = > ^ and |.

This rule does not cover complex attributes like href, src, style or any event
handler like onclick. Event handler attributes follow rule 3.

Rule 3: Escape untrusted data inserted into JavaScript data values.
This rule applies to dynamically created JavaScript code—both script blocks
and event handlers. The only place to put data in this case is in the quoted
data values. Any other JavaScript context is dangerous—it’s easy to switch
execution context, because there are many characters that allow the attacker
to do so:

<!-- We might expect a string -->
<script>alert(<%- userValue %>)</script>

<!-- And instead get -->
<script>alert(confirm('have you been xssd?'))</script>

Always quote data values because it drastically limits the possible context
escape values attackers could use:

<!-- inside a quoted string -->
<script>alert('...CAN PUT JAVASCRIPT ESCAPED DATA HERE...')</script>

report erratum • discuss

Sanitize Input for Reflected/Stored XSS • 149

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

<!-- one side of a quoted expression -->
<script>x='...CAN PUT JAVASCRIPT ESCAPED DATA HERE...'</script>

<!-- inside quoted event handler -->
<div onclick="x='...CAN PUT JAVASCRIPT ESCAPED DATA HERE...'"</div>

Some JavaScript functions can never safely use untrusted data as input, as
shown here:

window.setInterval('...EVEN IF YOU ESCAPE UNTRUSTED DATA YOU ARE XSSED HERE...');

You can encode for JavaScript using the ESAPI library:

ESAPI.encoder().encodeForJS(untrustedData);
//or
ESAPI.encoder().encodeForJavaScript(untrustedData);
//or
ESAPI.encoder().encodeForJavascript(untrustedData);

When escaping for JavaScript you need to escape all characters, except for
alphanumeric characters less than 256, with the &#xHH; format to prevent
switching out of the data value into the script context or into another attribute.

Do not use any escaping shortcuts like \\" because the quote character will
wind up being matched by the HTML attribute parser, which runs first.
Escaping shortcuts are also susceptible to escape-the-escape attacks, where
the attacker sends \\" and the vulnerable code turns that into \\\\" to enable
the quote.

If an event handler is properly quoted, breaking out requires you to have the
corresponding quote. This rule is intentionally broad because event handler
attributes are often left unquoted. Unquoted attributes can be broken out of
with many characters, including \ [space] % * + , - / ; < = > ^ and |.

Also, a </ script> closing tag will close a script block even though it’s inside a
quoted string because the HTML parser runs before the JavaScript parser.

Rule 3.1: Escape JSON values in an HTML context and read the data with
JSON.parse.
In Web 2.0 applications you often generate data by the application and
transfer it through JSON. The data can be received with AJAX calls, but that’s
not always efficient. You often load an initial block of JSON on the page to
act as the base data. Let’s look at how you can do this securely.

Chapter 11. Fight Cross-Site Scripts • 150

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

First of all, when asking for JSON data from the server, ensure that the HTTP
Content-Type header is set correctly to application/json so that the browser doesn’t
accidentally try to interpret the content as HTML.

With express, this is handled automatically when you send a response with
res.json() instead of res.send(), because it sets the header internally:

app.get('/json', function (req, res) {
res.json({my:'awesome JSON'});

});

A common anti-pattern when serving JSON as part of the original HTML looks
like the following:

<script>
var initData = <%- JSON.stringify(data) %>;
// WARNING! This is not a recommended approach as it
// is vulnerable without proper escaping

</script>

The problem with this approach is that it’s possible to change the execution
context, because the HTML interpreter runs before the JavaScript interpreter.
Instead, I recommend that you separate the server-side data without
breaching context barriers. Place JSON into HTML as a normal element and
then use JavaScript to parse the contents:

<script id="init_data" type="application/json">
<%= ESAPI.encoder().encodeForHTML(JSON.stringify(data)) %>

</script>
<script>

var dataElement = document.getElementById('init_data');
var jsonText = dataElement.textContent || dataElement.innerText

// Always use JSON.parse instead of eval
var initData = JSON.parse(jsonText);

</script>

Rule 4: Escape and validate untrusted data inserted into CSS property
values.
Although it might not seem like it, CSS (Cascading Style Sheets) can be used
as an XSS attack vector because CSS can execute and include scripts. Here’s
an example of how CSS is used in an attack:

{ background-url : "javascript:alert(1)"; } // and all other URLs
{ text-size: "expression(alert('XSS'))"; } // only in IE

When you use untrusted data to construct CSS or set style properties on
elements, make sure you perform proper validation checks. Don’t use

report erratum • discuss

Sanitize Input for Reflected/Stored XSS • 151

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

untrusted data for anything other than property values. Don’t put untrusted
data into complex property values such as url and behavior. I suggest also
avoiding the Internet Explorer–specific expression property since it allows
JavaScript.

<style>selector { property : ...CAN PUT CSS ESCAPED DATA HERE...; } </style>

<style>selector { property : "...CAN PUT CSS ESCAPED DATA HERE..."; } </style>

text

Even if you escape CSS, you still have to ensure all URLs start with http: or
https: and not with javascript:. Property values should never start with expression.

Here’s the same example, using the ESAPI library:

ESAPI.encoder().encodeForCSS(untrustedData);

When escaping for CSS, remember to escape all characters, except for
alphanumeric characters, with ASCII values less than 256 with the &#xHH;
escaping format. As mentioned in a previous rule, do not use any escaping
shortcuts like \" because the quote character may be matched by the HTML
attribute parser instead. These shortcuts are also susceptible to escape-the-
escape attacks where \\" turns into \\\\".

If an attribute is quoted, breaking out requires the corresponding quote. All
attributes should be quoted, but your encoding should be strong enough to
prevent XSS when untrusted data is placed in unquoted contexts.

Unquoted attributes can be broken out of with many characters, including \
[space] % * + , - / ; < = > ^ and |. Also, the </ style> tag will close the style block
even though it’s inside a quoted string because the HTML parser runs before
the CSS parser.

Please note that aggressive CSS encoding and validation are recommended
to prevent XSS attacks for both quoted and unquoted attributes.

Rule 5: Escape untrusted data inserted into HTML URL parameter values.
This is one of the easiest rules to apply. When you want to put data into HTTP
GET parameters, URL escape it!

link

You can do this easily with the ESAPI library:

ESAPI.encoder().encodeForURL(untrustedData);

Chapter 11. Fight Cross-Site Scripts • 152

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

When escaping for URL, escape all characters, except for alphanumeric
characters, with ASCII values less than 256 with the %HH escaping format.
Don’t include untrusted data in data: URLs because there’s no good way to
disable those attacks with escaping.

All attributes should be quoted. Unquoted attributes can be broken out of
with many characters, including \ [space] % * + , - / ; < = > ^ and |. Note that
entity encoding is useless in this context.

Be careful with URL encoding and relative URLs. If the user input is meant
to be placed into href or src or other URL-based attributes, then it should be
validated beforehand to make sure it doesn’t point to an unexpected protocol
or script file. After that, encode URLs based on context, like all other data.

For example, when inserting into a href attribute, you attribute encode it.

How All the Rules Come Together
To avoid XSS attacks when rendering templates on the server side, you should
always be careful with unsafe content. You must encode depending on the
location where the content is being inserted. Using the wrong encoding format
doesn’t help you, and there’s no one-size-fits-all rule that you can apply. Look
at the following example to see how you can combine all the methods in one
place:

chp-11-xss/xss-encoded.ejs
<!DOCTYPE html>
<html>
<head lang="en">

<meta charset="UTF-8">
<title>My XSS</title>
<!--This is going to be great-->
<% var E = ESAPI.encoder() %>
<style>

body {
color: #000077;
font-size: <%- E.encodeForCSS(unsafe); %>;

}
</style>

</head>
<body>

<nav>
<a href="/second?x=<%- E.encodeForURL(unsafe); %>">Second page

</nav>
<div>

<h1><%- E.encodeForHTML(unsafe); %></h1>
<input value="<%- E.encodeForHTMLAttributes(unsafe); %>" />

report erratum • discuss

Sanitize Input for Reflected/Stored XSS • 153

http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/xss-encoded.ejs
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

<button onclick="<%- E.encodeForJS(unsafe); %>">Touch me</button>
</div>
<script id="json" type="application/json">
<%- E.encodeForHTML(JSON.stringify(data)) %>

</script>

<script>
var x = '<%- E.encodeForJS(unsafe); %>';
var json = JSON.parse(document.getElementById('json').innerHTML);

</script>
</body>
</html>

Sanitize Input for DOM XSS
DOM-based XSS is a different beast altogether, and it deserves its own section
and rules. To get a thorough overview of DOM XSS and sanitizing rules,
consult the OWASP DOM-based XSS Prevention Cheat Sheet.12 Also, if you
skipped the previous section on various sanitizing rules, then go back. You
need to know how to deal with first-order XSS attacks to understand how to
deal with DOM XSS.

If you’re using a lot of DOM manipulation in your application, it’s prone to
DOM XSS. I recommend using a JavaScript validation library designed for
context-specific validations, such as the ESAPI JavaScript library13 from
OWASP.

Treat DOM-based XSS sanitizing as a two-step challenge. First, you get the
data into a JavaScript variable, as I discussed previously in Rule 3: Escape
untrusted data inserted into JavaScript data values., on page 149. Then, you
sanitize the data according to the usage.

If you used only the previous rules, you’d wind up with something like the
following:

chp-11-xss/xss-dom-simple.ejs
<!DOCTYPE html>
<html>
<head lang="en">

<meta charset="UTF-8">
<title>My DOM XSS</title>

</head>
<body>

<div id="dynamic"></div>
<script>

12. https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
13. https://code.google.com/p/owasp-esapi-js/

Chapter 11. Fight Cross-Site Scripts • 154

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/xss-dom-simple.ejs
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://code.google.com/p/owasp-esapi-js/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// Step 1 - Get data
var text = '<%- ESAPI.encoder().encodeForJS(unsafe) %>';

// Step 2 - Use data
var $element = document.getElementById('dynamic');
$element.innerHTML = text; // <- VULNERABLE! We need HTML encoding

</script>
</body>
</html>

You can fix this by applying reverse encoding on the data-insertion part:

chp-11-xss/xss-dom-simple-fix1.ejs
<!DOCTYPE html>
<html>
<head lang="en">

<meta charset="UTF-8">
<title>My DOM XSS</title>

</head>
<body>

<div id="dynamic"></div>
<script>

<% var E = ESAPI.encoder(); %>
// Step 1 - Get data
// Apply reverse order encoding
var text = '<%- E.encodeForJS(E.encodeForHTML(unsafe)) %>';

// Step 2 - Use data
var $element = document.getElementById('dynamic');
$element.innerHTML = text;

</script>
</body>
</html>

You can also apply encoding at runtime:

chp-11-xss/xss-dom-simple-fix2.ejs
<!DOCTYPE html>
<html>
<head lang="en">

<meta charset="UTF-8">
<title>My DOM XSS</title>
<script src="/esapi/esapi.js"></script>
<script src="/esapi/resources/i18n/ESAPI_Standard_en_US.properties.js"></script>
<script src="/esapi/resources/Base.esapi.properties.js"></script>

</head>
<body>

<div id="dynamic"></div>
<script>

org.owasp.esapi.ESAPI.initialize();

report erratum • discuss

Sanitize Input for DOM XSS • 155

http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/xss-dom-simple-fix1.ejs
http://media.pragprog.com/titles/kdnodesec/code/chp-11-xss/xss-dom-simple-fix2.ejs
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// Step 1 - Get data
var text = '<%- ESAPI.encoder().encodeForJS(unsafe) %>';

// Step 2 - Use data
var $element = document.getElementById('dynamic');
// Encode using client side script
$element.innerHTML = $ESAPI.encoder().encodeForHTML(text);

</script>
</body>
</html>

Unfortunately, you can’t just use the corresponding level of encoding from
the previous section when dealing with DOM XSS. The rules are slightly dif-
ferent, so let’s take a look.

Rule 0: Use DOM construction methods instead of HTML interpretation.
Untrusted data should be treated only as displayable text. You should never
treat untrusted data as code or markup within JavaScript code. In order to
construct dynamic HTML interfaces, you should use JavaScript methods
designed to construct DOM, such as document.createElement("…"), element.setAt-
tribute("…","value"), and element.appendChild(…). Don’t build HTML strings and let
the browser interpret them for you.

You don’t have to have a complex environment that’s hard to escape properly,
so instead of this

// Get value
var text = '<%- ESAPI.encoder().encodeForJS(unsafe) %>';
// Construct HTML
var input = '<input name="company_name" value="' + text + '" />';

// Insert HTML
var form1 = document.forms[0];
form1.insertAdjacentHTML('beforeend', input);

// or with jquery
$('form:first').append(input);

use DOM methods to remove an interpretation layer and simplify the process:

// Get value
var text = '<%- ESAPI.encoder().encodeForJS(unsafe) %>';
// Construct HTML
var input = document.createElement('input');
input.setAttribute('name', 'company_name');
input.setAttribute('value', text);

// Insert HTML
var form1 = document.forms[0];

Chapter 11. Fight Cross-Site Scripts • 156

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

form1.insertAdjacentHTML('beforeend', input);

// or with jquery
$('form:first').append(input);

The element.setAttribute() is safe for only a limited number of attributes. Dangerous
attributes include any attributes that are for a command execution context,
such as onclick() or onblur().

Rule 1: JavaScript and HTML encode before HTML subcontext.
Several methods in JavaScript can directly render HTML. When providing
untrusted input to these methods, you first have to be sure that it doesn’t
break out of the JavaScript context and the HTML context. You can do this
by applying the encoding backwards, so you first deal with HTML encoding
and then JavaScript encoding. The following list shows some examples of
methods used for HTML rendering:

element.innerHTML = "<HTML> Tags and markup";
element.outerHTML = "<HTML> Tags and markup";
document.write("<HTML> Tags and markup");
document.writeln("<HTML> Tags and markup");

Here’s an example of how you can encode using ESAPI and EJS for server-
side template rendering:

<%
var htmlEncoded = ESAPI.encoder().encodeForHTML(unsafe);
var jsEncoded = ESAPI.encoder().encodeForJS(htmlEncoded);
%>
element.innerHTML = "<%- jsEncoded %>";

If you get the data directly from the server, such as when you’re using AJAX
to get the data for the client side, you can use the following example:

element.innerHTML = $ESAPI.encoder().encodeForHTML(unsafe);

Rule 2: Do not apply attribute encoding in DOM context.
When you’re inserting untrusted input into an attribute value, then you don’t
have to attribute escape it from within the DOM context. You just have to
worry about JavaScript escape. Using both will break how the value is visu-
ally represented. Let’s go over some bad examples, so you know what you
shouldn’t do:

var x = document.createElement("input");
x.setAttribute("name", "company_name");
// In the following line of code, companyName represents untrusted user input
// The Encoder.encodeForHTMLAttr() is unnecessary and causes double-encoding

report erratum • discuss

Sanitize Input for DOM XSS • 157

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

<%
var attEncoded = ESAPI.encoder().encodeForHTMLAttr(companyName);
var jsEncoded = ESAPI.encoder().encodeForJS(attEncoded);
%>
x.setAttribute("value", '<%- jsEncoded %>');
var form1 = document.forms[0];
form1.appendChild(x);

If companyName had the value Johnson & Johnson, you would see Johnson \& Johnson
in the input text field. In this case, you should use only JavaScript encoding
to prevent an attacker from closing out the single quotes and inserting code
or escaping to HTML and opening a new <script> tag. Let’s do this correctly
by encoding only for JavaScript:

var x = document.createElement("input");
x.setAttribute("name", "company_name");
x.setAttribute("value", '<%- ESAPI.encoder().encodeForJS(companyName) %>');
var form1 = document.forms[0];
form1.appendChild(x);

Rule 3: Avoid execution subcontexts.
I recommend that you don’t insert untrusted data into event handlers and
JavaScript subcontexts. OWASP just says to be very careful, but why take
the risk? You should find another way to do what you want instead. The
JavaScript interpreter works a bit differently and often doesn’t stop attacks
within the context. For various examples on how this can fail, you can look
at the OWASP DOM XSS Cheat Sheet Rule 3.14

Rule 4: Do not apply CSS encoding in style context.
When manipulating style with JavaScript and untrusted data, you don’t have
to worry about breaking out of the CSS context. Even though you don’t have
to CSS encode the data beforehand, you still need to worry about unsafe CSS
properties. Remember that you should never let unsafe data specify which
property gets changed. It’s always better to use a whitelist instead. You should
also make sure URLs don’t have execution context within them, and don’t
accept expression or such values in the property.

Rule 5: JavaScript and URL encode when creating links.
This rule is similar to rule 5 for regular XSS attacks but also includes the
JavaScript encoding layer:

14. https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet#RULE_.233_-_Be_Careful_when_Insert-
ing_Untrusted_Data_into_the_Event_Handler_and_JavaScript_code_Subcontexts_within_an_Execution_Context

Chapter 11. Fight Cross-Site Scripts • 158

report erratum • discuss

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet#RULE_.233_-_Be_Careful_when_Inserting_Untrusted_Data_into_the_Event_Handler_and_JavaScript_code_Subcontexts_within_an_Execution_Context
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet#RULE_.233_-_Be_Careful_when_Inserting_Untrusted_Data_into_the_Event_Handler_and_JavaScript_code_Subcontexts_within_an_Execution_Context
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

<%
var urlEncoded = ESAPI.encoder().encodeForURL(userRelativePath);
var jsEncoded = ESAPI.encoder().encodeForJS(urlEncoded);
%>
var href = '<%- jsEncoded %>';
var x = document.createElement("a");
x.setAttribute("href", href);
var y = document.createTextElement("Click Me To Test");
x.appendChild(y);
document.body.appendChild(x);

Different Steps of DOM XSS Protection
The DOM level adds another layer of interpretation to the data you have to
protect. When constructing scripts dynamically, you must use double
encoding or use client-side encoding appropriate to the subcontext to protect
the layers.

You need to handle two steps of DOM XSS protection. The first step is to get
the data into a variable. You can JavaScript encode if you’re constructing the
script on the service side. You can also transfer the value as JSON and use
JSON.parse to interpret it. I cannot emphasize enough that using eval() would
be a terrible idea.

The second step involves how you use the data. When you’re inserting the
data into an HTML or URL context, you need to encode accordingly. But if
you’re inserting the data in an attribute or CSS context, you should not
encode. As discussed previously, you need to avoid dangerous properties,
though.

And above all, you should avoid inserting data into a JavaScript subcontext.

Wrapping Up
In this chapter we covered a whopping amount of information about XSS. Its
large attack surface makes it difficult to evade, but you now know the various
OWASP rules on how to avoid XSS flaws in your application. You should be
able to identify different attack points and know when to apply which
encoding rules.

XSS is not the only attack vector on the client side. In the next chapter, we
look at another one: CSRF (cross-site request forgery).

report erratum • discuss

Wrapping Up • 159

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 12

Everything we hear is an opinion, not a fact. Everything we see
is a perspective, not the truth.

 ➤ Marcus Aurelius

Avoid Request Forgery
In the previous chapter we looked at XSS, one of the most widely used client-
side attacks. In this chapter, we look at another client-side attack: cross-site
request forgery (CSRF).

Cross-site request forgery, also known as one-click attack or session riding,
is an attack that makes unauthorized requests on the behalf of a trusted
user. Whereas XSS exploits the user’s trust, CSRF exploits the site’s trust in
the user’s browser, as illustrated in the following figure.

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Attackers use this method to modify the target website, and as far as the
application is concerned, the trusted user is the one executing those com-
mands. CSRF is popular because the attackers don’t need to compromise the
web application at all. Attackers can set up their own malicious website or
take over some other application and lure victims to those sites.

CSRF is highly effective, and it’s even more so when it targets administrative
accounts to get higher levels of access.

In this chapter we look at the logic on how to defend against CSRF and then
discuss different ways to apply the logic. We don’t want our users to worry
about their accounts being abused while browsing online.

Follow the Logic to Protect Against CSRF
Cross-site request forgery requires the site to trust the browser. Attackers
abuse this trust by making the browser submit legitimate-looking requests
to the web application. We fight this by adding watermarks, or things
attackers can’t forge, so that the site can differentiate between legitimate and
forged requests.

In a CSRF attack, the attacker forces the browser to make a request. Attackers
can’t do that via AJAX because browsers by default don’t allow cross-origin
requests. Thus, CSRF is a blind attack, similar to blind SQL injection dis-
cussed in Avoid SQL Injection Attacks, on page 61. Attackers can make the
requests but will typically not see the responses.

By default, websites can’t make requests to other websites from scripts run-
ning on the page. New web standards allow websites to send Cross-Origin
Resource Sharing (CORS)1 headers to override this policy. CORS headers let
websites specify other domains that can make requests via scripts, along with
any methods and restrictions that may apply. You can build more complex
web services, but using CORS with loose settings seriously undermines your
website security. If you’re using CORS, be sure to minimize the permissions
you allow!

With CSRF, the attacker wants to modify the state of the website in some
way, so unless you allowed CORS, you don’t have to worry about information
requests. You can focus on modifying requests.

I recommend using POST, PATCH, and PUT requests to handle all state-modifying
processes such as insert, delete, and update. The data can be inserted in the

1. https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Chapter 12. Avoid Request Forgery • 162

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

body of the request, which is encrypted if you’re using SSL. That takes care
of the eavesdropper problem. POST, PATCH, and PUT are also written in HTTP
standards.

Why not use GET? Consider that search engines issue GET requests to links
that they find. You wouldn’t want those requests to be able to change some-
thing in your application’s state.

To prevent CSRF attacks, you have three choices: to add something to the
request attackers do not know, have the browser add something the attackers
can’t change, or have users add something manually when making the request.
Of the choices, the most secure is to have a challenge-response system where
the submission form requires the user to take part. This could be a CAPTCHA
image or a request to re-authenticate. This way, the application issues a
challenge that can’t be forged programmatically. Unfortunately, this approach
causes a bad user experience and is difficult to implement to boot, so we’ll
explore some alternatives.

Let’s begin with the first and most widely used system of CSRF protection—the
synchronized token pattern.

Synchronize Your Tokens as Part of CSRF Protection
The most common CSRF protection is randomly generating a token for the
form or session and always including it as part of a POST request. Every request
is validated by comparing the submitted value with the expected token value.
If the values match, the request is valid. There are several modules to choose
from, but we’ll take a look at csurf,2 which used to be part of express.

app.use(cookieParser());
app.use(session({

secret: 'this is a nice secret',
resave: false,
saveUninitialized: true

}));
app.use(bodyParser.urlencoded());
app.use(csurf()); // Include csurf middleware

// Show form
app.get('/', function (req, res, next) {

var form = '<form method="POST" action="/add">' +
'<input type="hidden" name="_csrf" value="' +
req.csrfToken() + '" />' + // add hidden token field
'<input type="text" name="name" placeholder="name" />' +
'<input type="text" name="value" placeholder="value" />' +

2. https://github.com/expressjs/csurf

report erratum • discuss

Synchronize Your Tokens as Part of CSRF Protection • 163

https://github.com/expressjs/csurf
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

'<input type="submit" value="Submit" />' +
'</form>';

res.send(form);
});

It took just two lines of code to set up protection from CSRF. While the
attacker can construct and send a POST request, he or she won’t be able to
set a valid _csrf token.

Fortunately, csurf handles the heavy lifting and allows you to send the token
as a _csrf field in the POST or GET request. You can also use the HTTP header
X-CSRF-Token.

You’re not finished yet. You should add logging to keep track of malicious
activity against your site. csurf provides a specific error code you can use in
your logging code.

// error handler
app.use(function (err, req, res, next) {

if (err.code !== 'EBADCSRFTOKEN') {
return next(err) // some other error

}

// handle CSRF token errors here

// Besides just saying that we had a mismatch
// we should log some useful information about the request here
// like the user and referrer and origin headers of the request for example
console.warn('CSRF token mismatch');

res.status(403)
res.send('form tampered with')

})

This form of CSRF protection is easy to implement and effective, but it requires
the application to save the state into the session. This is troublesome if the
application grows big enough. Depending on the session storage system you’re
using, it can take up too much memory or cause issues in clusters if sessions
keep going to the same machine. So if you don’t want to deal with saving
sessions, you can work with cookies instead.

Double-Submit the Cookie to Prevent CSRF Attacks
This defense technique isn’t all that different from the previous one, except
the _csrf token doesn’t get stored in the session. Instead, you add the token
to the site’s cookies. The idea is to submit the token in the body of the request

Chapter 12. Avoid Request Forgery • 164

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

along with the cookie so that they can be compared. If the values match, it’s
a legitimate request.

This method simply moves the location of the token from the session to the
cookie as you switch from server-side defense to client-side defense. Instead
of taking up storage, you now take up bandwidth. You can do this simply
with csurf middleware:

app.use(cookieParser());
app.use(bodyParser.urlencoded());

// Include csurf middleware, with cookie option
app.use(csurf({cookie: true}));

// Show form
app.get('/', function (req, res, next) {

var form = '<form method="POST" action="/add">' +
'<input type="hidden" name="_csrf" value="' +
req.csrfToken() + '" />' + // add hidden token field
'<input type="text" name="name" placeholder="name" />' +
'<input type="text" name="value" placeholder="value" />' +
'<input type="submit" value="Submit" />' +
'</form>';

res.send(form);
});

The extra bandwidth from sending the token back and forth with every request
can be a drawback. Which method you wind up using would depend entirely
on your application.

Synchronized token patterns are the most commonly used method to prevent
CSRF, but there are other ways that don’t require extra tokens. We look at
them in the next section.

O Request, Where Art Thou From?
There may be a reason why you don’t want to use tokens for CSRF protection,
such as having a stateless setup or not wanting to use a lot of resources.
Perhaps the application doesn’t have strict security requirements. For any of
these situations, you can just use the standard information the browser
includes in a typical request.

Modern browsers send Referer and Origin headers with requests when navigating
through links or submitting forms on a web page. They give the application
information about which page the request originated from and can be used

report erratum • discuss

O Request, Where Art Thou From? • 165

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

for both tracking and CSRF protection. You can look at the headers to deter-
mine if the form did originate on your site.

Attackers can spoof headers if they’re creating the requests, but it’s pretty
much impossible to do so when submitting a request via the victim’s browser.
These headers can be checked for consistency since if the requests originated
from a different domain, the browser will tell you that upfront.

On an important note, the Referer header isn’t sent when the request originates
from an HTTPS site. The Origin header was specifically created to mitigate that
shortcoming, so you should prefer to use that.

Let’s create our own CSRF middleware to check these headers:

chp-12-csrf/header-middleware.js
'use strict';

var url = require('url');

module.exports = function getCsrf(domainData) {
if(typeof domainData !== 'object') {

throw new TypeError('Expected an object');
}

// Function for validating the origin header
function validate(origin) {

var data = url.parse(origin);
if(typeof data !== 'object') {

return false;
}
// Match against the provided data
return !Object.keys(domainData).some(function (key) {

if(data[key] !== domainData[key]) {
console.log(data[key], domainData[key]);
return true;

}
});

}

// Define ignored methods
var ignoredMethods = ['GET', 'HEAD', 'OPTIONS'];

return function csrf(req, res, next) {

// ignore speficied methods
if (ignoredMethods.indexOf(req.method) !== -1) {

next();
return;

}

Chapter 12. Avoid Request Forgery • 166

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-12-csrf/header-middleware.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

var origin = req.headers.origin || req.headers.referer;

// Validate the header
if(!origin || !validate(origin)) {

var error = new Error('Unauthorized');
error.code = 403;
// Besides just saying that we had a mismatch
// we should log some useful information about the request here
// the user and referrer and origin headers of the request for example
console.warn('Origin/Referer mismatch');
next(error);
return;

}

// Everything ok, so continue
next();

};
};

We can set up this middleware to validate any value returned by url.parse. In
this case we’re most interested in the protocol, host, hostname, and port variables.
The next example just checks for hostname and port. If the hostname or port
differs from localhost:3000, the application will throw errors:

var csrf = require('./csrf');
app.use(csrf({

hostname: 'localhost',
port: '3000'

}));

While this method of CSRF protection is resource friendly, it depends on the
browser to send correct headers. There can be consistency issues since not
all browsers behave the same, and some don’t always include the headers in
requests. That’s the downside of using this approach.

Avoid Setting Up Common CSRF Pitfalls in Your Code
express makes it easy to implement CSRF protections, but there are some pit-
falls with using express and existing middleware. In this section, we look at
three such issues.

The first issue is the middleware methodOverride in express, which lets you
implement or modify the application’s RESTful behavior. For example, you
just add a _method parameter to do a DELETE request with a body or use a simple
form to create a PUT request. Unfortunately, the middleware interferes with
CSRF protection.

report erratum • discuss

Avoid Setting Up Common CSRF Pitfalls in Your Code • 167

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

The standard practice in most CSRF prevention methods is to ignore GET,
OPTIONS, and HEAD request methods. The GET request should be used just to
obtain information and should not modify data. However, if the server is using
methodOverride after middleware for CSRF protection, then it becomes possible
to send a GET request with the parameter _method=POST.

app.use(express.urlencoded());
app.use(express.csrf());
app.use(express.methodOverride());
...

The GET request will be ignored by CSRF protection middleware, but it will
still be handled by POST routes and let attackers bypass the defenses you’ve
put in place.

CSRF doesn’t just target authenticated users. It’s a common misperception
that only forms located in the authenticated areas of the site need CSRF
protection. While damage done by unauthenticated forms tends to be on a
smaller scale, you still don’t want it to happen on your site.

Consider login forms. The attacker can’t use the victim’s session because the
user hasn’t logged in yet, but here’s a possible attack scenario: the attacker
can set up an unauthorized account on the site, log into that account using
the victim’s browser, and hope the victim doesn’t notice that it’s the wrong
account. The attacker can later harvest any sensitive information the victim
generated in that account. While a circumstantial attack, it can be effective
in situations where user history is logged or users upload media for later use.

These unvalidated forms can also be used to perform more sophisticated
attacks like BREACH3 to compromise the user’s session and gain access.
Don’t underestimate the ingenuity of attackers; protect all your forms.

When dealing with logged-out users, session-based token patterns can cause
problems too, depending on how the application was designed. For areas of
the site where users aren’t logged in, I highly recommend using either header-
checking or double-submit cookies with tokens unrelated to the session.

It is crucial that you to protect your application from XSS. If you skipped
Chapter 11, Fight Cross-Site Scripts, on page 139, then go back and read it
now, because all the CSRF protections (except some challenge-response sys-
tems) can be defeated easily if the application has an unpatched XSS vulner-
ability. If the attacker can execute JavaScript under the application’s domain,
it can make requests with the correct Referer and/or Origin headers. The

3. https://en.wikipedia.org/wiki/BREACH_(security_exploit)

Chapter 12. Avoid Request Forgery • 168

report erratum • discuss

https://en.wikipedia.org/wiki/BREACH_(security_exploit)
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

attacker would also be able to get the necessary tokens to make the request
look legitimate.

While XSS cannot directly bypass challenge-response systems because the
questions require user interaction, the attacker could use the XSS vulnerabil-
ity to trick the user into answering the challenge. Bypassing challenge-
response systems with CSS is typically difficult to do if the methods are
implemented properly.

If you hope to defeat CSRF, then you need to first master XSS.

Wrapping Up
In this chapter we studied CSRF, and you learned how this attack can be
used to target your website. It’s a dangerous attack vector because the
attacker can use a different website or social engineering to perform different
functions on the site. We also covered token- and header-based defenses,
which can be very effective. But you saw how these methods turn out to be
useless if you don’t address XSS issues first.

We’ve looked at a lot of ways you can secure your code. In the next chapter,
we’ll look at how you can also secure your and your clients’ data.

report erratum • discuss

Wrapping Up • 169

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 13

Only trust thyself, and another shall not betray thee.

 ➤ William Penn

Protect Your Data
In previous chapters, you learned how to protect your database from injection
and concurrency attacks. When your application is dealing with sensitive
information such as credit card numbers or medical records, you have to take
even more steps to make sure the data is secure.

Attackers value credit card numbers and medical information—it’s their gold.
Despite what you may think or stories you may have heard, most cybercrim-
inals are not looking for lulz—they’re after money.

In this chapter, we step up our game so that you can protect your data in
such a way that stealing it would be a long and complex process. You want
the criminal to give up and go away. We’ll start by looking at how data flows
to your application so that you can identify the points of attack and then
move on to mitigation techniques.

Understand Your Application’s Data Flow
Before you can protect user information stored in your application, you have
to know what kind of data you even have and then figure out which data
needs protecting. The illustration on page 172 shows the main components
involved in data transfer from the user to your server.

The data flow begins with the client application asking the user to provide
some data. Once the user enters something (or does something in the appli-
cation), the browser sends the collected information over the network to the
server. The server validates the data it received, performs some magic, and
pushes it into storage for later use.

Very straightforward, right? But attackers can target several points in the
data flow to intercept some of that information flowing between the user and

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

the server. The illustration on page 173 shows some of the possible ways
attackers target the data flow.

First, attackers can use XSS (cross-site scripting) attacks against the client
application. Attackers who can access the user’s system can also target the
browser’s caching system. Be wary of XSS attacks, which we covered back
in Chapter 11, Fight Cross-Site Scripts, on page 139.

Next, look at how data is being transferred from the client to the server,
because it can be attacked just like any other data transfer. Here’s where our
HTTPS setup, which we covered in Use TLS and SSL to Secure Your Connec-
tions, on page 25 pays off. There are also some nuances to be aware of when
the data reaches the server.

Finally, think about storage. You’ve already learned how to protect the
application from injection attacks. But it takes only one mistake to cost you
the whole database holding all the information. You can’t hash user data the
way you hash passwords because the application needs to be able to work
with the data. So you encrypt the data while it’s in storage and decrypt the
information when you need it.

Keep in mind where the weak spots can be found in your data flow while we
look at how you can add layers of protection around each point.

Protect the Client Application and Data
Let’s start with the client application. We’re going to skip how to educate and
protect the user because that’s a whole different task and a topic for another

Chapter 13. Protect Your Data • 172

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

book. We’ll start from the source of the data and work our way through to
when it reaches the server.

XSS and caching attacks are among the most popular attacks at this point.
We look at XSS in great detail in its own chapter Chapter 11, Fight Cross-Site
Scripts, on page 139, so we won’t dig into this attack vector here. Since XSS
is a popular attack method, you need to go through the XSS chapter to protect
your users.

Browsers rely on caches and autocomplete tools to speed up web browsing
and help users accomplish more things while doing less work. Although
useful, they also create opportunities for attackers.

Autocomplete in browsers lets users quickly fill out different forms with the
same pieces of information. Think about how saving the shipping address
information from one form saves time and effort the next time you buy
something. To be able to autocomplete forms, the browser first needs to store
the data somewhere. The thing is, attackers can trick the browser into dis-
playing that information at the wrong time.

Imagine a situation where the computer has multiple users. One user enters
some sensitive information in a form and submits it. Another user comes
along, opens the same page, and sees the sensitive information when auto-

report erratum • discuss

Protect the Client Application and Data • 173

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

complete fills out the form. This is a simple example, but you can see why
saving sensitive information this way would be bad.

When dealing with forms collecting sensitive information, you should either
turn off autocomplete entirely, as shown in this example, or be more selective:

<form method="POST" action="/saveData" autocomplete="off">
<input type="text" name="sensitive" />
<input type="submit" value="Submit" />

</form>

To be more selective you can turn off autocomplete only on fields that are
sensitive in nature. Browsers have tools that let you differentiate form fields:

<form method="POST" action="/saveData">
<input type="text" name="regular" />
<input type="text" name="sensitive" autocomplete="off" />
<input type="submit" value="Submit" />

</form>

The selective approach lets you protect your customers from leaking their
data through the browser while still letting them enjoy the benefits of using
autocomplete.

Browsers rely on aggressive caching to speed up page loads, but it becomes
a security issue if pages with sensitive information are stored in the cache.
Sure, it’s nice that the page with your medical records loads fast thanks to
the cache, but it also means anyone who can get to the cache can see your
records. This is why pages dealing with sensitive data should have caching
turned off.

You do this by setting the Cache-Control header to the appropriate value. The
most common choice is to set the header to no-cache, because this instructs
the browser to re-request the page before showing it to the user. The alterna-
tive is to set the header to no-store, which instructs the browser not to write
the contents of the response to disk (the cache). From a security standpoint,
no-store is the better choice.

You can accomplish this by adding just one line before your reponse-sending
function:

// Set the header so it is not stored
res.header('Cache-Control', 'no-store');

res.send(data);

A better way is to create middleware you can reuse or set before an entire
section of the application path that deals with sensitive information:

Chapter 13. Protect Your Data • 174

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// Define middleware
function noStore(req, res, next) {

res.header('Cache-Control', 'no-store'); // Set the header so it is not stored
next(); // Continue

}

// Use middleware
app.get('/data', noStore, function (req, res, next) {

var data = 'Let this be our sensitive data';

res.send(data);
});

You may be tempted to just set the no-cache header to the entire website, but
that would increase server load and affect performance. And that might wind
up costing more money than a breach would. Think carefully where you use
no-cache.

If your application is collecting sensitive data, you can ramp up the security
level by setting up proper XSS protection and being smart about how you use
autocomplete and cache. Next, let’s see how you can be safe while transporting
the data to the server.

Securely Transfer Data in Your Application
Just collecting the data isn’t sufficient. You need to process it before you store
it. Let’s look at how you can use SSL when transferring the data. You also
need to think about what you want to log on the server.

We’ve already discussed how important it is to use SSL on your website in
Use TLS and SSL to Secure Your Connections, on page 25. When you’re working
with sensitive information, securely transporting data using SSL becomes
essential. Any page that collects or shows sensitive information to the client
must be served over HTTPS; otherwise the traffic can be sniffed and the data
exposed. HTTPS needs to be implemented throughout the application since
attackers could still hijack the session from insecure traffic and gain access
to sensitive data.

In Decide What Gets Logged, on page 29, we discussed in length how important
it is to properly log requests and errors. Logs let you later trace why certain
steps were taken with the website. You can see who performed the action,
giving you accountability.

But if you write some or all of the sensitive information handled by the app
into the logs because you’re trying to generate good and effective logs, you
have a problem. This is a common mistake with serious consequences. The

report erratum • discuss

Securely Transfer Data in Your Application • 175

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

risk of sensitive data being exposed is considerable when you consider that
logs are rarely encrypted.

Make sure your logs don’t contain sensitive information. That doesn’t mean
you can’t log anything related to sensitive information, because that would
mean you’d be blind to what’s happening with one of the critical parts of the
application. Instead, mask the information in the logs. One example is to
rewrite the credit card number so that it looks like ****-****-****-1234.

You should now know what you need to securely protect your data as it moves
from the browser to the server. Now let’s look at how you can secure the data
that’s being stored.

Secure the Data Stored Within Your Application
In the previous sections we looked at how to protect the data when the
application collects it in the browser and when the application transfers it to
the server. These steps focus on short-term protection because the data is
present only for a short time. In this section, let’s look at how to protect your
data for the long term. If you’re saving it in storage, you want to keep it for a
long time, right? As long as you have the data saved somewhere, someone
will try to target it in an attack.

Don’t Hoard Data

The easiest way to protect your application is to not store any
sensitive information at all. This is certainly not always possible,
but every piece of information that you don’t need should be dis-
carded as soon as possible. For example, if you shift the burden
of credit card processing to a third-party service, you simplify your
security model and speed up development. Of course, you must
make sure the third-party software is trustworthy and secure.

Attackers can’t steal data that you don’t have. Marketing might
love data hoarding, but it isn’t good security.

Let’s look at how to protect your data that’s been saved to the file system
against overexposure. We’ll also cover encryption so that even if all your
other defenses fail, the thieves can’t do anything with the data.

Don’t Exhibit the Data More Than You Have To
Exposing too much information is a common problem in web applications. It
happens because the server is misconfigured or because there’s no mechanism

Chapter 13. Protect Your Data • 176

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

to stop path traversal. Anyone can access materials even if they’re not
authorized.

Oversharing was a common configuration problem in LAMP stacks because
Apache had a default directory-sharing configuration that tried to disallow
files of a certain type. Fortunately for us, Node.js doesn’t thrust a sharing
configuration onto developers by default. But it’s easy to introduce this error
yourself.

Can you spot the problem in the following code?

chp-13-sensitive-data/oversharing/app.js
'use strict';

var express = require('express');
var app = express();

app.use(express.static(__dirname));

app.get('/', function(req, res){
res.send('<script src="/public/main.js"></script>');

});

app.listen(3000);

Consider everything we’ve discussed so far, and you’ll see that the issue lies
with this line:

app.use(express.static(__dirname));

The problem is that it gives public file access to the whole application direc-
tory, which means that anyone can request files in the directory. Visiting
/app.js would show you the application file, for example.

This isn’t a big issue for this example because the file itself doesn’t reveal any
secrets. But mistakes like this can give attackers access to configuration files
(with passwords) or code files, where they can look for flaws. It’s an easy
mistake to make that has serious consequences.

In order to avoid this issue, place public files in a separate folder and share
only that folder. I also suggest using a specific path like this:

app.use('/public', express.static(__dirname + '/public'));

Sometimes you want to use proxies in front of your Node application—like
the recommended use of nginx, lighttpd, or H2O for file serving.1

1. http://nginx.org, http://www.lighttpd.net, and https://h2o.examp1e.net/index.html.

report erratum • discuss

Secure the Data Stored Within Your Application • 177

http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/oversharing/app.js
http://nginx.org
http://www.lighttpd.net
https://h2o.examp1e.net/index.html
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

In those configurations you have to make sure that the proxy server itself is
properly configured and doesn’t allow access to files it’s not supposed to.

Oversharing isn’t the only thing to worry about. Let’s follow up on our static
file-serving problems with the path traversal attack. This is an attack vector
that tries to break out of the intended public folder and access files that are
not supposed to be accessible by using specially crafted strings.

This attack vector used to be so common that servers and libraries like
express.static() added their own defenses. If you don’t use the libraries, you’ll
need to roll your own protection. You must understand what’s happening
before you can set up a robust protection mechanism. Let’s take a quick look.

Here’s an app that serves files by building the path from query parameters:

chp-13-sensitive-data/traversal/app.js
'use strict';

var express = require('express');
var fs = require('fs');
var app = express();

//Construct path
function getPath(filename) {

return __dirname + '/public/' + filename;
}

app.get('/', function (req, res) {
if(!req.query.file) {

res.sendStatus(404);
return;

}
var filePath = getPath(req.query.file);
var stream = fs.createReadStream(filePath);

//Handle errors
stream.on('error', function (err) {

var status = err.code === 'ENOENT' ? 404 : 500;
res.sendStatus(status);

});

stream.pipe(res);
});

app.listen(3000);

You could then ask for a file like /?file=data.json and the server would send you
the file. This might look okay, because you’re constructing the path with the
/public folder inside. However, attackers can use the file system’s upward

Chapter 13. Protect Your Data • 178

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/traversal/app.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

traversal property, ask for /?file=../app.js, and get the contents of app.js. The path-
traversal possibilities don’t stop there, since you could access any file the
server process can, including system password files and keys.

Fortunately in Node.js it’s easy to set up a robust defense against path
traversal. You simply need to construct the absolute path and check that it
starts with the absolute path of your expected public folders.

Let’s modify the path construction function to add a validation step to check
if the path is what you expect it to be:

chp-13-sensitive-data/traversal/app-fixed.js
var path = require('path');
var root = path.join(__dirname, '/public');
//Construct absolute path
function getPath(filename) {

return path.join(root, filename);
}
//Validate path
function validate(filePath) {

// Expect the filepath to start with
// our public root path
return filePath.indexOf(root) === 0;

}

chp-13-sensitive-data/traversal/app-fixed.js
var filePath = getPath(req.query.file);
if(!validate(filePath)) {

res.sendStatus(404);
return;

}

Not Only Read

A common mistake is expecting path-traversal attacks only when
requesting files from the server. That’s far from true. In fact, it’s
often useful for attackers to use path-traversal attacks when
uploading files to the server, because people tend to forget path
traversal in these situations.

Write path traversal allows attackers to overwrite server files and
even the /etc/passwd file to gain access to the server, even if the
server is running with hightened security privileges. So it’s
important to be vigilant with path checks when using user input
in file path construction.

report erratum • discuss

Secure the Data Stored Within Your Application • 179

http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/traversal/app-fixed.js
http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/traversal/app-fixed.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Limiting public file access to specific controlled folders or files and always
constructing and validating absolute paths before actual file access allows
you to make sure that you’re safe against being overly open with your data.

Encrypt Your Data so That Attackers Can’t Use It
Don’t rely on external defenses to protect sensitive and valuable data such
as credit card numbers. It takes only a single mistake for an attacker to find
a way through your injection defenses and access the database. And then
suddenly all your hard work has been lost—because they got everything.

Encryption gives you in-depth protection. Even if your data is stolen, it’s not
readable without proper keys, providing another important layer of protection.

There are two methods you can follow. The first is to encrypt everything with
a master key. It’s usually easier to implement, because all data is encrypted
and decrypted with the same key. The second is to use a separate key for
every user. This ensures that the site administrators don’t have access to
sensitive information and that attackers have to work harder to get at it. To
do this, you have to be able to remove administrators’ ability to access
encryption keys.

To put it even more simply, trust the administrators, or design the system so
that you don’t need to trust the administrators.

Let’s start by looking at how to implement a master key protection on your
database. We’ll skip authentication and authorization and start by setting
up your routes for handling the form and requests for credit card creation
and retrieval:

chp-13-sensitive-data/encrypt/app.js
'use strict';

var bodyParser = require('body-parser');
var express = require('express');
var app = express();

var CC = require('./models/cc');

app.get('/cc', function (req, res) {
var form = '<form method="POST">' +

'<input autocomplete="off" name="cc" />' +
'<input type="submit" value="Submit" />' +
'</form>';

res.send(form);
});

Chapter 13. Protect Your Data • 180

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/encrypt/app.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

app.post('/cc', bodyParser.urlencoded({extended: false}), function (req, res) {
// Create creditcard from post data
CC.create(req.body, function (err, cc) {

//Had an error
if(err) {

console.error(err);
res.sendStatus(500);
return;

}

res.redirect('/cc/' + cc._id);
});

});

app.get('/cc/:id', function (req, res) {
// Find creditcard by using id
CC.findOne({_id: req.params.id}, function (err, cc) {

// Had an error
if(err) {

console.error(err);
res.sendStatus(500);
return;

}
// Didn't find
if(!cc) {

res.sendStatus(404);
return;

}

res.json(cc);
});

});

app.listen(3000);

Next, we’ll create your database schema:

chp-13-sensitive-data/encrypt/models/cc-unsecure.js
'use strict';

var db = require('../lib/db');

var schema = db.Schema({
cc: {type: String, required: true}

});

module.exports = db.model('CC', schema);

And finally, we’ll connect to the database in your db.js:

report erratum • discuss

Secure the Data Stored Within Your Application • 181

http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/encrypt/models/cc-unsecure.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

chp-13-sensitive-data/encrypt/lib/db.js
'use strict';

var args = require('minimist')(process.argv);
var mongoose = require('mongoose');

if(!args.d) {
console.log('This example requires the -d (mongoose db) command line variable');
process.exit();

}

mongoose.connect(args.d);

module.exports = mongoose;

Now you have an application that allows you to store a credit card number
in the database and retrieve it based on an identifier. But if someone were to
gain access to the database itself, then the attacker could simply request all
credit cards and that would be bad. So let’s use the built-in crypto module to
encrypt and decrypt data.

Cipher Algorithms to Use

The following examples implement the aes192 algorithm, but the
available algorithms for the crypto module are determined by the
underlying OpenSSL installation. On recent releases, openssl list-
cipher-algorithms will display the available cipher algorithms.

First, let’s create a module to provide the encrypt() and decrypt() methods:

chp-13-sensitive-data/encrypt/lib/crypt.js
'use strict';

var args = require('minimist')(process.argv);
var crypto = require('crypto');

if(!args.k) {
console.log('This example requires the -k (key) command line variable');
process.exit();

}

var masterKey = args.k; // Get master key from command line

// A function to perform encryption
function encrypt(data) {

// Create cipher and encrypt value
var enc = crypto.createCipher('aes192', masterKey);
enc.end(data);
var encrypted = enc.read(); // Read the buffer

Chapter 13. Protect Your Data • 182

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/encrypt/lib/db.js
http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/encrypt/lib/crypt.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

// We will store the data in base64 format, because utf8 will
// cause problems - the various characters in utf8 can break or be
// lost in the storage/retrieval process
return encrypted.toString('base64');

}

// A function to perform decryption
function decrypt(data) {

// Create decipher
var dec = crypto.createDecipher('aes192', masterKey);

// Create buffer from encrypted value and decrypt
var encrypted = new Buffer(data, 'base64');
dec.end(encrypted);

// Read data and convert back to utf8
return dec.read().toString('utf8');

}

module.exports.encrypt = encrypt;
module.exports.decrypt = decrypt;

And now mongoose lets us use the pre save and pre init hooks to seamlessly encrypt
and decrypt data when inserting and retrieving from the database:

chp-13-sensitive-data/encrypt/models/cc.js
'use strict';

var db = require('../lib/db');
var crypt = require('../lib/crypt');

var schema = db.Schema({
cc: {type: String, required: true}

});

// Define a pre save hook to encrypt
schema.pre('save', function (next) {

// Encrypt the creditcard
this.cc = crypt.encrypt(this.cc);
next();

});

// Define a pre init hook to decrypt
schema.pre('init', function (next, data) {

// Decrypt the credit card
data.cc = crypt.decrypt(data.cc);
next();

});

module.exports = db.model('CC', schema);

report erratum • discuss

Secure the Data Stored Within Your Application • 183

http://media.pragprog.com/titles/kdnodesec/code/chp-13-sensitive-data/encrypt/models/cc.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

From the outside, the application behaves exactly as it did before. Attackers
trying to access the database directly won’t see a nice list of credit card
numbers but rather something like the following output:

{
"_id" : ObjectId("55a3c200ef5ee77978c1e2cb"),
"cc" : "+2G/iu05w3Qtk2nai0x6rQ==",
"__v" : 0

}

And without access to the key that was used to encrypt this data, they won’t
be able to use it. Here lies the weakness of this method—the effectiveness is
determined by the security of the key. Don’t store the key on the production
machine. It’s better to just load it into memory.

There should be a gap between the production machine attack vectors and
the key storage attack vectors. The security of these machines shouldn’t be
linked, because you don’t want an attacker to be able to access the other
machine after breaking into the first one.

For some environments, the fact that the administrators still have access to
the database and the master key is a problem. You may not want administra-
tors to be able to decrypt the contents of the database if it contains sensitive
information. This is where the second method comes into play—encrypting
all values with user-specific keys.

There are several different approaches to encrypting data so that the site
administrators are not the gatekeepers. But you cannot store the user’s key,
since that defeats the purpose of not letting anyone else have access to it.

One method is to give the keys to the users and let them upload the keys to
decrypt the data. This isn’t very user friendly, but depending on the applica-
tion’s security needs, it might be viable.

Another method—and far simpler—is to do double encryption. You store the
encryption key on the user model but encrypt it with the user’s password.
Since the password is hashed, the administrators won’t know the password.
This prevents them from decrypting the key used to encrypt the data.

Look at the process flow in the following diagram. When the user registers
with the application, you generate a key and encrypt the data with that key.
You then use the supplied password to encrypt the key.

Chapter 13. Protect Your Data • 184

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Password
& Data Hash password

Store
• Hashed password
• encrypted key
• encrypted data

Encrypt key using
password

Encrypt data
using key

Generate random
key

Encrypted
data

DataKey

Password Password
hash

Encrypted
key

And when the user logs in, you decrypt the key using the password and store
it in the session, as shown here.

Password

Decrypt key
using plaintext

password

Store
• Hashed password
• encrypted key
• encrypted data

Incorrect

Encrypted key Decrypted
key

password
correct?

Hash incoming
password and
compare with
stored version

Failed login
attempt

Correct

Session
• decrypted key

When you need to work with the encrypted data, you can use the key from
the session to decrypt it, as in the following diagram.

Decrypted
key

Encrypted
data

Get session

Get encrypted data

Data request

Decrypt data Send data

Userid

Data
request

report erratum • discuss

Secure the Data Stored Within Your Application • 185

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Using this approach, you separate the keys used for the encryption of the
sensitive data from the administrators themselves. This way the administrators
don’t have access to the data, and attackers don’t have a single master key
to obtain but instead have to break every account separately.

Using Password Instead of Key

It might seem like less trouble to simply do the encryption with
the user’s password and skip the intermediate key. Don’t do this,
because that would mean saving the user passwords in plain text
to the session. If the session is compromised in any way, both the
encrypted data and the password will be exposed. If you use an
intermediate key, the password at least stays safe.

By encrypting the sensitive information you select to store in your servers,
you’ll provide a great deal more security to your customers (unless you dis-
tribute the keys liberally). And with that you’ll have completed your data
protection from the client to the storage itself.

You may be tempted to just encrypt and decrypt all your data exchanges for
a high level of security. Don’t. Cryptography is a resource-heavy process, and
doing it for data that’s not sensitive is a waste of resources that, depending
on the data amount, might cost you a lot of money. Use encryption sparingly
and only where needed.

Wrapping Up
Not all data is created equal, and in this chapter we covered how to protect
the most important pieces of data. Your customers would not like their
information to fall into the attackers’ hands. You learned why you have to
protect against XSS attacks, disable caching, use SSL, not log sensitive data,
limit how you share server files, and encrypt sensitive pieces of information.

You have data security down. Let’s move on to how you can systematically
harden your existing code and build applications faster with third-party
modules without compromising your overall security.

Chapter 13. Protect Your Data • 186

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

CHAPTER 14

The secret of all victory lies in the organization
of the non-obvious.

 ➤ Marcus Aurelius

Secure the Existing Codebase
Over the course of this book, we discussed various attack methods and how
attackers target the weak points in your application. You learned how to
protect your application by strengthening those weak points. When you start
writing new code, you should now know how to apply everything we’ve dis-
cussed so far to avoid making common mistakes. It gives you a starting point
to prevent users from becoming victims.

But you don’t always get to start with a brand-new application. Most of the
time, you’re working with an existing codebase or using third-party code. By
the end of this chapter, you should be able to analyze and secure existing
code.

Modern applications are so complex and development deadlines so tight that
it’s no longer possible to expect developers to write an application from start
to finish. Developers tend to work in teams and take advantage of more than
200,000 different packages developed by the vibrant Node.js community.
These packages let you drastically speed up development by reusing existing
code.

You may now feel confident in your ability to write secure code, but you don’t
know if the code and modules written by others are also secure. In this
chapter, we look at how to analyze existing code to find weaknesses and how
the analysis changes when looking at third-party modules. You’ll learn to
validate the security of the entire application. By the end of this book, you’ll
know how to secure your application, regardless of whether you wrote it
entirely from scratch or some components were written by someone else.

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Perform a Risk Assessment First
I know you’re itching to open your code file and get down to business, but
you have a few things to take care of first. Before spending your valuable time
and energy building a Fort Knox for your application, make sure you need to
do that.

Yes, I’m telling you to perform a risk assessment.

A risk assessment determines which security measures you should implement
and which you don’t have to. From a security perspective, implementing all
defenses to the maximum level is always best. In reality, there’s a definite
financial trade-off. Multiple methodologies are available on how to conduct a
risk assessment, but here’s a brief overview of what the process entails, as
shown in the following diagram.

Identify
assets

Create
architecture

overview
Decompose
application

Identify
threats

Document
threats

Rate
threats

Threat Modeling

First, identify all the assets that are related to your application (servers, data,
and so on). Then analyze your application and write down all the risks to your
application that you can think of. This list should include, but not be limited
to, situations such as losing client information, website defacement, and site
downtime. Then estimate the losses associated with each situation and the
costs to recover from each one. Once you have the dollar figures for each risk,
estimate the likelihood of each one occurring. Finally, estimate the cost of
implementing the mitigation mechanisms for each risk. Use the information
derived with this method to determine if the cost of defenses is financially
reasonable.

The implementation cost may be exorbitant, but if the losses associated with
losing client data are heavy and the odds of a breach are high, then it may
make sense to mitigate the issues, no matter how expensive.

Of course, I greatly simplified the process. For a more thorough understanding
of how to conduct a risk assessment, refer to the websites for OWASP Risk
Rating Methodology1 and OWASP Threat Risk Modeling.2

Now that you know what security levels are appropriate, let’s go back to the
basics. It’s not just about focusing on code quality or making sure you’re

1. https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
2. https://www.owasp.org/index.php/Threat_Risk_Modeling

Chapter 14. Secure the Existing Codebase • 188

report erratum • discuss

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/Threat_Risk_Modeling
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

handling malicious inputs and request manipulation attempts correctly. You
must remember that the most secure application will still be targeted if it’s
deployed on a Swiss-cheese-like server. Don’t just throw root access to anyone
who asks, for example.

Before you proceed with this chapter, take a moment to review Chapter 2,
Set Up the Environment, on page 11 and Chapter 3, Start Connecting, on page
23 and commit the contents to memory. Check how you’re deploying your
application. Having a solid foundation for your infrastructure is vital for any
security-sensitive application.

Test Your Application’s Code Quality
The first thing to get right when starting a white box analysis on your appli-
cation is to validate your own code. I assume we’re not talking about one file
with fewer than a hundred lines of code. Therefore, meticulously going over
every line of code by hand isn’t feasible.

An important part of writing a secure web application is maintaining code
quality. Security errors frequently start as simple coding mistakes that can
be exploited by attackers. Instability can easily be used to launch denial-of-
service attacks.

Maintaining code quality as the team and application grow can be daunting,
especially by hand. Fortunately, tools such as JSLint3 and JSHint.4 are
available. They perform static analysis on your JavaScript code and generate
error reports on non-optimal programming methods.

These tools also check for security-related issues, such as making sure you’re
running all functions in strict mode and that you’re using strict comparison
operators instead of == and !=. They also disallow changes to native prototypes
and make sure variables are not being used before they’re defined.

Another common example is looping over object properties without using
hasOwnProperty(). There are many other issues, but the idea is to make the code
cleaner and uniformly understandable to reduce the number of potential bugs
and logic errors.

While there are various ways to run static analysis on your code, the recom-
mended approach is to integrate the tests into your build or publish process.
Don’t treat it as a one-off test and call it done. JSLint and JSHint both have
packages for all major build managers like Grunt and Gulp, or you can create

3. http://www.jslint.com
4. http://jshint.com

report erratum • discuss

Test Your Application’s Code Quality • 189

http://www.jslint.com
http://jshint.com
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

your own build script. Ideally, you should run the static analysis every time
you’re about to publish or commit your changes. Many version control systems
provide precommit hooks so that you can run some sort of static analysis
every time you make changes to the code.

npm has a prepublish script that can be configured to run a command every time
you publish your package. It looks something like this:

{
"name": "ethopia-waza",
"description": "a delightfully fruity code",
"version": "1.2.3",
"devDependencies": {

"jshint": "*"
},
"scripts": {

"prepublish": "./node_modules/jshint/bin/jshint ./*/**.js"➤

},
"main": "lib/waza.js"

}

Analyze Your Application’s Data Flow
At this point in the process, you know your code doesn’t have major quality
issues that could cause breakages. Let’s move on to deeper analysis.

The most effective way to secure your application is to first understand it.
You must grasp how your application does what it does, and to do that you
must follow the data.

Input/output (I/O) operations are the core of any web application and are
something Node.js excels at. But what’s actually going on? See the following
graphic.

MagicInput Output

You need to understand why your application behaves in a certain way and
how it handles your requests. That’s the only way you’ll know all the possible
permutations of what the application can do, and you can limit the list
accordingly. An in-depth understanding of the application also helps you
narrow your search area when hunting for vulnerabilities.

To start, you can narrow your search field by grouping request handling into
various categories: static requests, insecure and secure data requests, content-
modifying requests, and client-side variables, as shown in this diagram.

Chapter 14. Secure the Existing Codebase • 190

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Let’s look at each of them in detail.

Identify Static Requests in Your Code
Static requests have no user input besides the URL path. This includes static
files and paths that serve generic content, such as the home page and login
page. While the pages served can be dynamic, such as showing the latest five
stories, they shouldn’t rely on user input to generate the contents displayed.
These requests don’t have session data, so they’re public by definition.

A path generating dynamic content like this is static:

chp-14-secure/data-flow.js
function getRandomNumbers() {

var randoms = [];
for(var i = 0; i < 5; i++) {

randoms.push(Math.random());
}
return randoms;

}

app.get('/', function (req, res) {
res.json(getRandomNumbers());

});

report erratum • discuss

Analyze Your Application’s Data Flow • 191

http://media.pragprog.com/titles/kdnodesec/code/chp-14-secure/data-flow.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

A path serving static content like this is not because it checks for the user’s
logged-in status based on the session, which is based on a cookie, a type of
user input:

chp-14-secure/data-flow.js
var session = require('express-session');
var cookieParser = require('cookie-parser');
var easySession = require('easy-session');

app.use(cookieParser());
app.use(session({

secret: 'this is a nice secret',
resave: false,
saveUninitialized: true

}));
app.use(easySession.main(session));

app.get('/login', function (req, res) {
if(req.session.isLoggedIn()) {

res.redirect('/');
return;

}
res.send('<form></form>');

});

You don’t want the user to be able to force the server into using the input in
any way. Static resource serving is commonly targeted with path traversal
attacks. This is why you need to be concerned with those paths and secure
them as needed.

Identify Insecure and Secure Data Requests in Your Application
Insecure data requests are requests for dynamic content that don’t need
authorization. These requests use GET and HEAD requests as well as path,
query, and cookie parameters to determine what content to serve on the page.
Since the pages serve only public content, the user doesn’t have to worry
about authentication.

The following example shows a data request that’s insecure because it uses
the user-provided value to display data. The problem is, as written, it lets an
unauthorized user provide that information:

chp-14-secure/data-flow-insecure.js
app.get('/:path', function (req, res) {

res.sendFile(req.params.path + '.html');
});

Chapter 14. Secure the Existing Codebase • 192

report erratum • discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-14-secure/data-flow.js
http://media.pragprog.com/titles/kdnodesec/code/chp-14-secure/data-flow-insecure.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

You can use session variables as long as you aren’t relying on the user’s
identity. Let’s look at two versions of the same code, one secure and the other
not:

chp-14-secure/data-flow-insecure.js
// This is an insecure request
app.get('/session', function (req, res) {

if(!req.session.nr || typeof req.session.nr !== 'number') {
req.session.nr = 0;

}
req.session.nr++;
res.send('Request nr: ' + req.session.nr);

});

// This is not an insecure request
app.use(easySession.main(session));
app.get('/login', function (req, res) {

if(req.session.isLoggedIn()) {
res.redirect('/');
return;

}
res.send('<form></form>');

});

Once you’ve identified insecure data requests in your application, the best
thing to do is to whitelist all user input wherever possible. This is the single
most effective protective measure you can take with these paths:

chp-14-secure/data-flow-insecure.js
var allowedFiles = [

'index',
'login',
'static'

];
app.get('/:path', function (req, res) {

// Validate that it is an expected path
if(allowedFiles.indexOf(req.params.path) === -1) {

res.send(404);
return;

}
res.sendFile(req.params.path + '.html');

});

In fact, you should go through the handler’s call stack and make sure every
function relying on user input or a value based on user input has embedded
whitelist checks. You’ll have to use other sanitizing methods if whitelisting
isn’t an option, but you still want to limit all possible inputs.

report erratum • discuss

Analyze Your Application’s Data Flow • 193

http://media.pragprog.com/titles/kdnodesec/code/chp-14-secure/data-flow-insecure.js
http://media.pragprog.com/titles/kdnodesec/code/chp-14-secure/data-flow-insecure.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Perform sanity checks on all variables that are part of the request, including
the ones you introduce via cookies as well as those created by client-side
code. When introducing sanitizing methods, take into account the locations
and functions using the variables, such as the database, the file system, and
the command line, because you’ll have to use the methods differently
depending on location.

Don’t forget about second-hand validation; you need to validate data previ-
ously inserted into storage by users and then retrieved. Let’s look at web
comments, since they’re one of the most common examples of second-hand
input. Users post comments from the application, and the server saves the
data in storage. When the page is displayed later, the application may look
at the timestamp to retrieve and display some of the comments. These com-
ments need to be validated.

You also need to look at secure data requests. These are similar to the insecure
requests, except they’re used to serve restricted data. The output depends on
the user’s identity. You perform the same checks on secure data requests as
you do on insecure data requests. Make sure the user’s identity and access
level match what is being requested. This is a good time to review access
checks as discussed in Chapter 9, Set Up Access Control, on page 111.

Identify Content-Modifying Requests in Your Application
The next group is the one most prone to errors and requires thorough
checking. These requests modify or store information in your application and
change the application’s state. We’re talking about PUT, POST, PATCH, and DELETE
requests. We’ve discussed some of the key factors already: checking access
rights for secure requests, limiting input data, validating input data based
on location, and being vigilant for errors. What you also need to do is to check
for the request’s origin to prevent CSRF. You can review how to prevent CSRF
attacks in Chapter 12, Avoid Request Forgery, on page 161.

When accepting input from the client, be as strict as possible. This means
that when you expect a path to process POST requests you do not accept GET
or any other type besides POST. The same goes for input variables—do not use
generic parameter access methods like req.param() that take input from the
path, body, or query depending on where it’s found first. For example, if you
expect a POST with a body, then don’t accept query or path parameters as
substitutes. Doing so would create confusion and in some cases allow
attackers to exploit the order in which validation and usage are performed.

Chapter 14. Secure the Existing Codebase • 194

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Users can always add unexpected parameters to requests. Remove these
before running the rest of the code.

Nothing in the following code prevents the attacker from adding the role
parameter to the request being submitted. Even though the role isn’t one of
the values included in the form, it doesn’t matter because the attacker can
create administrator users with the parameter:

chp-14-secure/data-flow-clean.js
// Define user model
var userSchema = new mongoose.Schema({

username: { type: String, required: true, index: { unique: true } },
password: { type: String, required: true}, // this should be hashed
role: {

type: String,
enum: ['guest', 'user', 'admin'],
required: true,
default: 'user'

}
});

var User = mongoose.model('User', userSchema);

app.post('/user', function (req, res) {
User.create(req.body, function (err, user) {

if(err) {
console.log(err);
res.send(500);
return;

}
res.send(200);

});
});

In order to prevent these kinds of data modifications, you should clean the
input to allow only specified variables. After you remove the extra variables,
you should still sanitize what’s left:

chp-14-secure/data-flow-clean-correct.js
var allowed = [

'username',
'password'

];
app.post('/user', function (req, res) {

var data = {};

//Filter the input
allowed.forEach(function (key) {

data[key] = req.body[key];
});

report erratum • discuss

Analyze Your Application’s Data Flow • 195

http://media.pragprog.com/titles/kdnodesec/code/chp-14-secure/data-flow-clean.js
http://media.pragprog.com/titles/kdnodesec/code/chp-14-secure/data-flow-clean-correct.js
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

User.create(data, function (err, user) {
if(err) {

console.log(err);
res.send(500);
return;

}
res.send(200);

});
});

Identify and Clean Client-Side Variables Used by Your Application
In the last step, we look at identifying all the variables that affect how client-
side code is constructed and clean them to prevent XSS attacks. If your
application is just an API, you don’t need to worry about this last category.
Otherwise, XSS is a major attack vector and must be mitigated. Now is a good
time to go over the template and client-side JavaScript files while keeping the
lessons from Chapter 11, Fight Cross-Site Scripts, on page 139 in mind.

It will be a long and tedious process, but the result should be a secure client
for your web app. Employing these methods will make server-side code easier
to understand, straightforward to maintain, and harder to attack. So far,
we’ve focused on securing your existing codebase. Let’s look at the techniques
you’ll need for securing third-party code, the modules and libraries written
and maintained by someone else.

If Nothing Else, Use a Helmet
In the previous sections we looked at deeply analyzing your application code
to identify various possible attack vectors and setting up mitigation methods
for them. While it is the recommended and definitely more effective way to
secure your application, it is also usually a lot of work and can take a long
time (depending on the size of your codebase). If you find yourself with a gun
to your head and only have a minute to set up some defense, then use helmet.

helmet is an express middleware designed to implement HTTP header-based
defense for various attack methods we have covered in this book. It is a col-
lection of various other middleware, each designed for a specific attack vector.
The use of helmet is simple:

var express = require('express');
var app = express();

var helmet = require('helmet');
app.use(helmet()); // Use helmet with default settings

Chapter 14. Secure the Existing Codebase • 196

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Just with those two lines you:

• remove the X-Powered-By header to aggravate enumeration
• set up HSTS headers for HTTP Strict Transport Security
• set X-Download-Options for IE8+ to prevent execution of downloads
• set X-Content-Type-Options: nosniff to prevent MIME Confusion attacks
• set the X-Frame-Options header to prevent clickjacking
• set the X-XSS-Protection header to help mitigate XSS

You should add helmet.csp as discussed in Prevent XSS Through Configuration,
on page 142.

var express = require('express');
var app = express();

var helmet = require('helmet');
app.use(helmet()); // Use helmet with default settings
app.use(helmet.csp({ // Use CSP with minimal settings

defaultSrc: ["'self'"]
}));

So with three lines, you set up decent protection against various attack
methods—a quick and easy win upon which you can expand your stronger
defense once you dodge the bullet deadline.

Clean the Modules You Use in Your Code
Instead of developing applications from scratch, we typically integrate existing
code and libraries. This is especially common for Node.js applications, since
NPM has over 200,000 published packages (and growing!). The fact that there’s
a vast library of existing code that can be plugged into any project is one of
the things that makes Node.js development fast. However, there’s a security
trade-off to the speed and convenience.

The packages in the repository vary greatly in code quality, available docu-
mentation, maintenance schedule, and even the language (JavaScript, Coffee-
Script, C, C++) used. They are developed and maintained by different teams
and individuals, making it difficult to have a consistent update cycle.

The list that follows on page 198 shows the modules tree for a typical Node.js
project using Express for the framework, Redis for session storage, and
Mongoose for MongoDB ORM.

The dependency graph lists a total of fifty-nine different modules installed.
From a security standpoint, the fact that there’s no vetting process when
adding new packages to NPM is concerning. Many of these packages could

report erratum • discuss

Clean the Modules You Use in Your Code • 197

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

« (continued from previous column)express@4.13.1
├── merge-descriptors@1.0.0

├── type-is@1.6.5├── array-flatten@1.1.0
├──────media-typer@0.3.0├── escape-html@1.0.2
├──────mime-types@2.1.3├── cookie@0.1.3
├── send@0.13.0├── cookie-signature@1.0.6
├──────destroy@1.0.3├── methods@1.1.1
├──────statuses@1.2.1├── fresh@0.3.0
├──────ms@0.7.1├── range-parser@1.0.2
├──────mime@1.3.4├── vary@1.0.1
└──────http-errors@1.3.1├── utils-merge@1.0.0

├── etag@1.7.0
mongoose@4.1.0├── path-to-regexp@0.1.6
├── regexp-clone@0.0.1├── content-type@1.0.1
├── sliced@0.0.5├── parseurl@1.3.0
├── muri@1.0.0├── content-disposition@0.5.0
├── mpromise@0.5.4├── serve-static@1.10.0
├── hooks-fixed@1.1.0├── depd@1.0.1
├── kareem@1.0.1├── qs@4.0.0
├── mpath@0.1.1├── on-finished@2.3.0
├── async@0.9.0├──────ee-first@1.1.1
├── ms@0.1.0├── finalhandler@0.4.0
├── mquery@1.6.1├──────unpipe@1.0.0
├──────debug@2.2.0├── debug@2.2.0
├──────bluebird@2.9.26├──────ms@0.7.1
├── mongodb@2.0.34├── proxy-addr@1.0.8
├──────readable-stream@1.0.31├──────forwarded@0.1.0
├──────mongodb-core@1.2.0├──────ipaddr.js@1.0.1
├── bson@0.3.2├── accepts@1.2.11
└──────bson-ext@0.1.10├──────negotiator@0.5.3

├──────mime-types@2.1.3
redis@0.12.1

contain—either accidentally or maliciously—security vulnerabilities. When
developing a security-sensitive application, you have to check all modules
and submodules being used.

This can get cumbersome as the number of modules increases, and there’s
no way around it. Fortunately, community projects are available to help, such
as the Node Security Project,5 which aims to audit all NPM modules and
provide Node.js-specific security advice. The project offers a public API to
query the database of modules, and a command-line tool nsp that checks the
security status of a known package. The use of this tool is simple.

Install it with NPM:

npm install nsp -g

5. https://nodesecurity.io

Chapter 14. Secure the Existing Codebase • 198

report erratum • discuss

https://nodesecurity.io
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

And then in your project folder run the check:

nsp check

This checks your package.json and/or shrinkwrap.json files for packages with known
vulnerabilities. If a vulnerable package is found, the output looks like the
figure:

This gives you a nice overview of what you need to update and why.

Next, let’s look at a few things to keep in mind when selecting and working
with third-party packages.

Rules for Choosing Which Package to Use
A great variety of modules are available, and it’s difficult to know which ones
are safe to use from a security standpoint. While there’s no clear-cut way to
choose third-party libraries and node modules, we can look at three potential
approaches: choosing popular packages, obscuring modules, and writing your
own code.

The first choice, popularity, means you choose packages based on how many
people are using it or know about it. Look at the community behind the
module: is it being maintained by a company committed to that project or
used by a large enough group of people? A dedicated company is likely to care
about maintaining the package and its reputation. A large userbase means
most of the obvious security vulnerabilities have probably been found,
reported, and fixed accordingly. These packages are unlikely to contain
malicious backdoors.

The size of the userbase should be treated as a soft validation of the package’s
security, not a guarantee. Since the packages are widely used, they’re also
more likely to be targeted by attackers looking for vulnerabilities. Bugs can
also slip through, as happened with the Heartbleed flaw in OpenSSL. Security

report erratum • discuss

Clean the Modules You Use in Your Code • 199

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

flaws in these modules can be used against a lot of targets at once, which is
known as a shotgun attack.

The other approach is to use packages that aren’t so popular or open source
to limit exposure. This reduces the possibility of shotgun attacks where the
attackers focus on all the users of a particular library. But small, unknown
libraries tend to have lower code quality, reduced support, and a less-mature
codebase. However, if your application is niche enough, the modules you’re
interested in may already be specialized and not one of the popular ones in
the first place.

Of course, you always have the option to write all your code yourself and
disregard all third-party libraries. You have custom code and a complete
overview of everything happening within your application. But it is hell on
the team, lengthens development time, and is typically not financially or
logistically feasible. Even with the knowledge you’ve gained through this book,
you have to accept that you can still make mistakes in your code. With third-
party libraries, it’s possible that the other developer avoided making that
mistake, or it has been found and reported by other users already.

Regardless of which method you follow to choose your packages, you can’t
just assume they’re secure. Trust but verify, remember?

Audit the Chosen Ones, aka Third-Party Packages
After selecting your modules, invest some time in auditing them. You want
to make sure the packages meet a baseline standard for security necessary
for your application. There aren’t specific rules for audits because each
module can vary greatly in code quality and functionality, but I recommend
looking at the functionality you’re using and the data flow.

First of all, look over the module and check to see which exposed functional-
ity you use and which you don’t use. If you don’t use a lot of the functionality
in the module, then you might be using the wrong package for the job to begin
with. Bloated modules tend to complicate your code and create unnecessary
dependencies. Try to avoid them.

Then, look over the code to determine what the module does with your input
and how the data moves internally within the module. See if any of your input
is insecure and vulnerable or somehow maliciously manipulated within the
application. This way, you have a clear overview of exactly what the module
does with your data.

Chapter 14. Secure the Existing Codebase • 200

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

If the module handles user input before it reaches you, then it must meet the
corresponding standards. Don’t use eval or similar. Functions shouldn’t be
invoked without validation. Proper limits have to be defined. If you handle
the data before sending it to the module, then you can—and should—perform
the validations yourself, unless you’re sure the module takes care of it.

The audit helps you look for accidental vulnerabilities, whether they’re in
your own code or in third-party libraries. But not all vulnerabilities are acci-
dental, and you need to look for the malicious ones, too. Malicious bugs are
most likely trying to set a backdoor into your application or gather data. Look
for the following: access to the file system and network traffic, code that runs
on timeouts, and the package.json scripts.

A module would use corresponding Node.js built-in modules or C/C++ add-
ons to access the file system or to relay or set up network traffic. Look for
modules using fs, net, http, tls, child_process, cluster, udp, and vm because they’re
native modules designed to access the file system, relay or set up network
traffic, and execute system commands. Beware of custom C/C++ modules
that also do this.

If the package has malicious code—other than code written to manipulate
user data—it will most likely run when the module is first initialized or after
a certain time period has passed. Look for lines of code executed at regular
intervals or during startup. Those scripts typically have a descriptors in the
package.json.

And I shouldn’t have to say this, but avoid installing modules under the root
account. You should never give scripts, especially third-party ones, root-
access-level rights. If you’re installing a package that uses the -g flag for
global access, be wary of what you’re installing and which account level the
script will have.

If you followed the steps outlined here, you should have already caught most
of the issues. The audit process is necessary for the whole dependency tree.
Now, let’s look at how to make sure the modules remain secure over the life-
time of your application.

Keeping Your Modules Up to Date and Secure
Once you’ve selected and validated all the modules that you use, you should
be good, right? Wrong. You now have to keep an eye out for security fixes for
these modules and install them accordingly.

report erratum • discuss

Clean the Modules You Use in Your Code • 201

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Patches for vulnerabilities, overall improvements, and bug fixes are released
for various packages daily. When setting up a secure project that uses third-
party NPM modules, you must periodically check for updates on the whole
tree. That way, you’ll know if any important vulnerabilities or bugs have been
fixed and will require an update. At the same time, you must also be careful
that updating your modules doesn’t introduce any breaking changes in the
dependencies. Make sure updates for every module are thoroughly tested on
a test server before updating the modules installed on the live server.

We’ve focused on testing the modules. Let’s now have a look at the application
as a whole to make sure it’s secure.

Test Your Application Security Thoroughly
Now that you’ve thoroughly analyzed and secured the application and all its
dependencies, it’s time to give your application an end-to-end test to see if
you’ve accounted for all well-known attack vectors.

For this you should start by looking up a security checklist provided by web
security organizations like OWASP. I personally find the OWASP ASVS
(Application Security Verification Standard)6 to be an excellent guide to
checking an application’s security implementations. Take the security
checklist in hand and go over each bullet point relevant for your application.
Have you implemented each of the required measures?

The checklist will help you verify that you’ve addressed specific pain points.
You want your authentication controls to fail securely to prevent attackers
from logging in. You want to verify that password entry fields allow
passphrases and provide users with minimum strength requirements. Pass-
words should not have an arbitrary length or complexity limit, for example.
Remember to verify account identity authentication functions, such as regis-
tration, account recovery, and help. The last thing you want is for the
attacker to use a recovery mechanism to get access to the account.

Going over this checklist will give you adequate reassurance only if you have
a good understanding of your requirements. I highly recommend perform-
ing—or better yet, commissioning—a penetration test on your application.
You can hire specialists, or you can do it yourself. Penetration tests help you
understand how well the security you implemented works. You should be
performing a penetration test on a regular basis to determine your application’s
overall security.

6. https://www.owasp.org/images/5/58/OWASP_ASVS_Version_2.pdf

Chapter 14. Secure the Existing Codebase • 202

report erratum • discuss

https://www.owasp.org/images/5/58/OWASP_ASVS_Version_2.pdf
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Thinking like an attacker makes you better at figuring out what needs to be
protected. Penetration tests help you develop that skill, and you can get
started with the OWASP NodeGoat Project,7 a vulnerable Node.js web applica-
tion packed with OWASP Top 10 vulnerabilities. There are plenty of other
resources, ranging from lightweight cheat sheets8 to books like Hacking: The
Art of Exploitation, by Jon Erickson.9.

Once you get into performing penetration testing there are loads of tools you
can use that do a lot of heavy lifting for you. If you are serious, then I recom-
mend at minimum looking into:

• Metasploit:10 Popular penetration testing software
• Kali Linux:11 A Linux build specifically for penetration testing
• Burp suite:12 A toolkit for testing web applications

Wrapping Up
In this chapter you learned how to systematically apply your previously
acquired knowledge on your existing projects. You learned how to analyze
your application to find potential attack points. We also discussed how to
audit third-party modules so that you can benefit from the community’s
existing body of work without compromising your security. Finally, we covered
the benefits of performing penetration tests on your code.

This knowledge should help you secure your old projects and start off
securely from day one with new projects without feeling overwhelmed or lost.

Where to Go from Here
Congratulations! You’ve reached the end of this book. You’ve learned a lot
about defending your applications from attackers and their dark arts. We
covered a lot of ground from the basics of JavaScript and server security, all
the way to database essentials and client-side security. Is your head swimming
with new security concepts?

I don’t want to discourage you, but this book just scratched the surface of
application security. Exploiting applications for financial or personal gain is

7. https://github.com/OWASP/NodeGoat
8. https://www.owasp.org/index.php/Web_Application_Security_Testing_Cheat_Sheet
9. http://www.amazon.com/Hacking-The-Art-Exploitation-Edition/dp/1593271441
10. http://www.metasploit.com/
11. https://www.kali.org/
12. https://portswigger.net/burp/

report erratum • discuss

Wrapping Up • 203

https://github.com/OWASP/NodeGoat
https://www.owasp.org/index.php/Web_Application_Security_Testing_Cheat_Sheet
http://www.amazon.com/Hacking-The-Art-Exploitation-Edition/dp/1593271441
http://www.metasploit.com/
https://www.kali.org/
https://portswigger.net/burp/
http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

a big business. New attacks and defense methods are published all the time,
and keeping up with them is a big challenge.

There’s no such thing as perfect security since any system can be compromised
given enough time and effort. Your job, then, is to keep learning about new
security attacks, mitigations, and defenses so that you can stay ahead of the
curve. Don’t forget, attackers will generally go for the low-hanging fruit first.
If you don’t have any in your code, you buy yourself some time.

Keep reading and learning because there’s plenty of material left to cover. We
took only a brief glimpse at network and operating system–level security and
penetration testing. There are other methods for analyzing systems, prioritizing
defenses, and creating appropriate security policies. You need to educate your
employees about social engineering attacks. The road ahead is long and full
of information, and while it may seem daunting, I invite you to keep educating
yourself.

Don’t feel overwhelmed by the amount still left to learn. Finishing this book
puts you ahead of many developers in terms of being aware about security.
Yes, you know a lot, but make sure you apply the knowledge to your Node.js
web applications. Until you start practicing secure methods and implement
the guidelines in the book, you won’t have a secure application. Get out there
and apply what you’ve learned, play with different tools, and keep learning
at every opportunity. Remember the words of Benjamin Franklin: “An
investment in knowledge pays the best interest.”

You’ve taken your first steps toward securing your Node.js web application.
Great job! Keep it up!

Chapter 14. Secure the Existing Codebase • 204

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Bibliography

[Cro08] Douglas Crockford. JavaScript: The Good Parts. O’Reilly & Associates, Inc.,
Sebastopol, CA, 2008.

[Eri08] Jon Erickson. Hacking: The Art of Exploitation. No Starch Press, San
Francisco, CA, 2nd, 2008.

[Res09] John Resig. Secrets of the JavaScript Ninja. Manning Publications Co.,
Greenwich, CT, 2009.

report erratum • discuss

http://pragprog.com/titles/kdnodesec/errata/add
http://forums.pragprog.com/forums/kdnodesec

Index

SYMBOLS
== (equality operator), 6–7

=== (identity (strict equality)
operator), 7

A
access control, 111–114, see

also privileges
for client-side forms,

117–119
for direct object refer-

ences, 121–123
function-level, 114–120
IBAC, 112
MAC/DAC, 111
RBAC, 113
server-side validation,

119–120

ACID (Atomicity, Consistency,
Isolation, Durability) compli-
ance, 80

ACL (access control list), 112,
114

acl module, 114

asymmetry in code, avoiding,
136–138

atomic operations, 78, 80

atomicity, 80

Atomicity, Consistency, Isola-
tion, Durability (ACID)
compliance, 80

attacks
caching attacks, 173–175
cross-site request forgery

(CSRF), 161–169
cross-site scripting (XSS)

attacks, 139–159

denial-of-service (DoS)
attacks, 125–138

dictionary attacks, 89
man-in-the-middle

(MITM) attacks, 93,
104

path traversal attacks,
178–180

rainbow table attacks, 90
session hijacking attacks,

107–108
session-fixation attacks,

106
SQL injection attacks,

53, 55, 59–72

attribute encoding, avoiding
in DOM context, 157

attribute values, escaping,
149

authentication, 13–14, 87–98
adding layers of, 98
for database accounts,

54–57
email address, validating,

98
hidden usernames, 98
multi-factor authentica-

tion, 98
passwords, changing peri-

odically, 93
passwords, cracking, 88
passwords, default, 15
passwords, hashing, 88–

91
passwords, moving to

server, 93–96
passwords, recovering,

97–98
passwords, salting, 89–90

passwords, storing, 88–
91

passwords, strength of,
91–93

passwords, two, 98
re-authentication, 163
users, default, 15

autocomplete, 173

availability, security affected
by, 25

B
bcrypt function, 89–91

blacklists, 45

Bleach module, 148

blind SQL injection attacks,
18, 62

bodyParser example, 134–136

books and publications
Hacking: The Art of Ex-

ploitation (Erickson), 3
JavaScript: The Good

Parts (Crockford), 3
Secrets of the JavaScript

Ninja (Resig), 3

BREACH attacks, 168

C
CA-signed certificates, 25–27

Cache-Control header, 105, 174

caching, 105

caching attacks, 173–175

callbacks, 128–131

CAPTCHA challenge, 93, 163

Cascading Style Sheets,
see CSS

Chrome DevTools plus Node
Inspector, 132

cipher algorithms, 182

client-side forms, access con-
trol for, 117–119

cluster module, 36

clusters, 125

code examples, source code
for, xiii

code injections, 43–51
identifying vulnerabilities

in code, 44–47
shell injection, 47–51

code, existing, see existing
codebase

comparisons
loose, avoiding, 6–7
strict, 7

compiler functions, assigning
to other names, 4

concurrency
mitigating issues with,

78–79
with MongoDB, 79–84
with MySQL, 84
security issues regarding,

73–77

configuration managers, 17

configuration, for security,
15–21

connect logger, 30

connect-redis storage system,
100–101

connection.escape method, 63

consistency, 80

Content Security Policy (CSP)
header, 143

content-modifying requests,
194–195

cookie-token sessions, 99–
100, 104–106

CORS (Cross-Origin Resource
Sharing), 162

credit card information, stan-
dards regarding, 87

cross-site request forgery
(CSRF), 161–169

cookie-based tokens for,
164–165

request origination,
checking, 165–167

session-based tokens for,
163–164, 168

XSS measures required
for, 168

cross-site scripting (XSS) at-
tacks, 105, 139–142, 173

configuration preventing,
142–144

DOM XSS, 141–142,
154–159

reflected XSS, 140–141,
144–154

sanitizing input for, 144–
159

stored XSS, 141, 144–
154

crypto module, 182

CSP (Content Security Policy)
header, 143

CSRF, see cross-site request
forgery

CSS (Cascading Style Sheets)
encoding, avoiding in

style context, 158
escaping HTML property

values, 151

csurf module, 163–165

D
data protection

caching attacks, 173–175
encryption of stored data,

180–186
flow of data, vulnerabili-

ties in, 171–172, 190–
196

minimizing amount of
data stored, 176

minimizing exposure of
data, 176–180

transferring data with
SSL, 175–176

XSS, 173

database injection attacks,
see SQL injection attacks

databases
authentication and privi-

leges for, 54–57
connecting to, 54–57
injection attacks, 53
injection attacks, avoid-

ing, 18, 55, 61–69
injection attacks, in

NoSQL databases, 69–
72

injection points in, identi-
fying, 59–61

separate databases for
each client, 57

separate schemas for
each client, 58

shared for all clients, 58

DDoS (distributed denial-of-
service) attacks, 125

dedicated server, 14

DELETE requests, 167

denial-of-service (DoS) at-
tacks, 125–126

asymmetry in code,
avoiding, 136–138

memory, managing, 132–
135

synchronous code, avoid-
ing, 127–132

development server
homogeneous environ-

ment, with production,
18–21

separate from production,
15–17

dictionary attacks, 89

direct object references, secur-
ing, 121–123

distributed denial-of-service
(DDoS) attacks, 125

DOM XSS, 141–142, 154–159

domains, error handling us-
ing, 34–35

DoS attacks, see denial-of-
service attacks

double encryption, 184–186

durability, 80

E
easy-rbac module, 114

ECMAScript, see JavaScript

email address, validating, 98

encoding
attributes, avoiding in

DOM context, 157
CSS, avoiding in style

context, 158
JavaScript, before HTML

subcontext, 157
JavaScript, when creating

links, 158
URL, when creating links,

158

encryption
for network traffic, 25–29
for stored data, 180–186

Index • 208

Enterprise Security API for
JavaScript (ESAPI4JS) en-
coder module, 147

equality operator (==), 6–7

error handling, 32–40

error messages, limiting in
production, 18

ESAPI4JS (Enterprise Securi-
ty API for JavaScript) en-
coder module, 147

escaping
data values in code, 149
HTML attribute values,

149
HTML element data, 148
HTML property values,

151
JSON values, 150
queries, 63
URL parameter values,

152

eval function, 44

event loop, 1–2

exec command, 47

execFile command, 47

execFile instead of exec, 48

execution subcontexts,
avoiding, 158

existing codebase, 187–203
cleaning modules in,

197–202
flow of data, analyzing,

190–196
risk assessment of, 188–

189
testing end-to-end, 202–

203
testing quality of, 189–

190

express framework, 17–18, 30,
167

F
file serving, Nginx for, 25

firewall, 126
for server, 14

flooding attacks, 126

fork command, 47

forking processes, 36–40

Function function, 44

function scope, 4

function-level access control,
114–120

G
GET requests, 163, 168

global variables, accidental
creation of, 4

H
hash functions for passwords,

88–91

Heartbleed bug, 14

hidden usernames, 98

host command, 47

HSTS (HTTP Strict Transport
Security), 28–29

HTML
escaping JSON values,

150
escaping attribute values,

149
escaping data in, 148
escaping property values

from CSS, 151
interpretation, avoiding,

156
rendering, encoding for,

157
sanitizing, 148

HTTP headers
Cache-Control header, 105,

174
Content Security Policy

(CSP) header, 143
Origin header, 165
Referer header, 165
X-CSRF-Token header, 164

HTTP requests, 190, see al-
so cross-site request forgery
(CSRF)

content-modifying re-
quests, 194–195

DELETE requests, 167
GET requests, 163, 168
insecure data requests,

192–194
PATCH requests, 162
POST requests, 162–164
PUT requests, 162, 167
secure data requests, 194
static requests, 191

HTTP Strict Transport Securi-
ty (HSTS), 28–29

httpOnly setting, 105

HttpOnly flag, 142

HTTPS, 93, 104, 175

HTTPS server, 25–27

I
(I/O) input/output opera-

tions, 190

IBAC (identity-based access
control), 112

identity (strict equality) opera-
tor (===), 7

inheritance, prototypical, 8–9

input/output (I/O) opera-
tions, 190

insecure data requests, 192–
194

isNaN() function, 5

isolation, 80

J
JavaScript, 3–9

JavaScript encoding
before HTML subcontext,

157
when creating links, 158

JSHint tool, 189

JSLint tool, 189

JSON values, escaping, 150

L
LAMP/LEMP, compared to

Node.js, 24

layers of security, 11–12

Let’s Encrypt, 27

Linux, security for, 14

locking, 78, 81–83

logging, 29–32, 175

login forms, 168

loose comparisons, 6–7

M
MAC/DAC (mandatory/discre-

tionary access control), 111

memory, managing, 132–135

MITM (man-in-the-middle)
attacks, 93, 104

modules, 2, see also specific
modules

auditing, 200
choosing, 199
cleaning, 197–202
security of, 3
updating, 201

MongoDB, concurrency with,
79–84

morgan logger, 30

Index • 209

multi-factor authentication,
98

MySQL
concurrency issues with,

84
node-mysql driver, 61

N
NaN (Not a Number) errors, 5

network, security for, 24–29

Nginx, 25

nobody user, 50

Node Package Manager (NPM),
2

Node Security Project, 198

Node WebKit Agent, 132

node-esapi module, 147

node-mysql driver, 61

Node.js, 1–3

Node.js versions, xi

NODE_ENV environment vari-
able, 17–18

NoSQL database, injection
attacks with, 69–72

Not a Number (NaN) errors, 5

NPM (Node Package Manager),
2

numeric calculations, poten-
tial problems with, 5–6

O
object relational mapper

(ORM), 66–69

one-click attacks, see cross-
site request forgery

online resources
access control modules,

114
cluster module, 36
code examples, xiii
configuration managers,

17
CSP usage, 144
HSTS, 29
HTML sanitizers, 148
operating system securi-

ty, 14
OWASP Application Secu-

rity Verification Stan-
dard, 202

OWASP DOM XSS Cheat
Sheet, 158

OWASP ESAPI JavaScript
library, 154

OWASP NodeGoat
Project, 203

OWASP Risk Rating
Methodology, 188

OWASP Session Manage-
ment Cheat Sheet, 99

OWASP Threat Risk
Modeling, 188

OWASP XSS Prevention
Cheat Sheet, 144

performance analysis
tools, 132

process managers, 40
Redis database, 100
scope, 7
session storage systems,

100–101
SSL certificates, 26–27
static analysis tools, 189
strict mode, 4
for this book, xiii

operating system security, 14

Origin header, 165

ORM (object relational map-
per), 66–69

OWASP (Open Web Applica-
tion Security Project), 43

ASVS (Application Securi-
ty Verification Stan-
dard), 202

DOM XSS Cheat Sheet,
158

ESAPI JavaScript library,
154

NodeGoat Project, 203
Risk Rating Methodology,

188
Session Management

Cheat Sheet, 99
Threat Risk Modeling,

188
XSS Prevention Cheat

Sheet, 144

P
package.json file, 18

parallelism, 74

passwords, see authentica-
tion

PATCH requests, 162

path traversal attacks, 178–
180

performance, problems with,
finding, 132

permissions, see privileges

PLP (principle of least privi-
lege), 12–13

POST requests, 162–164

prepared query statements,
64

principle of least privilege
(PLP), 12–13

privileges, see also access
control

for database accounts,
54–57

principle of least privilege
for, 12–13

root, minimizing use of,
13

process
adding, for long opera-

tions, 127
as cluster, 125
forking, 36–40
keeping alive, 32–34

production server
homogeneous environ-

ment, with develop-
ment, 18–21

limiting error messages
on, 18

separate from develop-
ment, 15–17

prototypes, 8

prototypical inheritance, 8–9

proxy servers, 177

PUT requests, 162, 167

Q
queue system for guest users,

136–138

R
rainbow table attacks, 90

RBAC (role-based access
control), 113

Redis, for session storage,
100–101

Referer header, 165

reflected XSS, 140–141, 144–
154

requests, see HTTP requests

resource locks, 78, 81–83

resources, see books and
publications; online re-
sources

risk assessment, 188–189

role-based access control
(RBAC), 113

root account, for database,
avoiding, 13

Index • 210

root privileges
minimizing use of, 13
for web application,

avoiding, 13

run rights, 49

S
salting passwords, 89–90

Sanitizer module, 148

scope
function scope, 4
of variables, 7

scrypt function, 89–90

secure data requests, 194

Secure Sockets Layer (SSL),
25–27, 175–176, see al-
so HTTPS

security, see also access con-
trol; attacks; authentica-
tion; data protection; ses-
sion management

concurrency issues re-
garding, 73–86

configuration for, 15–21
error handling for, 32–40
layers of, 11–12
logging for, 29–32
for network, 24–29
for operating system, 14
principle of least privilege

for, 12–13
for server, 13–21
testing application end-

to-end for, 202–203

self-signed certificates, 25–27

sensitive data, protecting,
see data protection

server poisoning, 46

server-side valiadtion, 119–
120

servers
authentication for, 13–14
dedicated, 14
development and produc-

tion, separate, 15–17
firewall for, 14
homogeneous environ-

ments on, 18–21
HTTPS server, 25–27
minimizing access to, 14
moving password to, 93–

96
operating system on, se-

curing, 14
security for, 13–21

session hijacking attacks,
107–108

session riding, see cross-site
request forgery

session-fixation attacks, 106

sessionID, 99–100
changing default name,

101–102
not caching, 105
regenerating at login, 106

sessions, 99–108
binding to user informa-

tion, 107–108
example module for, 109
recreating at login, 106
setting up, 99–101
storage for, 100–101
Time-to-Live for, 102–104

shell injection, 47–51

ShellShock bug, 14

Slowloris attacks, 126

software
on server, keeping up to

date, 14
on server, minimizing, 14
testing with application,

19

spawn command, 47

Spy.js, 132

SQL (database) injection at-
tacks, 53

avoiding, 18, 55, 61–69
NoSQL databases, vulner-

ability to, 69–72
points in code allowing,

59–61

SSL (Secure Sockets Layer),
25–27, 175–176, see al-
so HTTPS

SSL certificates, 25–27

static analysis tools, 189

static requests, 191

stored XSS, 141, 144–154

streams, 133–134

strict comparisons, 7

strict mode, 4

strings, in calculations, prob-
lems with, 5–6

subcontexts, avoiding, 158

synchronous code, avoiding,
127–132

T
this keyword, undefined by

default, 4

threads, single thread for
Node.js process, 2

threat modeling, 188

Time-to-Live (TTL), 102–104

TLS (Transport Layer Securi-
ty), 25–27

trace calls, disabling, 143

transactions, 85–86

Transport Layer Security
(TLS), 25–27

try/catch statements, 33

TTL (Time-to-Live), 102–104

two-factor authentication, 98

two-tier session timeout, 103–
104

type conversions, potential
problems with, 5

U
uncaughtException handler, 34

URL encoding, when creating
links, 158

URL parameter values, escap-
ing, 152

use strict directive, 4

user input, validating, 45, 62

usernames, see authentica-
tion

users
access to server, minimiz-

ing, 14
banning after failed lo-

gins, 93
default, changing, 15
guests, queue system for,

136–138
privileges for, 13
separate accounts for, 13

V
V8 WebKit engine, 1

var keyword, 7

variables
client-side, cleaning, 196
global, accidental cre-

ation of, 4
scope of, 7

Index • 211

W
white box analysis, 189–190

whitelists, 45, 48, 65, 193

with keyword, 4

X
X-CSRF-Token header, 164

XSS attacks, see cross-site
scripting attacks

Z
zero-day vulnerabilities, 15

Index • 212

The Modern Web
Get up to speed on the latest JavaScript techniques.

Deliver Audacious Web Apps with Ember 2
It’s time for web development to be fun again, time to
write engaging and attractive apps – fast – in this brisk
tutorial. Build a complete user interface in a few lines
of code, create reusable web components, access
RESTful services and cache the results for perfor-
mance, and use JavaScript modules to bring abstrac-
tion to your code. Find out how you can get your cru-
cial app infrastructure up and running quickly, so you
can spend your time on the stuff great apps are made
of: features.

Matthew White
(154 pages) ISBN: 9781680500783. $24
https://pragprog.com/book/mwjsember

Reactive Programming with RxJS
Reactive programming is revolutionary. It makes
asynchronous programming clean, intuitive, and ro-
bust. Use the RxJS library to write complex programs
in a simple way, unifying asynchronous mechanisms
such as callbacks and promises into a powerful data
type: the Observable. Learn to think about your pro-
grams as streams of data that you can transform by
expressing what should happen, instead of having to
painstakingly program how it should happen. Manage
real-world concurrency and write complex flows of
events in your applications with ease.

Sergi Mansilla
(142 pages) ISBN: 9781680501292. $18
https://pragprog.com/book/smreactjs

https://pragprog.com/book/mwjsember
https://pragprog.com/book/smreactjs

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang. Add in the unparalleled beauty and ease of the
Phoenix web framework, and enjoy the web again!

Programming Phoenix
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights, this definitive guide will
be your constant companion in your journey from
Phoenix novice to expert, as you build the next gener-
ation of web applications.

Chris McCord, Bruce Tate, and José Valim
(230 pages) ISBN: 9781680501452. $34
https://pragprog.com/book/phoenix

https://pragprog.com/book/phoenix

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
https://pragprog.com/book/bhtmux

Practical Vim, Second Edition
Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS, and if you master the techniques
in this book, you’ll never need another text editor. In
more than 120 Vim tips, you’ll quickly learn the editor’s
core functionality and tackle your trickiest editing and
writing tasks. This beloved bestseller has been revised
and updated to Vim 7.4 and includes three brand-new
tips and five fully revised tips.

Drew Neil
(354 pages) ISBN: 9781680501278. $29
https://pragprog.com/book/dnvim2

https://pragprog.com/book/bhtmux
https://pragprog.com/book/dnvim2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/kdnodesec
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/kdnodesec

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/kdnodesec
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/kdnodesec
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Who Should Read This Book?
	What’s in This Book?
	Online Resources

	1. Meet Your Tools
	Meet Node.js
	Meet JavaScript
	Wrapping Up

	2. Set Up the Environment
	Follow the Principle of Least Privilege
	Start with the Basics: Secure the Server
	Avoid Security Configuration Errors
	Wrapping Up

	3. Start Connecting
	Set Up Secure Networking for Node.js Applications
	Decide What Gets Logged
	Don’t Forget About Proper Error Handling
	Wrapping Up

	4. Avoid Code Injections
	Identify Code Injection Bugs in Your Code
	Avoid Shell Injection in Your Application
	Wrapping Up

	5. Secure Your Database Interactions
	Start with the Basics: Set Up the Database
	Separate Databases for Better Security
	Identify Database Injection Points in Your Code
	Avoid SQL Injection Attacks
	Mitigate Injection Attacks in NoSQL Databases
	Wrapping Up

	6. Learn to Do Things Concurrently
	A Primer on Concurrency Issues
	Ways to Mitigate Concurrency
	Concurrency with MongoDB Explained
	Concurrency with MySQL Explained
	Wrapping Up

	7. Bring Authentication to Your Application
	Store the Secret in a Safe Place
	Enforce Password Strength Rules on Your Users
	Move the Password Securely to the Server
	Deal with the Fact That Users Will Forget
	Add Other Authentication Layers for Better Security
	Wrapping Up

	8. Focus on Session Management
	Set Up Sessions for Your Application
	Anonymize the sessionID Used
	Let the Session Die, aka Set a Time-to-Live
	Secure the Cookies so No One Can Steal Them
	Re-create the Session When the User Logs In
	Bind the Session to Prevent Hijacking
	Wrapping Up

	9. Set Up Access Control
	Access Control Methods
	Missing Function-Level Access Controls in Your Code
	Don’t Use Insecure Direct Object References
	Wrapping Up

	10. Defend Against Denial-of-Service Attacks
	Recognize Denial-of-Service Attacks
	Avoid Synchronous Code in Your Application
	Manage How Your Application Uses Memory
	Avoid Asymmetry in Your Code
	Wrapping Up

	11. Fight Cross-Site Scripts
	Recognize Different Types of XSS
	Prevent XSS Through Configuration
	Sanitize Input for Reflected/Stored XSS
	Sanitize Input for DOM XSS
	Wrapping Up

	12. Avoid Request Forgery
	Follow the Logic to Protect Against CSRF
	Synchronize Your Tokens as Part of CSRF Protection
	O Request, Where Art Thou From?
	Avoid Setting Up Common CSRF Pitfalls in Your Code
	Wrapping Up

	13. Protect Your Data
	Understand Your Application’s Data Flow
	Protect the Client Application and Data
	Securely Transfer Data in Your Application
	Secure the Data Stored Within Your Application
	Wrapping Up

	14. Secure the Existing Codebase
	Perform a Risk Assessment First
	Test Your Application’s Code Quality
	Analyze Your Application’s Data Flow
	If Nothing Else, Use a Helmet
	Clean the Modules You Use in Your Code
	Test Your Application Security Thoroughly
	Wrapping Up
	Where to Go from Here

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Z –

